

The ET beampipe vacuum system

Nick van Remortel University of Antwerp, Belgium IRI Workshop November 27, 2023

Residual gas noise contribution for ET:

Impact of residual gas in ET's optical beam:

- 1. Affect phase of laser field as gas molecules transverse the beam, proportional to:
 - mass,
 - square of polarizability
 - Partial pressures
- 2. Noise on mirrors as gas particles collide with mirror surface: gas damping at low f
- 3. Mirror cleanliness

Source: S.E. Whitecomb, LIGO-T840003

 $G_{l}(f) = \int_{0}^{L} \frac{2\eta_{0}\alpha^{2}}{v_{0}w(z)} \exp\left[-\frac{2\pi f w(z)}{v_{0}}\right] dz$

 $\underline{\Delta l} = \frac{[2G_l(f)]^{\frac{1}{2}}}{[2G_l(f)]^{\frac{1}{2}}}$

Pressure impact on power spectral density noise

LIGO / VIRGO

Residual gas noise:

< 1 × 10⁻²⁴ Hz^{-1/2}

P_{H2} ≈ 10⁻⁹ mbar

P_{H2O} ≈ 10⁻¹⁰ mbar

P_(>100 amu) < 10⁻¹⁴ mbar

2nd GENERATION

(interferometer background)

10-2

curve

- Simple calculation assumes constant pressure profile
- Pressure profile depends on:
 - Outgassing rate, Q
 - Pump distance, L
 - Pumping speed, S
 - Pipe conductance, C

Figure 1. Amplitude spectral density of apparent differential arm lengths in the 40 meter interferometer as a function of xenon test gas pressure. The peak at 1230 Hz is for calibration; other peaks arise from mechanical resonances and interference.

Figure 2. Amplitude spectral density near 1500 Hz for three gases as a function of pressure (points). The background noise (dot-dashed line) was sub-tracted in quadrature from each raw measurement. Solid lines are model predictions of Eq. (1) for each gas.

P (Torr)

Impact on power spectral density:

x10 better sensitivity

x10 lower pressures

(noise $\propto P^{1/2}$)

Einstein Telescope/

Cosmic Explorer

Residual gas noise:

< 1 × 10⁻²⁵ Hz^{-1/2}

P_{H2} ≈ 10⁻¹⁰ mbar

P_{H2O} ≈ 10⁻¹¹ mbar

P_(>100 amu) < 10⁻¹⁴ mbar

3rd GENERATION

Density ~partial pressure

$$S_L(f) = \frac{(p)(2\pi\alpha)^2}{v_0} \int_0^{L_0} \frac{\exp\left[-2\pi f \ w(z)/v_0\right]}{w(z)} dz$$

Source: M. Zucker and S. E. Whitcomb, LIGO DCC P940008 3

Scattered light

source: M. Andrés-Carcasona et al. arXiv:2307.14104 [gr-qc]

- Optical aperture of ET's laser beam
- Minimal aperture of vacuum tube design with constant radius determined by the losses close to the mirrors
- Aim to maintain losses below $L_c < 10^{-8}$ implies $r_{pipe} = 0.42$ m (HF)

r_{pipe}=0.31m (HF)

$$r(z, L_c) = \frac{w(z)}{\sqrt{2}} \sqrt{\ln\left(\frac{1}{L_c}\right)} + r_{\text{offset}},$$

- Optical baffles shield mirrors from stray light
- Typical baffle size is 0.1 m
- Implies minimal beam pipe diameter of 1m
- If pipe needs bakeout: thickness of insulation
- Welding/repair and safety margins

Notes on pipe diameter:

- Has impact on tunnel diameter
- Tunnel excavation price scales with diameter
- Current tunnel diameter: 6.5m

Baffles

source: M. Andrés-Carcasona et al. arXiv:2307.14104 [gr-qc]

- Analogous to aLIGO and adV the vacuum system will be equipped with conical baffles shielding the aperture from stray light due to mirror finite aperture and aberrations
- Baffles in ET will start at end of the cryotraps connected to the mirror vacuum towers
- Position of first baffle: 32m (HF), 72m (LF)
- Recursive formula for distances of other baffles

$$z_{n+1} = \frac{W\left[z_n + \sin(\phi)(H - dH)\right]}{W - \cos(\phi)(H - dH)} \,.$$

• W= farthest point form which photons should be shielded

 $W = R + R_m/2.$ Beampipe radius Mirror radius

• Distance between baffles increases rapidly with distance from the main mirrors

Nr of baffles needed for various pipe diameters, Assuming unequal (minimum) or equal spacing

ITF	Minimum	$l_{sec} = 50~{\rm m}$	$l_{sec} = 100~{\rm m}$
ET-HF (0.5m)	118	244	162
ET-HF (0.6m)	134	254	172
ET-LF	90	222	136

Default configuration for simulations

Scattered light simulation

Contains many ingredients:

- Mirror surface quality impacts BRDF
- Longitudinal vibration of baffles induce phase shifts
- Various sources of noise & mitigation:
 - Diffraction: serrate edges of baffles
 - Backscattering
 - Reflection on edges: serrating
 - Shining surfaces: do not expose beam pipe to photons

Effect of dust

Goal: set cleanliness requirements for the installation of ET pipes

Focus on straylight caused by dust (D≥0.1μm) contamination in the arms (assessment of dust impact on TM towers and baffles requires dedicated study)

Dust can enter inside the arms:

- during installation: construction of the pipe with installation of baffles
- during storage of the installed tube sections, before the full pipe is built
- when in vacuum due to the pumps and gate valves

Dust produce different effects:

- dust deposited on baffles contribute to scatter light reaching the baffles
- deposited particles can detach, cross the light beam circulating in the arm and scatter light

Dust on Baffles

Different cleanliness scenarios are tested: from the deposited dust distribution the BRDF of the dust is computed with Mie Theory.

E.g. assuming each baffle is exposed **1 day** inside an **ISO6** clean room: BRDF_{baffle} + BRDF_{dust} ≈ 2*BRDF_{baffle} In mobile cleanroom tents in accelerator tunnels local environments of class ISO 5 can be established

Source: A. Moscatello at 2nd ET annual meeting, Orsay, 13-16 November 2023

Contribution to ET's cost and logistics:

- Largest UHV system in the world:
 - 1m diameter pipes, length 120 km
 - Volume: 9.4 × 10⁴ m3
 - Surface area: $3.8 \times 10^5 \text{ m2}$
- Total cost assuming scaling from Virgo:
 - 560 M€ (1/3rd of construction cost)

Assuming Virgo approach:

- 13000 tons of raw steel
- 8000 modules 15 m long
- 8 modules/day production (includes leak and extensive quality control checks)
- 240 pumping stations every 500m (5000 l/s effective, ionic, getter, auxiliary turbo molecular)
- 720 gate valves (250 mm)
- 48/72 gate valves (1 m diameter)
- 10 ovens (each 4 modules at times) operating ~3 years 24/7 for air-firing
- 4 cleaning systems
- Bakeout (2G heat dissipation is ≈ 250 W/m @ 150°C)

Lots of time and cost saving possible on several of these items:

- Material type: various steel species with varying price
- Amount of material: thickness & weight
- Length of sections: produced off or on site?
- Types of pumps: varying capacity
- Less valves: but high risk for leaks
- Avoid heat treatment and bakeout: ferritic steel vs stainless

Different designs in 2nd gen interferometers:

From: A. Grado et al J. Vac. Sci. Technol. B 41, 024201 (2023)

	Virgo	LIGO All stainless s	teel KAGRA	GEO600
Material (AISI)	304L	304L	304L	316L
Length (km)	6	2×8	6	1.2
Diameter (m)	1.2	1.24	0.81	0.6
Section length (m)	15	16 Thick walls re	equire ₁₂	Thin walls require 4.5
Thickness (mm)	4	3.23 no stiffene	ers 8	corrugation 0.8
Tube type	Sheet welded	Spiral welded	Sheet welded	Deep corrug
Pipe cost (euro/m)	2400	2200	4745 ^a	Very low cost 440
Vacuum H_2O (mbar)	5.6×10^{-10}	1.3×10^{-10}	1.5×10^{-8}	1.5×10^{-7b}
Pumps distance (m)	600	2000	600	600
Firing temp (^o C)	400	455 Large Energy of	cost 200	200
Firing duration	5 days	36 h & Logistics	20 h	48 h
Bakeout temp (°C)	150	160	No (electro-polisł	ning) 250
Bakeout duration	1 week	3 weeks	-	5 days
Pumps types	TMP, Ion+Ti Sub.	TMP, Ion+Cryo	TMP, Ion	TMP

Concerted effort between ET and CERN

Beampipe structural materials

Ferritic stainless steel

Mechanical properties

Formability and weldability

Corrosion resistance (native)

Vacuum performance (native)

Cost (raw material, 30-50% less than austenitic)

Ferromagnetic $(\mu_R > 200)$

Source: C. Scarcia at XIII ET Symposium, Cagliari, 8-12 May 2023

Material/vacuum

Reliable and predictable outgassing rate measured with a dedicated test bench.

- Ø 400 mm x 2100 mm.
- Thickness < 2 mm.
- Corrugated solution.
- Pumping speeds scaled to ET dimensions.
- Materials:
 - AISI 304L vacuum-fired [austenitic SS]
 - S315MC [mild steel]
 - AISI 441 [ferritic SS]

Objectives:

- Verify water outgassing modelling.
- Ultimate pressure after 80°C and 150°C bake-out.
- Estimate outgassing rate of materials.

Source: <u>C. Scarcia at 2nd ET annual meeting</u>, Orsay, 13-16 November 2023

IRI Workshop, 11/27/2023

Material/vacuum

N. Van Remortel, University of Antwerpen

Outgassing rate vs temperature

Design

Proved mechanical stability of a corrugated pipe.

• For the pilot sector: Preparation of the technical specifications for a price inquiry following CERN's purchasing rules.

Corrugated pipe: Ø 1000 x 1.5 - 2 mm Smooth pipe: Ø 1000 x 3 - 4 mm

• Contact with industry to evaluate the feasibility of a large-scale production of the corrugated solution.

Welding

Welding of ferritic stainless steels: conclusive and positive tests

- Identification of the source of welding problem (grain coarsening, martensite precipitation, etc.)
 - ✓ Selection of a ferritic SS with better weldability (AISI 441, industrial partner).
 - Improved welding parameters (characterization w/ Univ. of Ghent).
 - Improved manufacturing steps (cracking during corrugation solved).
 - Test welding techniques other than TIG (laser CW v. Pulsed).

In preparation for the pilot sector:

Price inquiry for raw material (coils).
(preliminary contacts w/ APERAM, Arvedi, AST)

See also Alexey's talk

Credit: UGhent

Credit: CERN

Automated Welding under vacuum

New ways to tackle productivity rate and welding quality.

FEF GmbH, RWTH Aachen, Werkhuizen Hengelhoef and APERAM collaborated for the preliminary design of a forming-welding machine:

- Laser beam welding under movable vacuum (30 mbar)
- Possibility to weld realistically up to 500 m long sections
- Possibility to integrate continuous QC monitoring (ultrasonic or X-ray imaging)

Source: U. Reisgen, S. Olschok, N. Holtum, S. Jakobs: "Laser beam in mobile vacuum". Proceedings: Lasers in Manufacturing - LIM 2017, Munich, Germany

New Interreg proposal submitted with UAntwerpen RWTH Aachen, FEF, Werkhuizen Hengelhoef

Credit: Arc Machines Inc.

Space between ET beampipes very limited.

- New compact and customizable orbital welding tools integrating laser seam tracker and endoscopes.
- In case of a repair during operation, use of light and compact orbital milling machine.

→ Minimum space required 40/50 cm between two stacked tubes (insulation included)

Example of light and compact orbital milling machine developed at CERN for pipe cutting. *Credits: CERN*

Outlook: CERN pilot sectors

- Up to 4 tubes Ø 1 m x 50 m
- Corrugated or VIRGO-like solution (stacked or adjacent)
- Possibility to test different materials
- **Pumping speeds** scaled to **ET** dimensions

The installation will serve to test:

- Installation and alignment of supports and tubes.
- Welding and assembly tools and methods.
- Leak detection scenarios
- Ultimate pressure and outgassing measurement after bake-out.

We are **open for** other **experimental measurements:**

- Dust concentration and displacement inside the tube.
- Installation and alignment of baffles inside the tube.
- Vibration transfer function studies.

Main deliverable: provide design report by end 2025

General Planning

Industrial **PILOT SECTOR** feasibility TBC -FEASIBLE NOW -PREFERRED (+) Lower cost (+) Much lower cost Ferritic AISI 441 (-) Higher cost (+) No HTT required (+) No HTT required (+) Much lower cost (+) Lower cost (+) Much lower cost Surface Mild Steel S 315 (+) No HTT required (+) No HTT required (+) No HTT required corrosion (-) Surface corrosion ? (-) Surface corrosion ? (-) Surface corrosion ? resistance TBE (-) Higher cost (+) Prooven solution Austenitic AISI 304L (-) HTT required (-) HTT required (-) HTT required Smooth pipe/stiffeners Corrugated Pipeline Virgo like 3-4 mm 1.5 – 2 mm > 5 mm

HTT - High Temperature Treatment Costs - relative to the Virgo like baseline.

2nd Einstein Telescope Annual Meeting, Paris, 14-16 November 2023

Observations:

- Design of pipe arm in the critical path.
- Hold point to line up choices for the vacuum system and bakeout equipment.
- As the corrugated beampipe cannot be fabricated in due time with the required UHV characteristics, it is kept only for design studies while seeking a valid industrial partner.
- The VIRGO geometry beampipe made of 4-mm thick AISI 441 is now prioritized for the first test with the pilot sector.
- The support system of the pilot sector will be compatible with beampipes of different geometries.
- NEXT: A review on material and design of the beampipe for the pilot sector will be organized in the coming months with an international panel.

Conclusions & Outlook

- Lots of simulations on various effects:
 - Residual gas and pumping scheme
 - Light scattering and baffles
 - Dust on baffles and free falling dust
 - Many other: alignment, cleaning, installation, safety
 - Completing requirements document

CERN activities currently focus on

- Material choices
- Pipe and support structure design
- Acquisition of materials and services
- Planning the production of first pilot sector
- Production of preliminary TDR by end 2024
- Pilot sectors ready for testing by end 2025
- Input from Flanders
 - UGent: Materials, procurement, manufacturing (see Alexey's talk)
 - UAntwerpen: Support on pilot sector design and installation New hiring completed: P. Revathi will join CERN team as of Jan 2024