Clusters and exotic structures in light nuclei probed through reactions and decay

Riccardo Raabe
KU Leuven, Instituut voor Kern- en Stralingsfysica

Brussels, June 1-2, 2023

Reactions and Decay

Transition Rate

$$
\left.\lambda=\frac{2 \pi}{\hbar}\left|\left\langle\Psi_{f}\right| V\right| \Psi_{i}\right\rangle\left.\right|^{2} \rho\left(E_{f}\right)
$$

- Matrix element $\left\langle\Psi_{f}\right| V\left|\Psi_{i}\right\rangle$ contains nuclear structure and interaction potential
- Reactions: either...
- consistent approach for the two
- focus on reaction mechanism
- focus on structure
- If focus on structure
\rightarrow use "simple/well-known" processes:
resonant elastic, nucleon transfer... or decay!

Exotic decay modes: β-delayed charged-particle emission

Decay of halo states

- Poor overlap
\rightarrow decreased decay probability
- Patterns: decay of the halo (cluster)
- Contribution of different regions of the wave function, possible cancellation effects

${ }^{6} \mathrm{He}$
E. M. Tursunov, D. Baye,
and P. Descouvemont, PRC 73 (2006) 014303

Exotic decay modes: techniques

β-delayed charged-particle emission

- Method: implantation and decay in the detector
- Advantages
- suppression of β-particles background
- high efficiency
- high precision
- high accuracy
- "history" of each decay
- Measured: ${ }^{6} \mathrm{He},{ }^{11} \mathrm{Li},{ }^{11} \mathrm{Be},{ }^{8} \mathrm{~B},{ }^{12} \mathrm{~N},{ }^{12} \mathrm{~B},{ }^{16} \mathrm{~N}$

Pixelated Si detector (Leuven)

1

2
0 -implantation

Exotic decay modes: ${ }^{6} \mathrm{He} \rightarrow \alpha+\mathrm{d}$

Decay into the continuum

- Small decay channel $\left(\approx 10^{-6}\right)$ into $\alpha+d$
- Measurement in Louvain-la-Neuve $315 \alpha+$ d decay events in ≈ 4 days
- Branching ratio:

$$
1.65(10) \times 10^{-6} \quad\left(E_{\text {c.m. }}>525 \mathrm{keV}\right)
$$

- Measurement at ISOLDE Spectrum extended to $E_{\text {c.m. }} \approx 150 \mathrm{keV}$
- Very small B.R. explained by the cancellation between the internal and halo components of the matrix element
- Branching ratio sensitive to halo wave function at large distances
M. Pfützner at al., PRC 92 (2015) 014316
R. Raabe et al., PRC 80 (2009) 054307
E.M. Tursunov et al., PRC 73 (2006) 014303

KULEUVEN

Exotic decay modes: ${ }^{11} \mathrm{Li} \rightarrow{ }^{9} \mathrm{Li}+\mathrm{d}$

Decay into continuum+resonance(?)

- Many different decay channels \rightarrow identification is crucial
- Use of daughter-decay (time and spatial correlation)

Exotic decay modes: ${ }^{11} \mathrm{Li} \rightarrow{ }^{9} \mathrm{Li}+\mathrm{d}$

Decay into continuum+resonance(?)

- Branching ratio:
$1.30(13) \times 10^{-4}$ ($E_{\mathrm{cm}}>200 \mathrm{keV}$)
- Calculations: optical potentials for 9Li+d
V_{c} : ${ }^{9} \mathrm{Li}+\mathrm{d}$: Coulomb only (reference) M.V. Zhukov et al., PRC 52 (1995) 2461
$\mathrm{V}_{\mathrm{a}}:{ }^{9} \mathrm{Li}+\mathrm{d}$ resonance at 0.33 MeV
$\mathrm{V}_{\mathrm{b}}:{ }^{9} \mathrm{Li}+\mathrm{d}$ resonance at -0.18 MeV
D. Baye, E. M. Tursunov, and P. Descouvemont, PRC 74 (2006) 064302
V_{n} : ${ }^{9} \mathrm{Li}+\mathrm{d}$: broad resonance at 0.8 MeV
 (with weak absorption)
E. M. Tursunov, D. Baye, and P. Descouvemont, IJMPE 20 (2011) 803

Reactions: resonant scattering

- Very well suited to study cluster structures (in unbound states)
- Important: measure spatial correlations
- With radioactive ion beams: inverse kinematics, detection at forward angles,
 energy loss of the beam in the target

Typical cluster structures known in stable nuclei

Y. Kanada-En'yo, Varenna 2017

Molecular states in ${ }^{10} \mathrm{Be}$

${ }^{6} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{10} \mathrm{Be}$ in LLN

- Coincident detection in ${ }^{4} \mathrm{He}$ gas
- Measured spin, a spectroscopic factor
- "Dumbbell" structure confirmed

Cluster/Molecular states in ${ }^{12} \mathrm{Be}$

$$
{ }^{8} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{Be} \text { in GANIL }
$$

- Measured elastic channel and ${ }^{6} \mathrm{He}+{ }^{6} \mathrm{He}$ channel
- Possible $L=4$ resonance at $E^{*} \approx 14-15 \mathrm{MeV}$
- Cluster/molecular structure predicted in this range

M. Freer et al, PLB 775 (2017) 58

Active targets

Time-Projection Chamber (TPC)

+ gas is the target
- Electrons produced by ionization drift to an amplification zone
- Signals collected on a segmented "pad" plane $\Rightarrow 2 d$-image of the track
- $3^{\text {rd }}$ dimension from the drift time of the electrons
- Information:
- angles
- energy (from range or charge)
- particle identification

New frontiers with ACTAR TPC

${ }^{18} \mathrm{O}+\mathrm{p}$ in ACTAR TPC

- Micro-pattern gaseous detector: Micromegas
- High granularity of the pad plane \rightarrow very good spatial resolution
- p and α channels measured Resolution 38 keV and 54 keV
B. Mauss et al, NIMA 940 (2019) 498

KULEUVEN

Transfer reactions: low-lying states in ${ }^{7} \mathrm{He}$

${ }^{6} \mathrm{He}\left({ }^{9} \mathrm{Be},{ }^{8} \mathrm{Be}\right){ }^{7} \mathrm{He}$ in LLN

- Very clean identification from the characteristic ${ }^{8} \mathrm{Be} \rightarrow 2 \alpha$ signal
- Identification of low-lying resonances in 7 He : First excited at $\approx 2.6 \mathrm{MeV}$
F. Renzi et al, PRC 94 (2016) 024619

Transfer reactions: low-lying states in ${ }^{7} \mathrm{He}$

${ }^{6} \mathrm{He}\left({ }^{9} \mathrm{Be},{ }^{8} \mathrm{Be}\right){ }^{7} \mathrm{He}$ in LLN

F. Renzi et al, PRC 94 (2016) 024619

- Very clean identification from the characteristic ${ }^{8} \mathrm{Be} \rightarrow 2 \alpha$ signal
- Identification of low-lying resonances in 7 He : First excited state at $\approx 2.6 \mathrm{MeV}$

${ }^{7} \mathrm{H}$ in the Maya active target

${ }^{8} \mathrm{He}+{ }^{12} \mathrm{C},{ }^{19} \mathrm{~F}$ in Maya at GANIL
M. Caamaño et al, PLB 829 (2022) 137067
M. Caamaño et al, PRL 99 (2007) 062502

- ${ }^{8} \mathrm{He} 15.4 \mathrm{MeV} /$ nucleon onto $\mathrm{He}(90 \%)-\mathrm{CF}_{4}(10 \%)$ gas at 176 mbar
- Detection of heavy recoil in the gas and ${ }^{3} \mathrm{H}$ (from ${ }^{7} \mathrm{H}$ decay) in $\mathrm{Si}+\mathrm{Csl}$ detectors
- Energy of ${ }^{7} \mathrm{H}$ from Missing Mass+conditions
- Peak at $\approx 0.7 \mathrm{MeV}$ above ${ }^{3} \mathrm{H}+4 \mathrm{n}$, width $\approx 0.2 \mathrm{MeV}$
- More than 200 events \rightarrow angular distribution!

KU LEUVEN

