

Search for light scalars decaying to muons and hadrons via Higgs portal

Soumya Dansana (ULB-VUB), on behalf of the CMS Collaboration

Belgian Physical Society General Scientific Meeting, 2024

Search for light scalars decaying to muons and hadrons via Higgs portal

Higgs boson: Only fundamental scalar found in Standard Model Physics beyond SM: Extend SM with additional light scalars! [m_s~O(GeV)]

Several decay modes possible, with lifetime as the free parameter

Search for light scalars decaying to muons and hadrons via Higgs portal

This analysis: $\mu\mu$ + hh final states in the tracker volume!

Search for light scalars decaying to muons and hadrons via Higgs portal

• Search signal: $H \to S\bar{S} \to \mu^+\mu^- + \pi^+\pi^-/K^+K^-$

o $m_s \in [0.4, 2]$ GeV; ct $\in [0, 100]$ mm

- Signature: Highly collimated muon pairs & hadron pairs
 - No jets due to limited phase space
- Split the analysis into:

H → *SS* → μ⁺μ⁻ + π⁺π⁻
 m_S ∈ [0.4, 1.1] *GeV H* → *SS* → μ⁺μ⁻ + K⁺K⁻
 m_S ∈ [1.1, 2] *GeV*

• Analysis targeting full CMS Run-2 data-taking

o Current results for 2017 only

j.physletb.2021.136758

Event selection philosophy

- Challenge(s):
 - Large possibility of hadron pair formation
 - o Large bkg at low dimuon masses
- Trigger on leading muon
- Selection: Events with boosted dimuon & dihadron vertices with reco. SM Higgs mass

Q

- Reject low energy events coming from SM
 processes
- Major background contribution : multijet events from QCD processes
- Blinding applied to data in Signal Region (SR)
- Define Control Regions (CR) in sidebands

Reconstructed Higgs mass & background

Secondary vertex reconstruction

- Transverse displacement from primary vertex (L_{xy}) acts as additional handles
 - o Reject bkg: Require a valid secondary vertex
- Tracks "refitted" to secondary vertex lead to better reco. scalar mass resolution

Event categories

Reconstructed scalar mass

 $m_{s} \in [0.4, 0.6, 0.8, 0.9, 1, 1.1, 1.2, 1.4, 1.6, 1.8, 2]$ GeV for each $c\tau = 0.1$ mm

Soumya Dansana, ULB-VUB

Relative isolation

- Commonly used measure to describe hadronic activity around an object
- Optimise with tight (loose) cuts for "prompt" category ("displaced-" categories)

Relative isolation

- Commonly used measure to describe hadronic activity around an object
- Optimise with tight (loose) cuts for "prompt" category ("displaced-" categories)

Low statistics in background MC

Rely on data for background estimation

Displaced category ~ bkg free

Results

Displaced category ~ bkg free

 $c\tau=1 \text{ mm}$

Results

Displaced category ~ bkg free

<u>cτ</u>=1 mm

Results

41.5 fb⁻¹ (13 TeV)

BR(H→SS) = 1%

Displaced category ~ bkg free

Signal & background yield from higgs mass distribution!

O Use scalar mass hypothesis

Soumya Dansana, ULB-VUB

Search sensitivity

- Expected limits with 2017 data (i.e. blinded data & signal MC only)
- Early results –

o Syst. uncertainties to be added

- o Statistical unc. expected to dominate
- cτ=1mm has the best sensitivity
- Use lifetime reweighting to extra/intra-polate to other lifetimes

- A search for light BSM scalars with lepton+hadron decays within the tracker volume has been performed
- Looks for a unique signature with light hadron final states, in place of jets
- Preliminary results indicate potential to access a unique phase space largely unexplored so far
- More luminosity (all of Run-2) & unblinding to follow!

Thank you!

Soumya Dansana, ULB-VUB

BSM light scalars

Secondary vertex reconstruction

Event preselection

Reconstructed scalar mass

- Gaussian fit on dimuon & dihadron mass to derive bounds to form the bounded box
- Linear fit on edges to form window $(m_{\rm s} \sim m_{\rm s})$
- Repeat for each $c\tau = 0.1$ mm mass point
- Stable with respect to displacement

Secondary vertex reconstruction

• Replace default with "refitted" tracks to valid secondary vertex

• Additional handle to reject bkg: Require a secondary vertex

• Transverse displacement (& significance) act as additional handles

- Low statistics in bkg MC
- Displaced category ~ bkg free
- cτ=1mm has sensitivity across all categories

Search sensitivity

- Expected limits with 2017 data (i.e. blinded data & signal MC only)
- Early results
 - o Syst. uncertainties to be added
 - o Statistical unc. expected to dominate
- cτ=1mm has the best sensitivity

Event categories

- Based on L_{xy} significance (= $L_{xy}/\Delta L_{xy}$) Accounts for error in SV reconstruction 0
- **Categories:**
 - Prompt: ~90% of $c\tau$ =0.1mm signal 0
 - Displaced µµ Ο
 - Displaced hh 0
 - Displaced: both reco. scalars are displaced 0
- Approx. 80% of bkg in prompt