

METALLURGICAL ASPECTS OF THE ET BEAMPIPE DESIGN

FWO workshop | Alexey Gervasyev | 27 November 2023

DEPARTMENT OF ELECTROMECHANICAL, SYSTEMS AND METAL ENGINEERING

- General ET beampipe design considerations
- -Overview of steels potentially to be used as the beampipe material
- Ferritic stainless steel welded joint formability

GENERAL ET BEAMPIPE DESIGN CONSIDERATIONS

120 km long, 1 m diameter ultra-high vacuum pipeline

Pipe making technology:

- Spiral welded
- Longitudinally welded
- Double longitudinally welded

Reinforcement:

- Stiffener rings
- Corrugations
- No reinforcement

Already 27 combinations, but there are other aspects...

3 (sub-size) pre-prototypes made of the 3 materials

- Material:
- Austenitic stainless steel
- Ferritic stainless steel
- Non-stainless low-carbon steel
- 50 m pilot sector

GENERAL ET BEAMPIPE DESIGN CONSIDERATIONS

	Virgo	LIGO	KAGRA	GEO600		
Material (AISI)	304L	304L	304L	316L		
Length (Km)	6	2x8	6	1.2		
Diameter (m)	1.2	1.24	.81	0.6		
Section length (m)	15	20	12	4.5		
Thickness (mm)	4	3.23	8	0.8		
Tube type	Sheet welded	Spiral weld	Sheet welded	Sheet weld +cold formed deep corrugated		
Pipe cost (euro/m)	2400	2200	4745ª	440		
Vacuum (H ₂ O) mbar	5.6x10 ⁻¹⁰	1.3x10 ⁻¹⁰	1.5x10 ⁻⁸	1.5x10 ⁻⁷		
Distance among pumps (m)	600	2000	600	600		
Firing Temp (°C)	400	455	200	200		
Firing duration	5 days	36 h	20 h	48 h		
Bakeout Temp	150	160	Electro-polishing	250		
Bakeout duration	1 week	3 weeks	+ ex-situ vacuum baking @200 deg 20 h	5 days		
pumps	Turbo, Ti Sub. pumps	Turbo, Ion +NEGs	Turbo, Ion	Turbo		
abellowsSS316L, flanges, crow clamp, EP-finished, baked bupgrade vacuum system in 2021						

[Aniello Grado, Beampipes for Gravitational Wave Telescopes seminar at CERN, March 2023]

GENERAL ET BEAMPIPE DESIGN CONSIDERATIONS

Background : Ferritic stainless steel

Why Ferritic stainless steel :

- As received Ferritic SS, H₂ outgassing rate in line with mild steel
- No need for Air bakeout/vacuum firing
- Ferritic SS is 2 to 3 times cheaper than the Austenitic SS(304L)

Ferritic SS: Studied Grades

- AISI 430 with BA surface finish
- AISI 444 with 2D surface finish
- AISI 441 with 2B surface finish

**All the specimens have 1.5 mm thickness

Commercially available line pipes

[muelheim-pipecoatings.com]

Commercially available line pipe – product range

		Wall t Epais	isseur paroi																											
		inch		0,281	0,312		0,344		0,375		0,406		0,438	0,469		0,500		0,562	0,625		0,688		0,750		0,812		0,875	0,938		1
Ø auß	en	mm		7,1	7,9		8,7		9,5		10,3		11,1	11,9		12,7		14,3	15,9		17,5		19,1		20,6		22,2	23,8		25,4
Ø 0.D.		mm	7,1			8		8,8		10		11			12,5		14,2			16		17,5		20		21			25	
Ø exté	rieur		_																											
mm	inch																													
610	24		106	105,56	117,30	119	129,00	130	140,68	148	152,32	162	163,93	175,51	184	187,06	209	210,07	232,94	234	255,69	256	278,32							
660	26		114	114,31	127,04	129	139,73	141	152,39	160	165,02	176	177,62	190,19	200	202,72	226	227,70	252,55	254	277,27	277	301,87							
711	28		123	123,24	136,97	139	150,67	152	164,34	173	177,98	190	191,58	205,15	215	218,69	244	245,68	272,54	274	299,28	299	325,89	341	350,72	356	377,11			
762	30		132	132,17	146,91	149	161,61	163	176,29	185	190,93	204	205,54	220,12	231	234,67	262	263,67	292,54	294	321,29	321	349,91	366	376,63	384	405,03			
813	32		141	141,10	156,84	159	172,56	175	188,24	198	203,88	218	219,50	235,09	247	250,46	280	281,65	312,54	314	343,30	343	373,93	391	402,54	410	432,95	463,22		
864	34	1	150	150,03	166,78	169	183,50	186	200,18	211	216,84	231	233,46	250,05	262	266,61	298	299,64	332,53	335	365,31	365	397,95	416	428,44	437	460,87	493,15		
914	36	1	159	158,79	176,52	179	194,22	196	211,90	223	229,54	245	247,15	264,72	278	282,27	315	317,27	352,14	354	386,88	387	421,50	441	453,84	462	488,25	522,50		
965	38		168	167.72	186.46	189	205.17	208	223.84	236	242.49	259	261.11	279.69	294	298.24	333	335.25	372.14	374	408.89	409	445.52	466	479.75	489	516.17	552.43	580	588.57
1016	40		177	176.65	106.20	100	216.11	210	225 70	249	255 45	272	275.07	204.66	200	214 22	251	252.24	202.12	205	420.00	421	460 55	401	E0E 66	E1E	544.00	592.27	611	620.51
1010	40		1//	170,00	190,39	199	210,11	219	235,79	240	255,45	2/3	275,07	294,00	309	314,22	301	353,24	392,13	395	430,90	431	409,00	491	505,66	515	544,09	562,37	011	020,51
1067	42					209	227,05	230	247,74	261	268,40	286	289,03	309,62	325	330,19	369	371,22	412,13	415	452,91	453	493,57	516	531,57	542	572,01	612,30	642	652,46
1118	44					219	237,99	241	259,69	273	281,35	300	302,99	324,59	341	346,16	387	389,21	432,13	435	474,92	475	517,59	542	557,47	568	599,93	642,23	674	684,41
1168	46						248,72	252	271,40	286	294,05	314	316,67	339,26	356	361,82	404	406,84	451,73	455	496,50	497	541,14	566	582,87	594	627,31	671,58	705	715,73
1220	48								283,35	298	307,01	328	330,63	354,23	372	377,79	422	424,28	471,73	475	518,51	519	565,16	592	608,78	621	655,78	702,10	737	748,30
1321	52									323	332,92	355	358,55	384,16	403	409,74	458	460,79	511,72	515	562,53	563	613,20	642	660,60	673	711,07	761,38	799	811,57
1420	56									348	358,57	382	386,20	413,80	434	441,37	492	496,41	551,32	554	606,11	605	660,77	691	711,91	725	765,27	819,49	860	873,58
1524	60											410	414,15	443,76	466	473,31	529	532,38	591,32	595	650,13	650	708,82	742	763,72	778	822,21	880,53	924	938,73
1620	64												442,04	473,66	496	505,26	562	568,35	631,31	633	694,15	692	756,86	789	815,54	828	874,77	936,88	983	998,86
1676	66			[ma	anne	sma	ann-	gro	ssrol	hr.c	om]					520,94	582	586,00	650,94	655	715,75	716	780,44	817	840,99	857	905,43	969,75	1018	1033,94

7

Steel microstructure complexity

[Gervasyev at al]

<10 µm

HR	DP CR	IF CR
400	YS600	YS260

11

DP CR	IF CR
YS600	YS260

800	
700	
600	
500	(MPa)
400	stress (
300	Yield s
200	
100	

HR	DP CR	IF CR
400	YS600	YS260

304L (coil)
430 (coil)
IF CR YS260 (coil)
LIGO per meter
Line pipes

12

FERRITIC STAINLESS STEEL WELDED JOINT FORMABILITY

- The immediate task is to produce pre-prototypes of the ET beam pipe, smaller diameter pipe sections to be manufactured in CERN
- The pre-prototypes are longitudinally welded corrugated pipes, corrugations are applied by cold forming of the welded pipe
- AISI 430 FSS welds failed by brittle cracking during the cold forming
- Grades 444 and 441 demonstrated better performance but some damage still occurred
- Change of the welding process from TIG to laser welding apparently led to satisfactory results
- Metallurgical aspects of the FSS welding in these challenging conditions must be understood

BASE METAL

444

800µm

441

BASE METAL 430

444

200µm

18

430 TIG WELDING JOINT

444 TIG WELDING JOINT

GHENT UNIVERSITY

441 TIG WELDING JOINT

GHENT UNIVERSITY

BASIC WELDING HEAT TRANSFER MODEL

Tungsten Inert Gas (TIG) welding parameters

(aka Gas Tungsten Arc Welding (GTAW), an arc welding process that produces the weld with a non-consumable tungsten electrode)

Pulsed I =40 A to 85 A Pulse time = 0,15 s V = 12 V Speed = 130...145 mm/min

=> Heat input ≈ 185 J/mm

BASIC WELDING HEAT TRANSFER MODEL

[N.N. Rykalin (1951)]

$$T(t) = \frac{Q}{d\sqrt{4\pi\lambda c\rho t}} \exp\left(-\frac{r^2}{4at} - bt\right) + T_0$$

$$r = \frac{\sqrt{\left[\frac{\lambda(T_{p} - T_{0})d}{0,121Q}\right]^{2} + 8ba} - \frac{\lambda(T_{p} - T_{0})d}{0,121Q}}{2b}$$

$$a = \frac{\lambda}{c\rho}$$
 $b = \frac{2\alpha}{c\rho d}$

	Т	Temperature (°C)	
	Т _о	Initial temperature (°C)	
$\left(bt \right) + T_0$	t	Time (s)	
$\lambda (T_n - T_0)d$	Q	Heat input $\left(\frac{J}{m}\right)$	180000
0,121Q	d	Thickness (m)	0.0015
	ρ	Density $\left(\frac{kg}{m^3}\right)$	7800
	λ	Mean thermal conductivity $\left(\frac{W}{m \cdot K}\right)$	25
	С	Mean specific heat capacity $\left(\frac{J}{kg\cdot K}\right)$	420
	α	Mean heat transfer coefficient $\left(\frac{W}{m^2 \cdot K}\right)$	180
With the peak temperature of 1350°C	r	Distance between the heat source and the modelled point (m)	0.00613

BASIC WELDING HEAT TRANSFER MODEL

180 kJ/m – heat input estimated from the welding parameters, 240 and 120 kJ/m – arbitrary higher and lower heat inputs

TD

Dilatometer specimen: 10 mm × 5 mm × sheet thickness (1.5 mm)

Dilatometer measures dimensional changes in material as a function of temperature.

It can implement complex temperaturetime programs with high heating and cooling rates using induction heating and cooling by inert gas stream.

Thermocouple welding spot

RD

Two treatments: much faster and much slower cooling rates compared to the model estimation

GHENT

UNIVERSITY

Fast dilatometer treatment

GHENT

Slow dilatometer treatment

111

101

RD

001

ND

Fast dilatometer treatment

UNIVERSITY

Slow dilatometer treatment

Fast dilatometer treatment

Slow dilatometer treatment

Fast dilatometer treatment

UNIVERSITY

Lazer welding HAZ

Slow dilatometer treatment

TIG welding HAZ

Since the fracture is (quasi-)brittle, there are secondary cracks which can be used to analyse the fracture characteristics. Therefore, electropolishing was used to prepare the sample (it doesn't blunt the edges of the secondary cracks too much).

GHENT UNIVERSITY

Intragranular fracture corresponds to the {001} cleavage planes (cube face)

Intergranular fracture is also present

GHENT UNIVERSITY

Strain heterogeneities (shear/deformation bands, twins) formed during the cold forming in combination with the grain boundary precipitation could provide conditions for cleavage fracture *initiation*.

Cleavage fracture *propagation* is then easy

due to the large grain size.

COMMENTS – FSS WELD FORMABILITY

- Unlike grade 430, grades 444 and 441 never transform to austenite
- The microstructure of 444 and 441 steels is therefore defined by the ferrite grain size and Nb and Ti –based precipitation which occurs both inside ferrite grains and along their boundaries
- It doesn't appear feasible to completely supress the grain boundary precipitation by quenching
- Therefore, the only way to improve the weld toughness (given any post-heat-treatment is not practical) is to reduce the grain size (which was to a significant extent achieved by laser welding).
- Finer grain size should
 - Improve the resistance to cleavage fracture propagation, ullet
 - Reduce the propensity to form strain heterogeneities. •

CONCLUDING COMMENTS

- Collaboration between the Materials Science and Technology group of UGent and the Materials sector of CERN has been established
- The work so far has been focused on the welding technology optimization to allow the manufacturing of the ferritic stainless steel pre-prototype
- The results suggest that the use of very low heat input welding technique (laser) and stabilized FSS grades 444 or 441 allows to achieve good enough formability of the welds to withstand the corrugation forming process, and therefore the FSS pre-prototype can be manufactured identically to the other two
- That said, if the FSS becomes the material of choice, corrugation should probably be avoided (and stiffener rings should be used instead)
- Another important activity is to search for and to work with industrial partners who are to help with the pilot sector manufacturing

Thank you!

Alexey Gervasyev Post-doctoral researcher

MATERIALS SCIENCE AND TECHNOLOGY GROUP alexey.gervasyev@ugent.be

www.ugent.be

