Observing cosmic rays with SKA and LOFAR

LOFAR cosmic ray Key Science Project SKA High Energy Cosmic Particles Science Working Group VUB members: Stijn Buitink, Arthur Corstanje, Vital De Henau, Mitja Desmet, Tim Huege

28 November 2024, IIHE Annual meeting, Brussels

Air shower observations with SKA & LOFAR

- Where is the Galactic to extragalactic transition?
- What are the most powerful Galactic accelerators?
- What is the mass composition of cosmic rays?
- Can radio be used to study shower physics?

LOFAR 1.0 finished

- Understanding emission mechanism
- Full Stokes polarization, frequency dependence, wavefront shape, atmospheric effects, thunderstorm influence, etc.
- Mass composition measurements based on Xmax.
- Calibration of absolute energy scale based on Galactic background emission.

A. Corstanje et al., Phys. Rev. D 103, 102006 (2021)

- Fully commensal data taking + expanded particle detector array more statistics (roughly one order of magnitude)
- simultaneous Low Band (30-80 MHz) and High Band (110-180) higher precision
- radio trigger / hybrid trigger reach lower energies $($ ~ 10¹⁷ eV \rightarrow 10

Transition period LOFAR 1.0 LOFAR 2.0

$$
0^{16.5}~\mathrm{eV}
$$

Transition period LOFAR 1.0 LOFAR 2.0

Square Kilometer Array (SKA)

5

The Square Kilometre Array

- SKA will have mid-freq array in South-Africa and low-freq in Australia. Construction has started.
- SKA-low will consist of 57,344 log-periodic antennas within an area of $~1$ km²
- Frequency bandwidth 50-350 MHz
- Extremely high-density & homogeneous coverage: very precise radio observations of air showers
- Energy range: 1016 eV 1018 eV. Further extension down to knee energy possible with interferometric techniques. Schoorlemmer & Carvalho arXiv:2006.10348 (2021), Schlüter & Huege, JINST arXiv:2102.13577 (2021)

Prototype @MRO (256 antennas)

Layout of particle detector array at SKA-low

Antenna field

- **Particle detectors dense array (~100 units)**
- **Particle detectors ring (~50 units, optional)**
- **Particle detectors remote (~18 units, optional)**

Scintillators from KIT (KASCADE-Grande coll.)

Prototype station @ Murchison Widefield Array

Low noise system: SiPMs & RFoF comm.

The SKA Particle detector array

This year: Deployment of 8-station array at MWA

Design: Univ. of Manchester (J. Bray, R. Spencer) Deployment: Curtin Univ. (C.W . James) DAQ: CSIRO

J. Bray et al., NIMPA 973, id. 164168 (2020)

740 kEuro funding from FWO (medium scale infrastructure)

Redesign to 3rd generation in Karlsruhe (KIT)

SKA simulations

Simulations: Xmax with SKA

Final resolution will depend on uncertainties in:

- **- Antenna model**
- **- Atmosphere**
- **- Galactic background (via calibration)**
- **- MC simulations**

A. Corstanje et al., PoS(ARENA2022)024

Towards low energies

Traditional reco:

High precision, small bias down to 1016.4 eV

Beamforming:

Mass composition down to 1016 eV

Signal down to 1015 eV Galactic gamma-rays?

Double-bump showers

- **^A high-energy hadron** (or other fragment) from first interaction can **interact late** causing a **second bump**
- Double-bump showers are rare, more frequent at **lower energies**
- Study hadronic cross section by measuring *ΔX* and *N1/N2*
- **Most frequent for Helium**: additional constraints on mass composition

Arthur Corstanje, Mitja Desmet

Vital De Dehau

Results for first 6 proton sims

Vital De Dehau

Applications

QGSJET-II EPOS SIBYLL

- Frequency of double bump depend on hadronic physics model and mass composition
-
- Small separation: stretched showers (much more common)

• Additional opportunities for proton/Helium separation: early bumps, bump ratios

16

Simulation challenge

- Current generation CR-radio (LOFAR, Auger) uses dedication sets of ~25 simulations for each observed shower.
- CORSIKA/CoREAS full radio sim take days on a single node.
- SKA: higher statistics, more antennas, multivariate fitting simulations need to be faster by orders of magnitude!

• We take a Monte-Carlo based simulation as input and apply parametrisations to synthesise the emission from a target with different properties.

- We rescale the emission coming from each atmospheric slice separately, accounting for the shower properties:
	- Distance from slice to antenna

- We rescale the emission coming from each atmospheric slice separately, accounting for the shower properties:
	- Distance from slice to antenna
	- Number of particles, the density and refractive index in the slice

- We rescale the emission coming from each atmospheric slice separately, accounting for the shower properties:
	- Distance from slice to antenna
	- Number of particles, the density and refractive index in the slice
	- The "shower age" in the slice

- We rescale the emission coming from each atmospheric slice separately, accounting for the shower properties:
	- Distance from slice to antenna
	- Number of particles, the density and refractive index in the slice
	- The "shower age" in the slice
	- The viewing angle of the antenna, in units of local Cherenkov angle

These scaling relations make template synthesis applicable to all geometries (at least up to 60°)

- We rescale the emission coming from each atmospheric slice separately, accounting for the shower properties:
	- Distance from slice to antenna
	- Number of particles, the density and refractive index in the slice
	- The "shower age" in the slice
	- The viewing angle of the antenna, in units of local Cherenkov angle
- And this in a matter of **seconds**!

Mitja Desmet

The accuracy of template synthesis is on the same level as the inherent shower fluctuations

The accuracy of template synthesis is on the same level as the inherent shower fluctuations

the results of synthesis to full MC simulations

25

Conclusions

- LOFAR 1.0 has concluded observations. Next: LOFAR 2.0 and SKA
- SKA will produce highest-resolution radio air shower observations
- Particle detector array of ~100 units, funding by FWO
- Unprecedented precision on Xmax at 10¹⁶ 10¹⁸ eV Beamforming for lower energies. PeV gamma-rays?
- New reconstruction possibilities: double-bump showers & stretched shower hadronic physics & mass composition