Updated expectations of the HL-LHC physics legacy

Steven Lowette Vrije Universiteit Brussel – IIHE

19 December 2024 be.HEP Solstice Meeting

• who thinks "about our fundamental scalar"?

- who thinks "about our fundamental scalar"?
- who thinks "about BSM physics"?

- who thinks "about our fundamental scalar"?
- who thinks "about BSM physics"?
- who thinks "about flavour"?

- who thinks "about our fundamental scalar"?
- who thinks "about BSM physics"?
- who thinks "about flavour"?
- who thinks "about heavy ions"?

• 2030-2041

The HL-LHC is a Higgs factory

The ESPP

- European Strategy for Particle Physics is the cornerstone for Europe's long-term decision making process
- last update from 2020, notably:
 - priority on the successful completion of the High-Luminosity LHC over the coming decade
 - Higgs factory as the highest priority to follow the LHC

The ESPP

- European Strategy for Particle Physics is the cornerstone for Europe's long-term decision making process
- last update from 2020, notably:
 - priority on the successful completion of the High-Luminosity LHC over the coming decade
 - Higgs factory as the highest priority to follow the LHC
- CERN council launched in March '24 the process for an update by mid '26
 - submission of written input by March 2025

The HL-LHC is an approved project!

However, input to the EPPS update remains crucial, as it is the starting point for future collider projects

From past to present

(*) HL-LHC as well as HE-LHC

- at the last strategy update...
- 2018-2019: ATLAS+CMS wrote an input (*) based a large joint Yellow Report
 - CMS: "UPSG" group coordinated the work internally
 - 1.5 years available
 - a lot of key physics studies had recently been or were being done in the context of the upgraded detector TDRs
- 2022: ATLAS+CMS Snowmass white paper
 - based on the Yellow Report, with some updates
- 2024-2025: ATLAS+CMS will submit a joint input to the ESPP
 - CMS: no internal HL-LHC physics structure, ~ no ongoing studies
 - much shorter timescale
 - must choose wisely what to update, and what message to bring
- separate document on flavour by LHCb, Belle2, CMS, ATLAS
 - from CMS and ATLAS: $B_{(s)} \rightarrow \mu\mu$, CPV in $B_{(s)} \rightarrow J/\psi \phi$, $B \rightarrow K^*(892) \mu\mu$ (angular incl. P'₅), $\tau \rightarrow \mu\mu\mu$

Overall vision

- demonstrate the importance of the full 3 ab⁻¹ to complete our HL-LHC program
 - the HL-LHC physics program is rich and exciting!
 - deliver on key physics goals
 - channels that are statistically limited
 - analyses that cannot (easily) be improved by next-gen Higgs factory
- concentrate the message on precision
 - all lumi is needed, 3 ab⁻¹ was and should remain the goal
 - avoid identifying milestones for evidence or observation
 - \rightarrow the goal is to reach the ultimate precision
- engage theorists
 - support in coherently building the physics story
 - Juan Rojo (NIKHEF) and Fabio Maltoni (UCLouvain/UBologna)

Timeline

• very compressed timeline

- June: coordinators appointed
- July: CMS + ATLAS coordinators and PCs strategy meeting
- August: meet with theorists and analyzers to define storyline
- September: detailed meetings with the different groups, define work
- End October: progress checkpoint with all teams
- Fall: start writing, converge early next year
- February: present to collaborations
- Before end of March: submit to ESU
- no time for brand new studies
 - base ourselves off of extrapolations from latest Run2
- go with best performance @6 ab⁻¹
 - unless we know fundamental differences detectors

The physics storyline

• prominent role for di-Higgs and Higgs potential

shape of the Higgs potential

- \rightarrow at EW scale
- → update with latest extrapolations for H and HH measurements

stability of the Higgs potential

- $\rightarrow\,$ at Planck scale, assumes SM
- → update with best expectation H and top pole masses

The physics storyline

- electroweak baryogenesis
 - SM + real scalar singlet
 - Higgs mixing modifies hZZ and hhh couplings

$$V(\phi, S) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 + b_1 S + \frac{1}{2} b_2 S^2 + \frac{1}{3} b_3 S^3 + \frac{1}{4} b_4 S^4 + \frac{1}{2} a_1 S \phi^{\dagger} \phi + \frac{1}{2} a_2 S^2 \phi^{\dagger} \phi$$

• bottomline: the HL-LHC will leave a strong legacy here

The physics storyline

- electroweak baryogenesis
 - SM + real scalar singlet
 - Higgs mixing modifies hZZ and hhh couplings

$$V(\phi, S) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 + b_1 S + \frac{1}{2} b_2 S^2 + \frac{1}{3} b_3 S^3 + \frac{1}{4} b_4 S^4 + \frac{1}{2} a_1 S \phi^{\dagger} \phi + \frac{1}{2} a_2 S^2 \phi^{\dagger} \phi$$

- further constraints from scalar searches in tt / hh / WW ?
 - theoretical exploration

The broader HL-LHC picture

Scenarios

- we assume 3 ab⁻¹ per experiment
 - comparison to 2 ab⁻¹, to show the importance of running HL-LHC till the end
- no specific model of detector upgrade
 - timeline is too tight for detailed studies
- no special assumption for pileup
 - upgraded detectors will make HL-LHC PU look like our pileup now
- extrapolate from Run2, folding in Run3 improvements when possible
- 3 extrapolation scenarios:
 - 1) conservative: standard legacy Run2 systematics, plus stat error scaled with sqrt(L)
 - 2) minimally realistic: as first scenario, but with relevant experimental systematics also scaled with sqrt(L), with some agreed on floor. halved theory uncertainties MCstat = 0
 - 3) for di-Higgs only: add latest b-tagging, tauID, trigger
- these are almost certainly underestimates wrt capabilities by 2040
 - new detectors, with some amazing capabilities
 - >15y of technical development ahead

CMS improvement snapshots

HH: observation

- both experiments will report
 - including the S3 scenario: includes recent improvements on b- and tau-tagging
 - assumptions aligned: sqrt(s), simplify sys. scaling,...
- naive ATLAS CMS combination: quadratic sum significance and sum κ_{λ} likelihood
- recent HL-LHC projections of Run-2 HH searches (much) better than the 2019 Yellow Report
 - expectation of discovery with CMS+ATLAS

HH: $\kappa_{\lambda 3}$

- both experiments will report
 - including the S3 scenario: includes recent improvements on b- and tau-tagging
 - assumptions aligned: sqrt(s), simplify sys. scaling,...
- naive ATLAS CMS combination: quadratic sum significance and sum κ_{λ} likelihood
- recent HL-LHC projections of Run-2 HH searches (much) better than the 2019 Yellow Report
 - κ_{λ3} < well below 1.5 combined

HH: $\kappa_{\lambda 3}$

New: HHH

- HHH \rightarrow 6b final state
 - recent ATLAS result:

arXiv:2411.02040

- constraints are weak, but HL-LHC has unique sensitivity
 - on quartic coupling
 - linking $\kappa_{\lambda 3}$ and $\kappa_{\lambda 4}$

*unitarity bounds from Eur. Phys. J. C 84 (2024) 366

- easy to extrapolate, since fully statistically driven
 - extrapolation ready for 3+3 ab⁻¹
 - will reach first constraint on unitarity bounds
- a first view only
 - significant improvements ahead, other decay channels

(k₃, k₄) 2-dimensional likelihood scan

Precision H

- $H \rightarrow Z\gamma$:
 - nearly ready from both sides, combination exercised
- $H \rightarrow \mu \mu$:
 - ATLAS nearly ready, combination exercised
 - dominated by CMS; includes extended acceptance and improved resolution
 CMS-PAS-FTR-21-006

- $H \rightarrow \gamma\gamma$:
 - work ongoing to split merged STXS highest p_T^H bin: 450+ GeV \rightarrow 450-650 and 650+ GeV
- H → ZZ :
 - based on previous projections
- κ_t from ttH and tH :
 - ATLAS @ 6 ab⁻¹

Higgs and top mass

- Higgs mass
 - CMS has mass H → ZZ^{*} → 4I already projected
 - projection 0.02% (!) : m_H= 125.38 ± 0.03 GeV

optimistically even 20MeV

• top pole mass

- direct measurements come with interpretation uncertainty
- for pole mass, we have two extrapolations of 2016 tt+jet analysis: one too conservative, one too aggressive...

strategy under discussion

quickly systematically limited

essentially no improvement between 4 ab⁻¹ and 6 ab⁻¹

4 tops and tt+X

- 4 tops
 - updated ATLAS projections bring us below 10% cross section uncertainty

systematics start to dominate > 500 fb⁻¹

- not impactful for κ_t constraints when coupled with ttH
- working to add EFT

4-top H_T with 4 b-jets

• tty / ttZ

- extrapolating ATLAS EFT interpretations from differential cross sections
- considering a few relevant SMEFT operators

Searches

• $X \rightarrow HH$

- CMS extrapolation public: arXiv:2403.16926
- ready to confront scalar singlet model and recently proposed TRSM (2 scalars)
- $A/H \rightarrow tt$
 - extrapolate ATLAS result: JHEP 08 (2024) 013
 - proper treatment of the interference with SM background
- tt A/H \rightarrow tttt
 - extrapolating ATLAS analysis:
 - marginal improvement 4 → 6ab⁻¹
 - not tuned towards high lumi
 - scalar singlet model interpretation in progress

• $X \rightarrow ZZ$: to revisit?

Steven Lowette – Vrije Universiteit Brussel be.HEP Solstice Meeting – 19 December 2024

arXiv:2408.17164

VBS: W[±]W[±]

- longitudinal polarization remains stat limited
 - essential component of SM
 - crucial test of BEH mechanism
 - key target for HL-LHC
- CMS projection public and ready: CMS-PAS-FTR-21-001
 - 10% of W_LW_L fraction, at best
 - conservative: no MTD or HGCAL, but same effect from pileup
 - increased cross sections QCD+EW corrections as function of m(jj) theory errors halved

Practical steps

- what we are preparing:
 - CMS Notes and ATLAS Pub Notes on individual studies → expect public during February
 - ATLAS+CMS common document

roughly 5 pages per subject contains also the combination material

10 page submission document (editors P/M/S)

will be submitted to the ESPP update with broader common document as appendix

- dense timeline
 - This week: first drafts
 - Early Jan: 10p skeleton, notes taking shape, studies rounding up
 - End of Jan: internal approvals individual studies and combinations
 - Early Feb: common document presented to collaborations
 - 2nd half Feb: collaboration-wide internal reviews
 - End of March: submit 10p + appendix

What's beyond?

• "Prediction is very difficult, especially if it's about the future." (N. Bohr)

Steven Lowette – Vrije Universiteit Brussel be.HEP Solstice Meeting – 19 December 2024

Summary

- working towards CMS+ATLAS input to European Strategy Update
 - demonstrates exciting program of HL-LHC physics
 - starting point for any next collider
- timeline is short
 - robust extrapolations from Run2 legacy (+ some improvements)
 - pragmatic and fruitful synergy between ATLAS and CMS
 - work is in full swing!

Backup

