

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Belgium HEP Solstice Meeting : Brussels - 19th December 2024

Recent Results from the NA62 Experiment

Joel Swallow (INFN-LNF)

Contents:

- - Golden modes $K \to \pi \nu \bar{\nu}$ in the SM and beyond, NA62 detector upgrades & performance
- Other 2024 physics results:

19/12/24

• New headline measurement of $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})$ [NEW: <u>arXiv:2412.12015</u>]

• New measurement of $K^+ \to \pi^+ \pi^0$, $\pi^0 \to e^+ e^-$ [preliminary: Spring 2024] • Search for $K^+ \rightarrow \pi^0 \pi \mu e$ LNV/LFV decays [PLB 859 (2024) 139122] • Beam dump search for dark photon decays to hadrons [preliminary: Spring 2024]

New measurement of $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})$

NEW: <u>arXiv:2412.12015</u> Hot off the press! (Available since Tuesday)

	Mode	SM Branching Ratio [1]
	$K^+ \to \pi^+ \nu \bar{\nu}$	$(8.60 \pm 0.42) \times 10^{-12}$
	$K_L \to \pi^0 \nu \bar{\nu}$	$(2.94 \pm 0.15) \times 10^{-12}$
Ň Jo	el Swallow hep Seminar	^Recent SM calculations [1: <u>Buras et al.</u> (Differences in SM calculations from c

choice of CKM parameters: see [Eur.Phys.J.C 84 (2024) 4, 377])

The NA62 Experiment at CERN

~200 collaborators from ~30 institutions.

- Designed & optimised for study of $K^+ \to \pi^+ \nu \bar{\nu}$:

• Particle tracking: beam particle (GTK) & downstream tracks (STRAW) • PID: K^+ - KTAG, π^+ - RICH, Calorimeters (LKr, MUV1,2), MUV3 (μ detector) • Comprehensive veto systems: CHANTI (beam interactions), LAV, LKr, IRC, SAC (γ)

Data-taking year	[Reference]	Λ
2016	[PLB 791 (2019) 156]	0.152
2017	[JHEP 11 (2020) 042]	1.46 =
2018	[JHEP 06 (2021) 093]	5.42
2016 - 18	[JHEP 06 (2021) 093]	7.03

Statistical combination:

In background-only hypothesis: $p = 3.4 \times 10^{-4} \Rightarrow$ significance= 3.4σ .

 $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4} |_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11} \text{ at } 68 \% \text{CL}$

Si Pixels ~(30x60 mm active area)

4th GTK station improves efficiency & pileup resilience.

VetoCounter:

- Detect particles from decays upstream of final collimator.
- Factor ~3 rejection with ~2% accidental veto.

ANTIO reject ~20% of upstream background.

Upgrading NA62: against $K^+ \rightarrow \pi^+ \pi^0, \pi^0 \rightarrow \gamma \gamma$

Events passing $\pi^+ \nu \bar{\nu}$ **selection** (modifying HASC veto: study integral of background regions)

• with only 1.5% signal loss.

NA62

• NA62 "Full intensity" with 4.8s spill = 600 MHz

Signal sensitivity result					
$N_K =$	$\frac{N_{\pi\pi}D_0}{\mathscr{B}_{\pi\pi}A_{\pi\pi}}\qquad \qquad \mathscr{B}_{SES} = \frac{1}{N_K \varepsilon_{RV} \varepsilon_{trig} A_{\pi\nu\bar{\nu}}}$				
	Factor				
$N_{\pi\pi}^{ m eff}$	Effective number of normalisation events				
$A_{\pi\pi}$	Normalisation acceptance				
N_K	Effective number of K^+ decays				
$A_{\pi u ar u}$	Signal acceptance				
$arepsilon_{\mathrm{trig}}$	Trigger efficiency ratio				
$arepsilon_{ m RV}$	Random veto efficiency				
$\mathcal{B}_{ ext{SES}}$	Single event sensitivity				
$N_{\pi\nu\bar{\nu}}^{\rm SM}$	Number of expected SM $K^+ \to \pi^+ \nu \bar{\nu}$ events				

• Significant improvement in SES uncertainty:

- old: 6.3% -> new: 3.5%. Due to:
 - trigger efficiency cancellations

LS

• Display integrals (15–45 GeV/c, 2021+22) for summary tables. * Acceptances evaluated at 0 intensity.

• improved procedures for evaluation of acceptances and ε_{RV}

11

Events passing $\pi\nu\nu$ selection

Radiative decays: $K^+ \rightarrow \pi^+ \pi^0 \gamma$ & $K^+ \rightarrow \mu^+ \nu \gamma$

- $K^+ \rightarrow \pi^+ \pi^0 \gamma$: extra photon = 30x stronger rejection: $N_{bg}(K^+ \rightarrow \pi^+ \pi^0 \gamma) = 0.07 \pm 0.01$
- - Suppression: based on $(P_K P_\mu P_\gamma)^2$ and E_γ with γ = LKr cluster (mis)associated to muon.
 - Necessary for 2021–22 data, since Calorimetric PID degraded at higher intensities.
 - Estimation: min. Bias data control sample with signal in MUV3 : $N_{bg}(K^+ \rightarrow \mu^+ \nu \gamma) = 0.8 \pm 0.4$

• $K^+ \rightarrow \mu^+ \nu \gamma$: not included in "kinematic tails" estimation if γ overlaps μ^+ at LKr (leading to misID as π^+)

• Validation: data sample without $K^+ \rightarrow \mu^+ \nu \gamma$ veto and PID = "less pion-like" (Calo BDT bins below π^+ bin).

Upstream background evaluation & Validation Validate precistions: $N_{bg} = \sum N_i^{URS} f_{cda} P_i^{match} = 7.4^{+2.1}_{-1.8}$

- Updated to fully data-driven procedure
- Upstream reference sample (URS) contains all known upstream mechanisms.
- f_{CDA} depends only on geometry.
- P_{match} depends on $(\Delta T_+, N_{GTK})$.

	Summary (of expe	ctatio
	Backgroun	ds	
	$K^+ \to \pi^+ \pi^0(\gamma)$	0.83 ± 0.05	
	$K^+ \to \pi^+ \pi^0$	0.76 ± 0.04	B _{SES}
	$K^+ \to \pi^+ \pi^0 \gamma$	0.07 ± 0.01	
	$K^+ \to \mu^+ \nu(\gamma)$	1.70 ± 0.47	Assuming
	$K^+ \to \mu^+ \nu$	0.87 ± 0.19	2021-22
	$K^+ \to \mu^+ \nu \gamma$	0.82 ± 0.43	c.f. 2010
	$K^+ \to \pi^+ \pi^+ \pi^-$	0.11 ± 0.03	
NC	$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.89\substack{+0.34 \\ -0.28}$	
From N	$K^+ \to \pi^0 \ell^+ \nu$	< 0.001	• $N_{\pi\nu\bar{\nu}}^{\sim}$ pe
	$K^+ \to \pi^+ \gamma \gamma$	0.01 ± 0.01	• C.f.]
	Upstream	$7.4^{+2.1}_{-1.8}$	 Sensitiv
	Total	$11.0^{+2.1}_{-1.9}$	 Simil same

Joel Swallow

be.hep Seminar

- er SPS spill: 2.5×10^{-5} in 2022
- 1.7×10^{-5} in 2018. \Rightarrow signal yield increased by 50%.
- vity for BR $\sim \sqrt{S+B}/S = 0.5$
- lar but improved with respect to 2018 analysis for e amount of data.

be.hep Seminar

Combining NA62 results: 2016–22

• Integrating 2016–22 data: $N_{bg} = 18^{+3}_{-2}$, $N_{obs} = 51$.

Combining NA62 results: 2016–22

- Integrating 2016–22 data: $N_{bg} = 18^{+3}_{-2}$, $N_{obs} = 51$.

Results in context

Joel Swallow

be.hep Seminar

- Central value moved up (now $1.5-1.7\sigma$ above SM)
- Bkg-only hypothesis rejected with significance Z>5

 - Need full NA62 data-set to clarify SM agreement or tension

• NA62 results are consistent. Fractional uncertainty decreased: 40% to 25%

• Observation of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay with BR consistent with SM prediction, within 1.7 σ

Rare Decays

- $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^-$ [prelim. **Spring 2024**]
- Tagged neutrino [prelim. 2023, arXiv:2412.04033 (Dec 2024)]

•
$$K^+ \rightarrow \pi^+ \gamma \gamma$$
 [PLI

•
$$K^+ \to \pi^0$$

• $K^+ \to (\pi^0)$
• $K^+ \to \mu^-$

<u>13, 131802</u>

physics programme with 2024 results

Forbidden Decays

B 850 (2024) 138513

 $\pi \mu e \left[PLB 859 (2024) 139122 \right]$ $\pi^{0}\pi^{-}e^{+}e^{+}$ [PLB 830 (2022) 137172] $-\nu e^+ e^+ [PLB838 (2023) 137679]$

• $K^+ \rightarrow \pi \mu e$ and $\pi^0 \rightarrow \mu^- e^+$ [PRL 127 (2021)

- Beam dump dark photon searches:
 - $A' \rightarrow \ell^+ \ell^-$ [PRL 133] (2024) 11, 111802 [JHEP 09 (2023) 035]

Exotics

• $A' \rightarrow$ hadrons [prelim. Spring 2024]

Rare Decays

Study of $K^+ \to \pi^+ \pi^0$, $\pi^0 \to e^+ e^-$

- Experimentally observable BR: $\mathscr{B}(\pi^0 \to e^+ e^-(\gamma), x > x_{cut})$ where $x = m_{ee}^2/m_{\pi^0}^2$
- Using latest radiative corrections [JHEP 10] (2011) 122], [Eur.Phys.J.C 74 (2014) 8, 3010] this result can be extrapolated to the full phasespace and compared to theory:

KTeV, PRD 75 (2007) 6.84(35) Knecht et al., PRL 83 (1999) 6.2(3) Dorokhov and Ivanov, PRD 75 (2007) 6.23(9)Husek and Leupold, EPJC 75 (2015) 6.12(6)Hoferichter et al., PRL 128 (2022) 6.25(3)

- Diagram for $\pi^0 \rightarrow e^+ e^-$:
 - considered in theoretical predictions, with various $\pi^0 \rightarrow \gamma^* \gamma^*$ transition form factors

Joel Swallow be.hep Seminar

[New: NA62 for x > 0.95]

• Goal: search for $K^+ \rightarrow \mu^+ \nu_{\mu}$ with:

- K^+ and μ^+ detected by GTK and STRAW trackers as usual.
- ν_{μ} interacting in LKr calorimeter (20 tons of Liquid Kr, MUV12 66ton HCAL)
- ν_{μ} Interaction probability $\mathcal{O}(10^{-11})$: CC-DIS $\nu_{\mu} \rightarrow \mu^{-} + \text{shower}$

24

Tagged neutrinos at NA62

- Using 2022 NA62 data:
- Expected signal: $N_{signal}^{exp} = 0.208 \pm 0.013_{stat} \pm 0.009_{syst}$
- Background (dominated by $K^+ \rightarrow \mu^+ \nu$ + pileup):
 - $N_{ho}^{exp} = 0.034_{-0.023}^{+0.041} |_{\text{stat}} \pm 0.004_{\text{syst}}$

[New: <u>arXiv:2412.04033</u>, Dec2024]

• Detect 1 candidate $K^+ \rightarrow \mu^+ \nu \text{ tagged } \nu \text{ event!}$

• Demonstrates the neutrino tagging technique.

25

Forbidden *K*⁺ Decays

Searches for CLFV/LNV Decays at NA62

- Observation of Lepton Number/Flavour Violating (LNV/CLFV) processes would be a clear indication of BSM physics.
- E.g. $K^+ \to \pi^- \ell_1^+ \ell_2^+$ via exchange of Majorana Neutrinos (analogue to $0\nu\beta\beta$ decays) [JHEP 05 (2009) 030] PLB 491 (2000) 285].

- Use 2016—18 data set.
 - Use 3 Multi-track triggers (Downscaled) by factors of $\mathcal{O}(10)$.
- Normalise to 'similar' SM decay, often $K^+ \rightarrow \pi^+ e^+ e^-$:

Search for $K^+ \rightarrow \pi^0 \pi \mu e$

PLB 859 (2024) 139122

	•	1	τ	ſ	•	1	τ	í		1	τ				
	ľ	1	(2	Ę	5		5	5						
	•	•		•	•	-	•	•	-	•	•	-	•		
									_			_			
1	1	-	1	:	1	1	1	1	-	1	1	-	1	:	1
			ļ		ĩ	ï	i	ĩ	ļ	ļ	i		i		1
															ł
															ł
	•								-			-		•	ł
	•	-		•		-	•		-		•	-		•	1
	•								-			-			1
;	;	;	;	;	;	;	;	;	;	;	;	;	;	;	1
	•	-	•	•	•	-	•	•	-	1	•	-	1	•	1
	:			:	:				-	1	:	-		:	1
															1
ľ	1	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ		1
	:			:				:			:			:	1
				'											1
					•				-		•	-		•	1
•	•	•	•	•	•		•	•	-	•	•	-	•	•	1
	:	1	1	:	:	1	1	:	1	1	:	-	1	:	1
				:											1
l															ļ
				•		-			-			-			1
	•			•	•	-	•					-		•	1
r			-	-	-	-	_	_	1		1				

Searches for CLFV/LNV Decays at NA62

- Comprehensive set of CLFV/ LNV searches in K^+ decays.
- Strong prospects for further improvements due to:
 - 2021–LS3 data
 - updates to multi-track triggers and reduced downscaling.

Exotic Processes

NA62 in beam dump mode

• target removed and TAX closed, KTAG and GTK not used:

Search for LLP produced in TAX (beam dump) flying into FV and decaying to visible SM particles detected downstream.

Search for LLP X (Dark photon, scalar, ALP)

• Dark Photon: A'

- Bremsstrahlung production: $P \to A' \gamma$, $V \to A' P$ in TAX
- [arXiv.2312.12055].

Altogether 36 combinations of production and decay channels studied

Joel Swallow be.hep Seminar

• Decay to di-lepton in FV: $A' \rightarrow e^+e^-$ [JHEP 09 (2023) 035] or $A' \rightarrow \mu^+\mu^-$

- ALP: Primakoff (on-, off-shell), mixing with $P = \{\pi^0, \eta, \eta'\}, B^{\pm, 0} \to K^{\pm, 0, (\star)}a$
- DP: Bremsstrahlung, $P \to A'\gamma, V \to A'P$ $(V = \{\rho, \omega, \phi\})$

• DS:
$$B^{\pm,0} \to K^{\pm,0,(\star)}S$$

[Spadaro, Vulcano24]

Backgrounds

 $A' \rightarrow e^+ e^-$ [JHEP 09 (2023) 035]:

 $A' \rightarrow \mu^+ \mu^-$ [PRL 133 (2024) 11, 111802]:

Table 4: Summary of expected numbers of background events for the search of $A' \to \mu^+ \mu^-$ with the related uncertainty. The limits reported are defined with a 90% CL.

Region	Combinatorial	Prompt	Upstream-prompt
VR	0.17 ± 0.02	< 0.004	< 0.069
\mathbf{SR}	0.016 ± 0.002	< 0.0004	< 0.007

Hadronic final states:

Channel	$N_{ m exp, CR} \pm \delta N_{ m exp, CR}$	$N_{ m exp,SR}\pm\delta N_{ m exp,SR}$	$N_{ m obs,SR}^{p>5\sigma}$	$N_{\rm obs,SR+CR}^{p>5\sigma}$
$\pi^+\pi^-$	0.013 ± 0.007	0.007 ± 0.005	3	4
$\pi^+\pi^-\gamma$	0.031 ± 0.016	0.007 ± 0.004	3	5
$\pi^+\pi^-\pi^0$	$(1.3^{+4.4}_{-1.0}) \times 10^{-7}$	$(1.2^{+4.3}_{-1.0}) \times 10^{-7}$	1	1
$\pi^+\pi^-\pi^0\pi^0$	$(1.6^{+7.6}_{-1.4}) \times 10^{-8}$	$(1.6^{+7.4}_{-1.4}) \times 10^{-8}$	1	1
$\pi^+\pi^-\eta$	$(7.3^{+27.0}_{-6.1}) \times 10^{-8}$	$(7.0^{+26.2}_{-5.8}) \times 10^{-8}$	1	1
K^+K^-	$(4.7^{+15.7}_{-3.9}) \times 10^{-7}$	$(4.6^{+15.2}_{-3.8}) \times 10^{-7}$	1	2
$K^+K^-\pi^0$	$(1.6^{+3.2}_{-1.2}) \times 10^{-9}$	$(1.5^{+3.1}_{-1.2}) \times 10^{-9}$	1	1

Joel Swallow be.hep Seminar

$$N_{\rm bkg}^{\rm CR} = 9.7^{+21.3}_{-7.3} \times 10^{-3}, \ N_{\rm bkg}^{\rm SR} = 9.4^{+20.6}_{-7.2} \times 10^{-3}$$

All final regions almost background-free, 5σ discovery for 1 event for some cases...

- global significance)
- 0 events.

Conclusions

- New study of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay using NA62 2016–22 data:
 - $N_{bg} = 18^{+3}_{-2}$, $N_{obs} = 51$ (using 9+6 categories for BR extraction)
 - $\mathscr{B}_{16-22}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.0^{+3.3}_{-3.0}) \times 10^{-11} = (13.0 \left(^{+3.0}_{-2.7}\right)_{\text{stat}} \begin{bmatrix}^{+1.3}_{-1.3}\end{bmatrix}_{\text{syst}}) \times 10^{-11}$
 - Background-only hypothesis rejected with significance Z>5.
 - First observation of $K^+ \to \pi^+ \nu \bar{\nu}$ decay: BR consistent with SM prediction within 1.7 σ
 - Need full NA62 data-set to clarify SM agreement or tension.
- Many other results in 2024 from broad physics programme:
 - Rare decays: study of $K^+ \to \pi^+ \pi^0$, $\pi^0 \to e^+ e^-$ provides new measurement $\mathscr{B}_{NA62}(\pi^0 \to e^+ e^-(\gamma), x > 0.95) = (5.86 \pm 0.37) \times 10^{-8}$
 - Forbidden decays: CLFV/LNF searches for $K^+ \rightarrow \pi^0 \pi \mu e$ setting limits at $< 5 \times 10^{-10}$
 - Exotic processes: beam-dump searches for dark photons to leptons or hadrons.

2023–LS3 data-set collection & analysis in progress...

Breaking news: **CERN Press release : CERN** Accelerating science

In the Standard Model of particle physics, the odds of this decay occurring are less than one in 10 billion

25 SEPTEMBER, 2024

INFN Press release :

Istituto Nazionale di Fisica Nucleare

25 SETTEMBRE 2024

UKRI Press release :

Scientific American :

UK Research and Innovation

OCTOBER 1, 2024

Hidden Physics

Physicists have detected a long-sought particle process that may suggest new forces and particles exist in the universe

NA62 experiment at CERN observes ultra-rare particle decay

CERN: L'ESPERIMENTO NA62 OSSERVA UN PROCESSO RARISSIMO

CERN reports first observation of ultra-rare particle decay

5 MIN READ

A One-in-10-Billion Particle Decay Hints at

Joel Swallow

hep Seminar

- In SM: vector form factor.
- BSM: possible vector, scalar, tensor contributions.
- Differential measurement could show presence of new physics.

• $\mathscr{B}(K \to \pi \nu \bar{\nu})$ highly suppressed in SM

GIM mechanism & maximum CKM suppression $s \rightarrow d$ transition: ~

- Theoretically clean \Rightarrow high precision SM predictions
 - Dominated by short distance contributions.
 - Hadre

onic matrix e	lement extracted from	$\mathscr{B}(K o \pi^0 \mathscr{C}^+ \nu_{\mathscr{C}})$ de	ecays via isospin rotati
Mode	SM Branching Ratio [1]	SM Branching Ratio [2]	Experimental Status
$K^+ \to \pi^+ \nu \bar{\nu}$	$(8.60 \pm 0.42) \times 10^{-11}$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6 \pm 4.0) \times 10^{-11}$ NA62
$K_L \to \pi^0 \nu \bar{\nu}$	$(2.94 \pm 0.15) \times 10^{-11}$	$(2.68 \pm 0.30) \times 10^{-11}$	< 2 × 10 ⁻⁹ КОТО (20)
oel Swallow	^Recent SM calculations [1: <u>Buras et al. EP</u>	JC 82 (2022) 7, 615][2:D'Ambrosio et al. JF	<u>IEP 09 (2022) 148]</u>

be.hep Seminar

(Differences in SIM calculations from choice of CKIM parameters: see [<u>Eur.Phys.J.C 84 (2024) 4, 377</u>])

 M_t^{\perp}

$K \rightarrow \pi \nu \bar{\nu}$: Beyond the Standard Model

- Correlations between BSM contributions to BRs of K^+ and K_L modes [JHEP 11 (2015) 166].
 - Must measure both to discriminate between BSM scenarios.
- Correlations with other observables ($\varepsilon' / \varepsilon$, ΔM_B , B-decays) [JHEP 12 (2020) 097][PLB 809 (2020) 135769].
- Leptoquarks [EPJ.C 82 (2022) 4, 320], Interplay between CC and FCNC [JHEP 07 (2023) 029], NP in neutrino sector [EPJ.C 84 (2024) 7, 680] and additional scalar/tensor contributions [JHEP 12 (2020) 186][arXiv:2405.06742] ...
- **Green:** CKM-like flavour structure
 - Models with Minimal Flavour Violation
- Blue: new flavour-violating interactions where LH or RH currents dominate
 - Z' models with pure LH/RH couplings
- **Red:** general NP models without above constraints
- **Grossman-Nir Bound:** model-independent relation [PLB 398 (1997) 163-168]

 $\frac{\mathscr{B}(K_L \to \pi^0 \nu \bar{\nu})}{\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})} \frac{\tau_{K^+}}{\tau_{K_L}} \lesssim 1$ $\Rightarrow \mathscr{B}(K_L \to \pi^0 \nu \bar{\nu}) \leq 4.3 \mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu})$

$K^+ \rightarrow \pi^+ \nu \bar{\nu} \lambda \lambda K$

NA62 Strategy:

- Tag K^+ and measure momentum.
- Identify π^+ and measure momentum.
- Match K^+ and π^+ in time & form vertex.
 - Determine $m_{miss}^2 = (P_K P_\pi)^2$
- Reject any additional activity.

 $m_{miss}^2 = (P_{K^+} - P_{\pi^+})^2$ P_{K^+} Joel Swallow be.hep Seminar

NA62 Performance Keystones:

- $\mathcal{O}(100) \, ps$ timing between detectors
- $\mathcal{O}(10^4)$ background suppression from kinematics
- > 10^7 muon rejection
- > 10^7 rejection of π^0 from $K^+ \rightarrow \pi^+ \pi^0$ decays

Decay mode	Branching Ratio [PDG]
$K^+ \to \mu^+ \nu_\mu$	$(63.56 \pm 0.11)\%$
$K^+ \to \pi^+ \pi^0$	$(20.67 \pm 0.08)\%$
$K^+ \to \pi^+ \pi^+ \pi^-$	$(5.583 \pm 0.024)\%$
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$(4.247 \pm 0.024) \times 10^{-10}$

 $K^+ \to \pi^+ \nu \bar{\nu}$

 $(8.60 \pm 0.42) \times 10^{-11}$ Buras et al. EPJC 82 (2022) 7, 615

41

Kinematics

NA62 Performance Keystones:

- $\mathcal{O}(100) ps$ timing between detectors
- $\mathcal{O}(10^4)$ background suppression from kinematics
- > 10^7 muon rejection
- > 10⁷ rejection of π^0 from $K^+ \to \pi^+ \pi^0$ decays

10³

10 ²	Decay mode	Branching Ratio [PDG]
10	$K^+ \to \mu^+ \nu_\mu$	$(63.56 \pm 0.11)\%$
	$K^+ \to \pi^+ \pi^0$	$(20.67 \pm 0.08)\%$
10	$K^+ \to \pi^+ \pi^+ \pi^-$	$(5.583 \pm 0.024)\%$
	$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$(4.247 \pm 0.024) \times 10^{-10}$
	$K^+ \to \pi^+ \nu \bar{\nu}$	$(8.60 \pm 0.42) \times 10^{-11}$

Buras et al. EPJC 82 (2022) 7, 615

Particle ID

NA62 Performance Keystones:

- $\mathcal{O}(100) \, ps$ timing between detectors
- $\mathcal{O}(10^4)$ background suppression from kinematics
- > 10^7 muon rejection
- > 10⁷ rejection of π^0 from $K^+ \rightarrow \pi^+ \pi^0$ decays

 $\varepsilon(\pi ID) = (73.00 \pm 0.01)\%$ $P(\mu^+ \text{misID as } \pi^+) = (1.3 \pm 0.2) \times 10^{-8}$

Decay mode	Branching Ratio [PDG]
$K^+ \to \mu^+ \nu_\mu$	$(63.56 \pm 0.11)\%$
$K^+ \to \pi^+ \pi^0$	$(20.67 \pm 0.08)\%$
$K^+ \to \pi^+ \pi^+ \pi^-$	$(5.583 \pm 0.024)\%$
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$(4.247 \pm 0.024) \times 10^{-5}$

 $K^+ \to \pi^+ \nu \bar{\nu}$

 $(8.60 \pm 0.42) \times 10^{-11}$ Buras et al. EPJC 82 (2022) 7, 615

Photon Rejection

NA62 Performance Keystones:

- $\mathcal{O}(100) \, ps$ timing between detectors
- $\mathcal{O}(10^4)$ background suppression from kinematics
- > 10^7 muon rejection
- > 10⁷ rejection of π^0 from $K^+ \rightarrow \pi^+ \pi^0$ decays

 $K^+ \to \pi^+ \nu \bar{\nu}$

Buras et al. EPJC 82 (2022) 7, 615

Cedar & KTAG : K⁺ tagging with threshold Cherenkov counter MAG2 &

New Cedar-H: installed in 2023

- $(39 \times 10^{-3} X_0)$.
- New CEDAR-H filled with H_2 at 3.8 bar:
 - Reduces material to $7.3 \times 10^{-3} X_0$: reducing multiple scattering.
- But new optics required to account for different optical properties of H_2 . • Successful test beam in 2022 (at CERN, H6) and installation in NA62 in early 2023.

Arbitrary scale

10⁻²

10⁻³

10⁻⁴

10-5

- Cedar-H Performance at NA62:
 - >99.5% efficiency for 5-fold coincidence.
 - π^+ mistag probability: 10^{-4}
 - ~65ps time resolution

Joel Swallow

be.hep Seminar

30% reduction in elastically scattered beam particles.

> [JINST 19 (2024) 05, P05005] More info: [Kenworthy, PM2024]

• CEDAR-W filled with N_2 at 1.7 bar was biggest contributor to material in beam line

Bayesian classifier for $K^+ - \pi^+$ **matching**

- Inputs: spatial (CDA) & time (ΔT_+) matching, intensity/pileup (N_{GTK}) [prior]
 - Models for PDFs/Prior from $K^+ \rightarrow \pi^+ \pi^- \pi^-$ data.

- **Example of** selection update
- - Joel Swallow be.hep Seminar
- Use likelihoods of kaons (K) and pileup (P) • Likelihood ratio used to select true match when $N_{GTK} > 1$
- **Output:** posterior probability of GTK track = true K^+ • Efficiency improved (+10%) and mistagging probability maintained.

Kinematic regions

be.hep Seminar

• Signal regions: • Control regions:

 Used to validate background predictions.

• Background regions:

• Used as "reference samples" for some background estimates.

be.hep Seminar

Other backgrounds • $K^+ \rightarrow \pi^+ \pi^- e^+ \nu (K_{\rho 4})$ • No clean control samples for K_{e4} in data: use 2×10^9 simulated decays. Acceptance : $A_{K_{e4}} = \frac{N_{MC}^{sel}}{N_{MC}^{gen}} = (1.3 \pm 0.3_{\text{stat}}) \times 10^{-8}$ **Random veto & trigger efficiencies** Effective $N_{bg}(K^+ \to \pi^+ \pi^- e^+ \nu) = N_K \varepsilon_{RV} \varepsilon_{trig} \mathscr{B}_{K_{e4}} A_{K_{e4}}$ $N_{bg}(K^+ \to \pi^+ \pi^- e^+ \nu) = 0.89^{+0.34}_{-0.28}$ Branching ratio of $K_{\rho \Delta}$ (from PDG)

- Evaluated with simulations.
- Negligible contributions to total bac

kground.
$$N_{bg}(K^+ \to \pi^0 \ell^+ \nu) < 1 \times 10^{-3}$$

Upstream background evaluation $N_{bg} = \sum N_i f_{cda} P_i^{match}$ **Upstream Reference Sample:** signal selection but invert CDA cut (CDA>4mm) fcda Scaling factor : bad cda -> good cda Probability to pass $K^+ - \pi^+$ matching match Count

Calculate using bins (i) of $(\Delta T_+, N_{GTK})$ [Updated to fully data-driven procedure]

$$N = 51$$
 $f_{CDA} = 0.20 \pm 0.03$ $< P_{match}$

$$N_{bg}$$
(Upstream) = 7.4^{+2.1}_{-1.8}

 Upstream reference sample contains all known upstream mechanisms.
 N provides normalisation.
 f_{CDA} depends only on geometry.
 P_{match} depends on (ΔT₊, N_{GTK}). _{Nurs = 51}

Upstream background evaluation $N_{bg} = \sum N_i f_{cda} P_i^{match}$ **Upstream Reference Sample:** signal selection but invert CDA cut (CDA>4mm) f_{cda} Scaling factor : bad cda -> good cda ¥ 25 ح Z Probability to pass $K^+ - \pi^+$ matching match

Calculate using bins (i) of $(\Delta T_+, N_{GTK})$ [Updated to fully data-driven procedure]

$$N = 51$$
 $f_{CDA} = 0.20 \pm 0.03$ $< P_{match}$

$$N_{bg}$$
(Upstream) = 7.4^{+2.1}_{-1.8}

Upstream background validation

- Invert & loosen upstream vetos to enrich with different mechanisms:
 - Interaction-enriched: Val1,2,7,8
 - Accidental-enriched: Val3,4,5,6,9,10.
 - All independent.
- Expectations and observations are in good agreement.
- Number of events rejected by VetoCounter:
 - (i.e. events in signal region with associated VC signal)
 - $N_{exp}^{VC \, rej.} = 6.9 \pm 1.4$, $N_{obs}^{VC \, rej.} = 9$
- VetoCounter is essential to control upstream background.

events of Numbe

Control regions

• Good agreement in control regions validates background expectations.

2021 – 22 data

54

• Experimental measurements:

- Camerini et al. [PRL 23 (1969) 326-329]
- Klems et al. [PRD 4 (1971) 66-80]
- Ljung et al. [PRD 8 (1973) 1307-1330]
- Cable et al. [PRD 8 (1973) 3807-3812]
- Asano et al. [PLB 107 (1981) 159]
- E787 :
 - [PRL 64 (1990) 21-24]
 - [PRL 70 (1993) 2521-2524]
 - [PRL 76 (1996) 1421-1424]
 - [PRL 79 (1997) 2204-2207]
 - [PRL 84 (2000) 3768-3770]
 - [PRL 88 (2002) 041803]
- E949 (+E787)
 - [PRL 93 (2004) 031801]
 - [PRL 101 (2008) 191802]
- NA62:
 - 2016 data: [PLB 791 (2019) 156]
 - 2016+17 data: [JHEP 11 (2020) 042]
 - 2016–18 data: [JHEP 06 (2021) 093]
 - 2016–22 data : this result.
- Theory:
 - [Phys.Rev. 163 (1967) 1430-1440]
 - [PRD 10 (1974) 897]
 - [Prog.Theor.Phys. 65 (1981)]
 - [PLB 133 (1983) 443-448]
 - [PLB 192 (1987) 201-206]
 - [Nucl.Phys.B 304 (1988) 205-235]
 - [PRD 54 (1996) 6782-6789]
 - [PRD 76 (2007) 034017]
 - [PRD 78 (2008) 034006]
 - [PRD 83 (2011) 034030]
 - [JHEP 11 (2015) 033]
 - [JHEP 09 (2022) 148]

- Located at J-Park 30 GeV main ring.

be.hep Seminar

[<u>ArXiv:2411.11237</u>, Nov2024]

	<i>0</i> 0		TABI numb ties).	LE I. Sum ers repres	nmary of background e sent the statistical uncer	stimation. The secon tainties (systematic un
			-	Source K^{\pm}		Number of events $0.042 \pm 0.014^{+0.00}$
				K_L	$K_L \rightarrow 2\gamma$ (beam-halo)	$0.045 \pm 0.010 \pm 0.0000 \pm 0.000000000000000000$
n				Neutron	$K_L \rightarrow 2\pi^*$ Hadron-cluster CV-n	$\begin{array}{c} 0.039 \pm 0.022 \\ -0.059 \pm 0.0024 \\ \pm 0.004 \\ \pm 0.00 \\ 0.023 \\ \pm 0.010 \\ \pm 0.00 \end{array}$
	0	•		Total	Upstream- π^0	$\begin{array}{r} 0.020 \pm 0.010 \pm 0.0\\ 0.060 \pm 0.046 \pm 0.0\\ 0.252 \pm 0.055 \begin{array}{c} +0.05\\ -0.06\end{array}$
	U.UUð ±0.001 ±0.002					
	10.002	-	9	$\mathcal{B}(K_L -$	$\to \pi^0 \nu \bar{\nu}) < 2.2$	$\times 10^{-9} @ 90 9$
	0			Resi	ılt uses data	from 2021
 500	0 60	00		Inclu agai	Ides new vet nst K^+ backs	o detectors grounds

Rare Decays

- $K^+ \rightarrow \pi^+ \pi^0, \pi^0$ **Spring 2024**]
- Tagged neutrino arXiv:2412.04033

•
$$K^+ \rightarrow \pi^+ \gamma \gamma$$
 [PLI

•
$$K^+ \to \pi^0$$

• $K^+ \to (\pi^0)$
• $K^+ \to \mu^-$

• $K^+ \to \pi \mu$ 13, 13180

physics programme with 2024 results

Forbidden Decays

$$\rightarrow e^+e^-$$
 [prelim.

B 850 (2024) 138513

 $\pi \mu e \left[PLB 859 (2024) 139122 \right]$ $\pi^{0}\pi^{-}e^{+}e^{+}$ [PLB 830 (2022) 137172]

 $-\nu e^+ e^+ [PLB838 (2023) 137679]$

$$\mu e \text{ and } \pi^0 \rightarrow \mu^- e^+ \text{[PRL 127 (2021)]}$$

Exotics

- Beam dump dark photon searches:
 - $A' \rightarrow \ell^+ \ell^-$ [PRL 133] (2024) 11, 111802 [JHEP 09 (2023) 035]
 - $A' \rightarrow$ hadrons [prelim. Spring 2024]

[new preliminary result for spring 2024]

- Strong prospects for the future with optimised trigger with reduced downscaling (pprox 8
 ightarrow pprox
- Large external uncertainty from $\mathscr{B}(K^+ \to \pi^-)$ New analysis for this mode planned at NA62.

• Lower central value than KTeV measurement, but results are compatible:

• $\mathscr{B}_{KTeV}(\pi^0 \to e^+e^-(\gamma), x > 0.95) = (6.44 \pm 0.33) \times 10^{-8}$

corrections:

$\mathscr{B}_{NA62}(\pi^0 \to e^+e^-(\gamma), x > 0.95) = (5.86 \pm 0.30_{\text{stat}} \pm 0.11_{\text{syst}} \pm 0.19_{\text{ext}}) \times 10^{-8} = (5.86 \pm 0.37) \times 10^{-8}$

		$\mid \delta \mathcal{B} \ [10^{-8}] \mid$	δB
d 1).	Statistical uncertainty	0.30	
	Total external uncertainty	0.19	
	Total systematic uncertainty	0.11	
$+e^{+}e^{-}$).	Trigger efficiency	0.07	
	Radiative corrections for $\pi^0 ightarrow e^+ e^-$	0.05	
	Background	0.04	
	Reconstruction and particle identification	0.04	
	Beam simulation	0.03	

• Result in agreement with theoretical expectations when extrapolated using radiative

- Primary background mechanisms from misidentification.
- Models from data applied in simulations to describe misID.
- Validated using control samples [without RICH, with missing momentum].

Joel Swallow be.hep Seminar

Searches for $K^+ \rightarrow \pi \mu e$ decays

- Normalise to $K^+ \rightarrow \pi^+ \pi^+ \pi^-$.
- Use 3 trigger streams, 2017+18 data : $N_K = (1.33 \pm 0.02) \times 10^{12}$
 - Special care needed for eMT trigger with LKr-energy dependence.
- Signal acceptances:
 - $A(K^+ \to \pi^- \mu^+ e^+) = (4.90 \pm 0.02)\%$ 10⁻⁷
 - $A(K^+ \to \pi^+ \mu^- e^+) = (6.21 \pm 0.02) \% \overset{10^{-2}}{\underset{1.4}{9}}$ For π^- channel only:
 - For π^- channel only: $m(\pi^- e^+) < 140 \,\mathrm{MeV}/c^2$ to reject backgrounds involving $\pi^0 \rightarrow e^+ e^- \gamma + \text{misID}.$

