Three-body reactions of astrophysical interest

TECHNISCHE UNIVERSITÄT DARMSTADT

Stefan Typel

Exploring low-energy nuclear properties: latest advances on reaction mechanisms with light nuclei

Workshop dedicated to Pierre Descouvemont

Université Libre de Bruxelles Campus de la Plaine Bruxelles, Belgium June 1 - 2, 2023

History of the Cosmos

origin of chemical elements

primordial nucleosynthesis

Stellar Nucleosynthesis

different types of reactions (pure nuclear, electromagnetic, weak)

different processes

TECHNISCHE UNIVERSITÄT DARMSTADT

Nuclear Reactions of Astrophysical Interest

- reactions of the form $a + b \rightarrow c + d + ...$ with two nuclei in initial state and two or more nuclei in final state
 - suppression of cross section at low energies due to Coulomb repulsion
 - reaction rate $R(T) \propto n_a n_b$ with densities of nuclei n_a and n_b
 - three-body aspect: strong clustering in nuclei a or b (e.g. in transfer reactions)
- reactions $a + b + c \rightarrow d + e + \dots$ with three nuclei in initial state
 - reaction rate $R(T) \propto n_a n_b n_c$
 - stronger Coulomb suppression and temperature dependence than two-body reactions
 - high densities and temperatures needed to be efficient
 - relevant cases for nucleosynthesis?

Three-Body Reactions of Astrophysical Interest

TECHNISCHE UNIVERSITÄT DARMSTADT

charged-particle reactions:

• most important example: triple- α process

 ^{4}He + ^{4}He + ^{4}He \rightarrow ^{12}C + 7.275 MeV

strong enhancement of cross section due to

- formation of ⁸Be ground state as resonance in $\alpha + \alpha$ system
- 'Hoyle' resonance in ¹²C just above 3α threshold
- reactions with neutron in entrance channel:
 - relevant for astrophysics only when unstable neutrons are available

(e.g. primordial nucleosynthesis)

• of possible interest: $n + {}^{3}He + {}^{4}He \rightarrow {}^{4}He + {}^{4}He$

via $3/2^-$ resonance in $^5\mathrm{He}$

- magnitude and energy dependence of theoretical cross section?
- experimental study with Trojan-horse method

Transition Rate of Reaction $n + {}^{3}He + {}^{4}He \rightarrow {}^{4}He + {}^{4}He$

general form in relative coordinates

$$dw_{134\to44} = \frac{2\pi}{\hbar} \frac{1}{(2J_1+1)(2J_3+1)(2J_4+1)} \sum_{M_1M_3M_{4i}} \sum_{M_{4f}M'_{4f}} \int \frac{d^3p_{44}}{(2\pi\hbar)^3} |T_{fi}|^2 \,\delta(E_{14}+E_{35}-E_{44}+Q_{134\to44})$$

with

- averaging over initial and summation over final spin projections
- energy conservation with Q value $Q_{134\rightarrow44} = (m_1 + m_3 m_4)c^2$
- energies $E_{ij} = p_{ij}^2/(2\mu_{ij})$, momenta p_{ij} , reduced masses $\mu_{ij} = m_i m_j/(m_i + m_j)$
- T-matrix elements T_{fi}

Transition Rate of Reaction $n + {}^{3}He + {}^{4}He \rightarrow {}^{4}He + {}^{4}He$

• integration over E_{44} in final state \Rightarrow

$$\frac{dw_{134\to44}}{d\Omega_{44}}(\vec{p}_{14},\vec{p}_{35}) = \frac{2\pi}{\hbar} \frac{\mu_{44}p_{44}}{(2\pi\hbar)^3} \frac{1}{(2J_1+1)(2J_3+1)(2J_4+1)} \sum_{M_1M_3M_{4i}} \sum_{M_{4f}M'_{4f}} |T_{f_f}|^2$$

with unit
$$[dw_{134
ightarrow 44}/d\Omega_{44}]=L^6T^{-1}$$

• 'pseudo' cross section of reaction 3 He + 5 He \rightarrow 4 He + 4 He

$$\sigma_{35\to44}(E_{35}) = \frac{\mu_{35}}{p_{35}} \int \frac{d^3 p_{14}}{(2\pi\hbar)^3} \frac{dw_{134\to44}}{d\Omega_{44}} (\vec{p}_{14}, \vec{p}_{35})$$

with fixed direction of \vec{p}_{35} and unit $[\sigma_{35\rightarrow44}] = L^2$

Astrophysical Reaction Rate $n + {}^{3}He + {}^{4}He \rightarrow {}^{4}He + {}^{4}He$

total transition rate

$$w_{134\to44}(\vec{p}_{14},\vec{p}_{35}) = \int d\Omega_{44} \, \frac{dw_{134\to44}}{d\Omega_{44}}(\vec{p}_{14},\vec{p}_{35}) \qquad [w_{134\to44}] = L^6 T^{-1}$$

astrophysical reaction rate

$$R_{134\to44}(T) = \frac{n_1 n_3 n_4}{1 + \delta_{13} + \delta_{14} + \delta_{34} + 2\delta_{13}\delta_{14}} \langle w_{134\to44} \rangle \qquad [R_{134\to44}] = L^{-3}T^{-1}$$

with Maxwellian-averaged transition rate

$$\langle w_{134 \to 44} \rangle = \int \frac{d^3 p_{35}}{(2\pi\mu_{35}kT)^{3/2}} \int \frac{d^3 p_{14}}{(2\pi\mu_{14}kT)^{3/2}} \\ \exp\left(-\frac{p_{35}^2}{2\mu_{35}kT} - \frac{p_{14}^2}{2\mu_{14}kT}\right) w_{134 \to 44}(\vec{p}_{14}, \vec{p}_{35})$$

T-Matrix Element n + ³He + ⁴He \rightarrow ⁴He + ⁴He

TECHNISCHE UNIVERSITÄT DARMSTADT

post-form distorted-wave Born approximation

$$T_{\mathrm{fi}} = \langle \Phi_4 \Phi_{4'} \chi^{(-)}_{44'} (ec{p}_{44}) | W | \Phi_3 \Phi^{(+)}_5 (ec{p}_{14}) \chi^{(+)}_{35} (ec{p}_{35})
angle$$

with

- intrinsic cluster wave functions Φ_i (Gaussians, adjusted to charge radii)
- ⁵He resonance wave function $\Phi_{5}^{(+)}(\vec{p}_{14}) = \Phi_{4'}\psi_{14'}^{(+)}(\vec{p}_{14})$
- distorted waves $\chi_{35}^{(+)}(\vec{p}_{35})$, $\chi_{44'}^{(-)}(\vec{p}_{44})$
- potentials (Gaussians with parameters depth and radius)
 - V_{14} and V_{44} adjusted to resonance properties for $I_{14} = 1$ and $I_{44} = 0, 2$
 - V₃₅ from scaling (same volume integral as V₄₄)
 - (optical) potentials $U_{ij} = V_{ij}$
 - transition potential $W = V_{44} U_{44} \approx V_{14}$
- partial-wave expansions with *I*₄₄ = 0, 2, 4, 6, 8

Phase Shifts and Resonance Properties

TECHNISCHE UNIVERSITÄT DARMSTADT

phase shifts

resonance properties

system	resonance	energy	width	energy	width
	J^{π}	E _{th}	Γ _{th}	E _{exp}	Γ _{exp}
n + ⁴ He	3/2-	0.735 MeV	0.648 MeV	0.735 MeV	0.648 MeV
⁴ He + ⁴ He	0+	91.84 keV	4.74 eV	91.84 eV	5.57 eV
	2+	3.122 MeV	1.048 MeV	3.122 MeV	1.513 MeV

Reaction Cross Section

• n + 3 He + 4 He \rightarrow 4 He + 4 He via $\frac{3}{2}^{-}$ resonance in 5 He

10

- strong suppression at low energies
- experimental measurement ?
- direct experiment ?
 - no ⁵He target
 - ⁵He beam ?
- indirect experiment: Trojan-Horse Method (THM)
 - ⁹Be nucleus as Trojan horse with strong ⁵He + ⁴He cluster structure

 \Rightarrow study ⁹Be(³He, $\alpha\alpha$)⁴He transfer reaction at quasifree scattering conditions

Indirect Methods for Nuclear Astrophysics – General Characteristics

TECHNISCHE UNIVERSITÄT DARMSTADT

- two-body reaction at low energies is replaced by three-body reaction at 'high' energies
- relation of cross sections is found with help of direct reaction theory
- theoretical approximations essential
- treatment as transfer reactions: transfer of virtual particle
 - rearrangement reaction \Rightarrow nucleus x
 - radiative capture reaction \Rightarrow photon γ
- study of peripheral reactions
 - asymptotics of wave functions relevant
 - selection of suitable kinematic conditions important

Indirect Methods for Nuclear Astrophysics – Examples

TECHNISCHE UNIVERSITÄT DARMSTADT

- radiative capture reactions b(x, y)a
 - Coulomb dissociation method:
 - transfer of virtual photon
 - \Rightarrow absolute S factor as function of energy
 - ANC method:
 - transfer of virtual nucleus to bound state
 - \Rightarrow absolute S factor at zero energy
- rearrangement reactions A(x, c)C
 - Trojan-horse method: transfer of virtual nucleus to scattering state
 ⇒ energy dependence of S factor

Trojan-Horse Method – Introduction

- method introduced by Gerhard Baur (Physics Letters B 178 (1986) 135)
- basic idea
 - study breakup reaction $A + a \rightarrow C + c + b$ to extract cross section of astrophysical charged-particle reaction $A + x \rightarrow C + c$ with Trojan horse a = b + x and spectator b

- establish relation of cross sections with help of direct reaction theory
- specific features
 - small relative energies in A + x system accessible
 - surface dominated reaction
 - \Rightarrow reduction of suppression by Coulomb barrier
 - 'high' relative energy in A + a system
 - \Rightarrow no electron screening

Trojan-Horse Method – Theory I

- transfer reaction to continuum state
 - general cross section (without spins)

$$d\sigma = \frac{2\pi}{\hbar} \frac{\mu_{Aa}}{p_{Aa}} \int \frac{d^3 \rho_{Bb}}{(2\pi\hbar)^3} \frac{d^3 \rho_{Cc}}{(2\pi\hbar)^3} \left| T_{\rm fl} \right|^2 \delta(E_{Aa} - E_{Bb} - E_{Cc} + Q)$$

with B = C + c and $Q = (m_a + m_A - m_b - m_c - m_c)c^2$

T-matrix element in post formulation

$$T_{fi} = \langle \Psi_{Cc}^{(-)} \phi_b \exp\left(i\vec{p}_{Bb} \cdot \vec{r}_{Bb}/\hbar\right) |V_{Bb}|\Psi_{Aa}^{(+)}\rangle$$

with full scattering wave function $\Psi_{Aa}^{(+)}$

■ scattering wave function $\Psi_{Cc}^{(-)}$ contains information on reaction $A + x \rightarrow C + c$

Trojan-Horse Method — Theory II

- transformation of T-matrix element (Gell-Mann-Goldberger relation)
- distorted-wave Born approximation (DWBA)
- approximation of potential

$$\Rightarrow \quad T_{\rm fi} = \langle \Psi_{\rm Cc}^{(-)} \phi_b \chi_{\rm Bb}^{(-)} | V_{\rm xb} | \phi_{\rm A} \phi_a \chi_{\rm Aa}^{(+)} \rangle$$

introduce momentum distribution W_a of Trojan-horse nucleus a

$$V_{xb}\phi_a = \int \frac{d^3q}{(2\pi)^3} W_a(\vec{q}) \exp(i\vec{q}\cdot\vec{r}_{xb}) \phi_x \phi_b$$

• surface approximation \Rightarrow use asymptotic form of $\Psi_{Cc}^{(-)}$

Trojan-Horse Method – Theory III

- simplification in plane-wave approximation
 - **a** analytic integration over \vec{r}_{Bb} and $\vec{q} \Rightarrow$ factorization of T-matrix element

$$T_{fi} = W_a(\vec{Q}_{Bb}) \langle \Psi_{Cc}^{(-)} | \exp(i\vec{Q}_{Aa} \cdot \vec{r_{Ax}}/\hbar) \phi_A \phi_x \rangle$$

with
$$\vec{Q}_{Bb} = \vec{p}_{Bb} - \frac{m_b}{m_x + m_b} \vec{p}_{Aa}$$
 and $\vec{Q}_{Aa} = \vec{p}_{Aa} - \frac{m_A}{m_A + m_x} \vec{p}_{Bb}$

■ factorization of cross section (~ impulse approximation)

$$\frac{d^{3}\sigma}{dE_{Cc}d\Omega_{Cc}d\Omega_{Bb}} = K \left| W_{a}(\vec{Q}_{Bb}) \right|^{2} \frac{d\sigma^{HOES}}{d\Omega_{Cc}} (A + x \to C + c)$$

- kinematic factor K
- momentum distribution $|W_a(\vec{Q}_{Bb})|^2$ of Trojan-horse nucleus a
- half-off-energy-shell cross section $\frac{d\sigma^{HOES}}{d\Omega_{Cc}}(A + x \rightarrow C + c)$ of reaction $A + x \rightarrow C + c$ $(Q_{Aa}^2/(2\mu_{Ax}) + m_A + m_x \neq p_{Cc}^2/(2\mu_{Cc}) + m_C + m_c)$

Trojan-Horse Method – Application

TECHNISCHE UNIVERSITÄT DARMSTADT

- dominance of quasifree scattering ⇒ small momentum transfer to spectator *b* ⇒ $\vec{Q}_{Bb} \approx 0$ ⇒ specific kinematic conditions
- well-clustered Trojan-horse nucleus a \Rightarrow peak of $|W_a(\vec{Q}_{Bb})|^2$ at $\vec{Q}_{Bb} \approx 0$ for s-wave ground states (²H, ⁶Li, ...)
- cutoff in Q_{Bb} determines range of accessible energies E_{Ax}
- transformation of $\frac{d\sigma^{HOES}}{d\Omega_{Cc}}$ to on-shell cross section $\frac{d\sigma}{d\Omega_{Cc}}$ with penetrability factor
- normalization of cross section to direct data at high energies

Trojan-Horse Method – Application to 5 He + 3 He $\rightarrow {}^{4}$ He + 4 He Reaction

- Experimental study of Trojan-horse reaction ${}^{9}Be({}^{3}He,\alpha\alpha){}^{4}He$
 - 4 MeV ³He beam @ RBI, Zagreb; Trojan-horse nucleus ⁹Be = ⁵He + ⁴He
 - **n** momentum transfer $Q_{Bb} \leq 40 \text{ MeV/c} \Rightarrow$ selection of kinematics
 - test of quasi-free reaction mechanism ⇒ Treiman-Yang criterion 10¹ F
 - extraction of cross section for ${}^{5}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$
 - normalization to theory data

details:

C. Spitaleri et al. Eur. Phys. J. A 57 (2021) 20

Trojan-Horse Method – Application to 5 He + 3 He $\rightarrow {}^{4}$ He + 4 He Reaction

- Experimental study of Trojan-horse reaction ${}^{9}Be({}^{3}He,\alpha\alpha){}^{4}He$
 - 4 MeV ³He beam @ RBI, Zagreb; Trojan-horse nucleus ⁹Be = ⁵He + ⁴He
 - **n** momentum transfer $Q_{Bb} \leq 40 \text{ MeV/c} \Rightarrow$ selection of kinematics
 - test of quasi-free reaction mechanism ⇒ Treiman-Yang criterion 10¹ F
 - extraction of cross section for ${}^{5}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$
 - normalization to theory data
 - ⇒ energy dependence of theory and experiment consistent
 - \Rightarrow validity test of THM with unstable ⁵He nucleus

Conclusions

- three-body aspects important in several reactions of astrophysical interest
 - three particles in initial/final states
 - strong clustering in participating nuclei
- direct reactions with three particles in initial state, e.g.,
 - **•** triple- α process \Rightarrow nucleosynthesis of ¹²C
 - **a** n + ³He + ⁴He \rightarrow ⁴He + ⁴He reaction via $\frac{3}{2}^{-}$ resonance in ⁵He
- indirect methods with three particles in final state, e.g.,
 - Trojan-horse method
 - transfer reaction to continuum at quasifree scattering conditions
 - only simplified theoretical approach so far
 - \Rightarrow improved treatment necessary to check approximations
- future: application of Faddeev approach?

Thank You for Your Attention!

Presentation supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 279384907 – SFB 1245.

June 2, 2023 | ULB, Bruxelles, Belgium | S. Typel | 22