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Spectroscopy from knockout reactions

e Fast-moving projectile on a (typically) light target.

@ One nucleon suddenly removed (absorbed) due to its interaction with
the target.

@ The remaining residue remains unchanged and is detected.

@ The momentum of the core is related to that of the removed nucleon
because in the projectile rest frame P = 0.

(by J. Tostevin)
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Extraction of SFs from knockout reactions

@ Inclusive cross sections are computed as:

Otheor = Z S(I:z(b ngj)o'sp(L MJ)
ntj

@ The s.p. cross section is conveniently separated into elastic breakup (“diffration”)
and nonelastic breakup (“stripping”) contributions:

osp(f; nbj) = UEDBU + JSE’EB]

@ Agreement theory vs experiment quantified with the reduction factor:

Texp
Otheor

A.M. Moro Brussels, June 1-2 2023  p. 2



Extraction of SFs from knockout reactions

@ Inclusive cross sections are computed as:

Ttheor = Y St (I nl)osp (I; nk)
nlj

@ The s.p. cross section is conveniently separated into elastic breakup (“diffration™)
and nonelastic breakup (“stripping”) contributions:

osp(f; nlj) = O'SEPBU + asl\i,EBl

@ Agreement theory vs experiment quantified with the reduction factor:
Texp
Otheor

1w Ry < 1 = possible correlations (long-
range, short-range, tensor,..) not in-
cluded in otheor?

Measurements at the two Fermi surfaces
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Gade et al, PRC 77, 044306 (2008), Tostevin, PRC90,057602(2014)
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Comparison with transfer and (p, pN) reactions

Tostevin, PRC90,057602(2014)

...however, this behaviour has not been corroborated by other probes,
such as transfer or proton-induced knockout reactions (p, pN)

HI knockout
(~100 MeV/u)

at the two Fermi surfaces
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Proposed explanations for the R, puzzle

@ From the structure side:
e Enhancement of short-range correlations for well-bound nuclei not in-
cluded in standard SM calculations
o Coupling to near-threshold single-particle configurations in the contin-
uum
e 3N force effects (missing in standard SM)
@ From the reaction side:
o Unadequacy of the eikonal approximation at the typical knockout ex-

periment energies (<100 MeV /u)
e Theoretical uncertainties in simplified transfer reaction analyses.
Nunes, Deltuva, and June Hong, Phys. Rev. C 83, 034610 (2011)
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Can theoretical uncertainties reconcile the transfer and knockout results?
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Hebborn, Nunes, Lovell, arXiv:2302.14343
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Testing the eikonal approximation: comparison with the IAV model
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Ichimura, Austern, Vincent model for NEB [IAV, PRC32, 431 (1985)]

See also Lei, AMM, PRC92, 044616 (2015)

@ Inclusive reaction (b+z)+A — b+ (z+ A)*
——

a

@ b singles cross section: a};’“’ = rrbEBU + agBU

> EBU: a+ A — b+ z+ Ag.s. can be computed with CDCC, DWBA, etc

= O'EIEB can be interpreted as the absorption occurring in the z+ A channel:

Wea = Im[UzA]

doNEB 2 () ()
B () (@ | Wl
[dedEb Twapb( ) ( Pz | Waalpz )

where @&kb)(rz) describes 2- A relative motion when b scatters with ky:

[ [Bz — Kz — UzA]@g:kb)(rx) = (Xg_)‘ Vblet(z+)¢a(rbz)> ] Vpost = Vig+Upa—Upp

with :

@ ¢, (rps) projectile ground state wf.
o x{")(k;,r;) =distorted wave for entrance channel (a + A).

° ng)(kb,rb) =distorted wave for “spectator” particle (b).
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Application of IAV model to deuteron inclusive breakup

o EBU calculated with CDCC.
@ NBU calculated with 1AV model

“Nb(d,pX) @ E,=25.5 MeV ]
(E,=14 MeV)
s Calculations:
g J. Lei, AM.M., PRC 92, 044616
BT el s o (2015)
o'k B
F |-- NEBU (IAV model) ] Data:
02l fT"::‘f ] Pampus et al, NPA311 (1978)141
0 150 180
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Application to 2°?Bi (°Li,a)X
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Santra et al, PRC85, 014612 (2012)

J. Lei and AMM, PRC92, 044616 (2015)
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Benchmarking the Eikonal formula with noneikonal 1AV

Test case: 1“O(-1n) and *O(-1p) on ?Be target with the same
(energy-independent) potentials and structure model

“0(-1p) $,=4.6 MeV “0(-1n) =232 MeV

|E=80MeV/u  E=S3MeViu| | E=80 MeV/u E=53 MeV/u |

40 40

M. Gomez-Ramos et al, EPJA (2021) 57:57

@ The Eikonal model compares very well with the IAV result, even at relatively low
incident energies (~50 MeV /u)

@ Other effects relevant for the comparison with data (e.g. energy dependence of
OMPs) not considered here (see Flavigny, PRL 108, 252501 (2012), J. Lei and Bonac-
corso, PLB813 (2021) 136032)
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The effect of “core-valence” absorption in elastic and nonelastic breakup
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Reminder of the ©ontinuum-iscretized Coupled-Channels method (CDCC)

@ Effective solution for two-body or three-body projectiles on an inert target.
@ Breakup treated as inelastic excitations to two-body continuum.
@ Continuum states are represented by a finite set of square-integrable functions

i _l S
=]
4 (R Breakup threshold £=0
—_— € =-2.22 Me'
ground state

@ Three-body wavefunction (after discretization):

lI,CDCC (I‘, R) = ¢0(k07 r)XO (K07 R) + Z ¢’Jn7/r (kn’ ) r,)Xn’ ,j,W(Kn’v R,)

7 -
n,3,m

@ [H — EJ¥CPCC — 0 : Orthogonality of states used to solve the equations: V¢
must be real:

STUE = T—em) (637 1697) — (637 | Usr + Uorl$ ) xmsm = 0
N————

i 5"'7775J7rJ7r’
@ Provides only elastic cross section and elastic breakup (diffraction) observables.
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Absorption effects in a(z+ C)+ T — 2+ C+ T

@ Imaginary parts of U, and Ugy describe absorption between z — T'and C— T

@ In the continuum, the interaction between z and C can excite C or z, which can
then break up, removing flux

a o
) L J @,\,/

@ U, should be complex at positive energies, but then its eigenstates ¢; are no
longer orthogonall!!!

@ Orthogonality can be recovered using a binormal basis, ¢, defined to be orthogonal
to the set of non-orthogonal states ¢: (pi|@;) = i

@ When the energy dependence of the potential is small: @ﬁf) ~ ap$L+)*

@ In a more general case:

B0 =3 A7 A= (D1l 7)
j

@ Coupled equations in the binormal basis:

§ [(E_ T-— 57”) (‘)ZHJW’ “PmJﬂ'> _<¢nJ7r' ‘ Uz + UCT“PmJﬂ'HXme =0
—_——
nJm
Spm0

JrJm!
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Application to 12C(!!Be,n!’Be)!?C at 70 MeV/A

Choice of complex n+'°Be interaction:

@ Real part: Potential from Capel et al (PRC 70, 064605 (2004)), reproduces
bound states and low-energy resonances.

@ Imag part: Adjusted to reproduce reaction cross sections for n—°Be (A. Bonac-
corso and R.J. Charity PRC 89,024619 (2014)), rescaled through A%/3.

Wo(E)
1+exp(r— R)/ao

E—E)+bE!
E*+ E} ’

W(E, 1) = W) = (A

L,,A
o
W
3
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Application to 12C(!!Be,n'’Be)?C (cont.)

dB(E2) do
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@ Coulomb breakup barely affected by absorption (larger z— C distance)
@ Resonances severely affected
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Full cross section
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n Be
@ Small effect of absorption: ~10%
@ Resonance too severely affected (absorption threshold possibly too low)

@ Core-excitation effects have been predicted for these data (A.M. M. and
J.A. Lay PRL 109 232502 (2012)) but are not included here
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Application to 2C(*'Ca, n'’Ca)'2C at 70 MeV /A

0.05

0041 - .
_ . — Real n+ Ca potential ]
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@ Smaller breakup cross section, due to larger separation energy (.5, =
8.4 MeV)

e Additional suppression due to core-valence absorption (~50% reduc-
tion).

o Large effect of non-orthogonality with the ground state. Replacement
3(=) — p(H)* not accurate.
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Why valence-core absorption is more important for well-bound nuclei?

4OSi ‘o
f,n,n.p+"A1,1§?

,,,,,,,,,,,,,,,,, ) +39 Al

—
X :/
4

39 a:
n+39Si -

=> Breakup of more tightly bound nucleon explores higher energies with
larger absorption, and there are more open channels.
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Implications?

= Inclusion of valence-core absorption might explain the R asymmetry
observed in knockout reactions.

1.1

. b
1ol ® )

09F
0.8F

0.7F
0.6

0.5
0.4r

03F
0.2} - R
- A g-0dp)
010 0 10 20 20 10 0 10 20
AS (MeV)
B.P. Kay et al, PRL 129 152501 (2022)

J. A. Tostevin and A. Gade PRC 103 054610 (2021)
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Including the effect of “core-valence” absorption in non-elastic breakup
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Revisiting the standard eikonal formula

@ Stripping cross section:

P:atr /dBkZ|A gl_{;

J#0
AR = [ 78,0 S2r(bom) Sy brre R
@ Involves the nonlocal density matrix:
Galodri) = [ d GLE )G E )
@ For real core-nucleon interaction, closure can be used:

(Blpfdri) = 6(f —13) = > [Fplbvr)? =1 - [Sp(byr)]?
J#0

@ Leads to standard eikonal expression:

PRx(b) = /d3F|¢g(?)‘2|SOCT(bCT)‘2 (1 =18V r(bv) ),
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Eikonal calculations with complex valence-core interaction

@ For complex V¢, closure cannot be used, but we can define an
effective density for an average position:

. o 4 202\ . N i)
oM@ = [ararys (— o ) 5 (y— A2 y2) o5 Do) [l E e (ir)

e This p°f can be used in standard eikonal calculations

Gy = /dgg/dgg‘/c p°(z, 9)|Scr(ber)*(1 = [Svr(byr)?)

byr =/ (b+ az)? + (ay)?

A-1 71+ T2 vi +
a="—"; = Doy = )
A 2 2

Details in: M. Gomez-Ramos, J. Gomez-Camacho, A.M.M., arXiv:2303.00426
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Effective density for weakly-bound and tightly-bound nuclei

e Uyc. Imaginary part of Morillon potential (since we study absorption)

“Si(n) (1f,, S =4.72 MeV)

72 Pn

“Si (-p) (14, $,223.1 MeV)

0.2 T T
a)
L — Absorption
— Plane wave
0.151- — Eikonal |

p(x) (fm™)
(=]

0.05

0 L 1

b) ‘

0.2

0.1

p0O) (fm™)

5
x (fm)

10

5
x (fm)

e Significant reduction, larger for deeply-bound nucleon
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Elastic compound scattering

@ Optical potential gives finite reaction cross section at low energies for
weakly-bound nucleons (But there are no open channels!!!)

@ This corresponds to compound nucleus which decays to elastic channel
(This is not absorption)— Must be removed from potential

@ Use compound-nucleus calculation (PACE4) to estimate and remove
flux to elastic

n+"’Si from Morillon DOM

. |
~
~/

\/

W, W, (MeV)

— W, original
— W, original
-~ W, modified

(volume part set to zero when needed)

@ Absorption unchanged for deeply-bound nucleons but severely reduced
for weakly-bound at low energies
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Effective density

e Uy Imaginary part of Morillon potential (since we study absorption)

“Si(n) (1£,, S,=4.72 MeV) “Si (p) (14, §,=23.1 MeV)
0.2 T T T T T T 0.2
a) b)
L — Absorption 4 L 4
— Plane wave

— Eikonal

0.15F — Absorption mod.| |

dp/dx (fm™")
|
o
dp/dx (fm™)

x (fm) x (fm)

e Modification in tail (relevant for stripping)
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Effect on cross sections

@ Core-valence absorption described with Morillon DOM potential, cor-
rected with PACE (Model 1) or GEMINI (Model II) predictions for
compound elastic.

404 24. 12
T

Cep) C(n i () *'Si (-p)
Fm ‘a) [] T " ' [

¢ .
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P
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f=]
(=1
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m=-0.004 MeV"'

@ Tostevin et al (2021) m=-0.013 MeV"'
¥ Model I
<4 Model II
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(=1
5]
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e Significant flattening, consistent with transfer
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Conclusions and outlook

@ We have explored the effect of inter-cluster absorption in two-body breakup
reactions.

@ CDCC and eikonal models extended to accommodate core-valence absorp-
tion in elastic (diffraction) and non-elastic (stripping) breakup.

o Application to 2C(*'Be, n'°Be)'2C and '*C(*'Ca, n*°Ca)'?C at 70
MeV/A shows a large suppression of elastic breakup when removing
more deeply-bound species.

o Preliminary knockout calculations indicate that this core-valence ab-
sorption is a promising candidate to explain the Gade plot puzzle.

Possible extensions

@ Uncertainty in U,c optical potentials, more reliable (ab initio, dispersive,
measurements?) are required

Extension of modified eikonal formalism to diffraction
Go beyond eikonal (Ichimura-Austern-Vincent?)

Complete Gade plot

®© 6 ¢ o

Momentum distributions
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