Intrinsic k_T and soft gluons in Monte Carlo generators

Louis Moureaux*, Aleksandra Lelek, Francesco Hautmann, Laurent Favart *Hamburg University

EPS-HEP 2025 in Marseille, France

Special thanks to Gregor Kasieczka and Hannes Jung.

SPONSORED BY THE

CLUSTER OF EXCELLENCE

Branching phase space

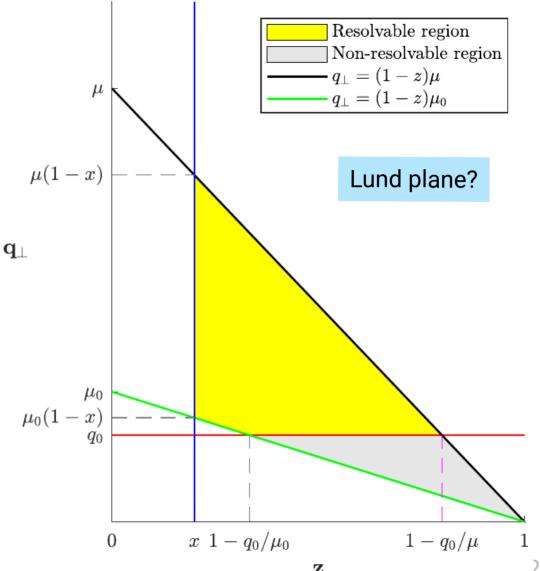
If using the DGLAP scheme with $\alpha_s(\mu')$, every branching is perturbative

With angular ordering, we use

$$\alpha_{\rm s}(q_{\rm T}) = \alpha_{\rm s}(\mu^{\rm l2}(1-z)^{\rm 2})$$

so in some regions of q_T this is may not be perturbative

Question: Why not using the DGLAP scheme?

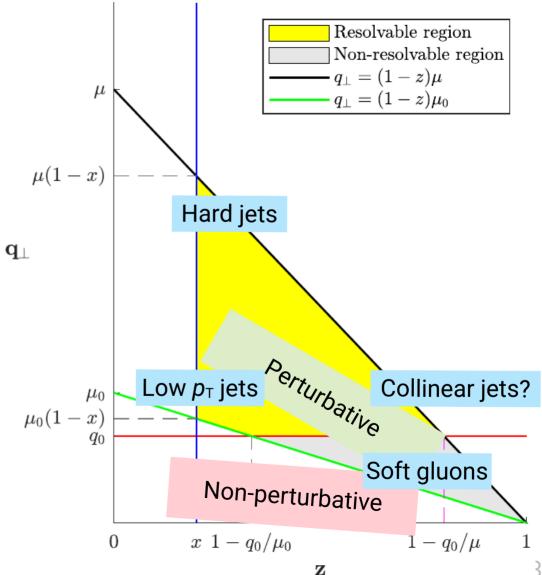


Branching phase space

First things first... There is a perturbative region defined by $\mu > 1$ GeV (roughly)

Everything perturbative is part of the shower

Everything non-perturbative is free to be parameterized in the TMD (q_s etc)



Traditional z_{max}

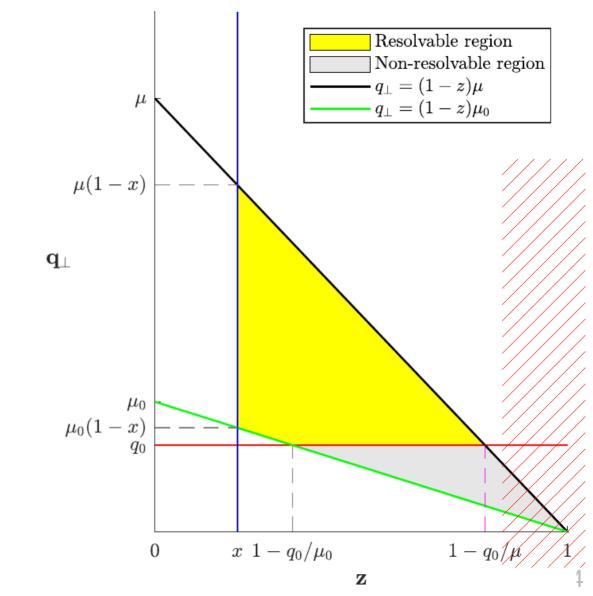
Traditional z_{max} cuts off everything with $1 - z < 10^{-3}$ or so

Questions:

Is this region fully neglected?

Included in a Sudakov?

Parameterized?



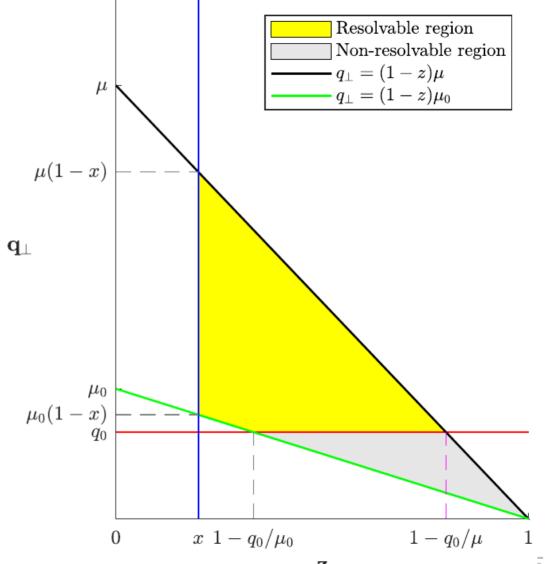
Dynamic Z_{max}

Traditional z_{max} cuts off everything with $1 - z < 10^{-3}$ or so

Dynamic z_{max} cuts off the grey area, because:

- $\alpha_s(q_T)$ is getting large (can also cap it to $\alpha_s(q_0)$)
- q_T is too small for the gluon to be seen anyway (not resolvable) \simeq rapidity factorization in CSS

How do we handle the grey region? Move it to the TMD?



 \mathbf{z}

Master formula

$$A_{a}(x, \mathbf{k}, \mu^{2}) = \Delta_{a}(\mu^{2}, \mu_{0}^{2}) A_{a}(x, \mathbf{k}, \mu_{0}^{2})$$

$$+ \sum_{b} \int \frac{\mathrm{d}^{2} \boldsymbol{\mu}'}{\pi \mu'^{2}} \int \frac{\mathrm{d}^{2} \boldsymbol{\mu}'}{\mathrm{d}z} \mathcal{E}_{ab}[\Delta; P^{(R)}; \Theta] A_{b}(x/z, \mathbf{k} + a(z)\boldsymbol{\mu}', \mu'^{2})$$

Where else does z_{max} appear?