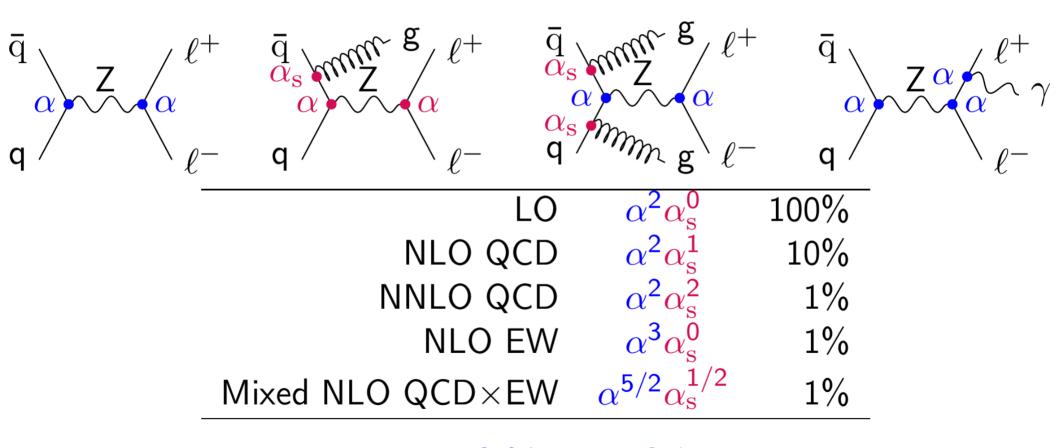
Z → µµɣ

Louis Moureaux

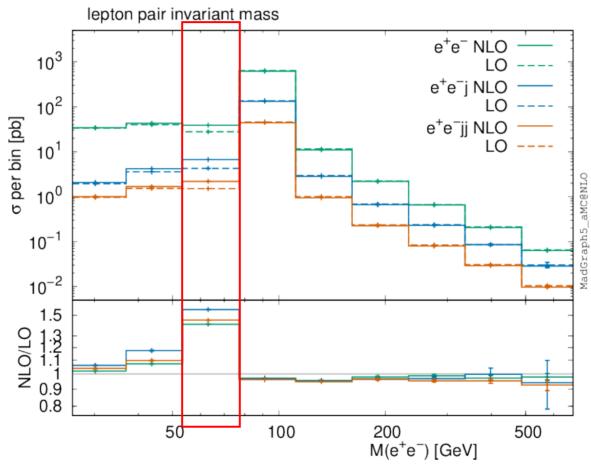
louis.moureaux@cern.ch DY workshop - 04.11.2025

SPONSORED BY THE


CLUSTER OF EXCELLENCE
QUANTUM UNIVERSE

Introduction

Z DECAY MODES


	Mode	Fraction (Γ_i/Γ)		ale factor/ dence level	
$\overline{\Gamma_1}$	e^+e^-	[a] (3.3632 ± 0.00	042) %		
Γ ₂ Γ ₃	$\mu^+\mu^-$	[a] (3.3662 ± 0.00)	066) %		
	$ au^+ au^-$	[a] (3.3696 ± 0.00)	083) %		
Γ_4	$\ell^+\ell^-$	$[a,b]$ (3.3658 \pm 0.00			
Γ_5	$\ell^+\ell^-\ell^+\ell^-$	$[c]$ (3.5 \pm 0.4	$) \times 10^{-6}$	S=1.7	
Γ_6	invisible	[a] (20.000 ± 0.05)	55)%		
Γ ₇	hadrons	[a] (69.911 ± 0.09)	56)%		
•					
:	-				
Γ ₄₅	$=\frac{0}{c}X$	seen			
Γ ₄₆	$\equiv_b X$	seen			
Γ ₄₇	<i>b</i> -baryon X	[e] (1.38 ± 0.22	2)%		
Γ ₄₈	anomalous $\gamma+$ hadrons	[f] < 3.2	$\times 10^{-3}$	CL=95%	
Γ ₄₉	$e^+e^-\gamma$	[f] < 5.2	× 10 ⁻⁴	CL=95%	
Γ ₅₀	$\mu^+\mu^-\gamma$	[f] < 5.6	$\times 10^{-4}$	CL=95% ∢	*
Γ_{51}	$\tau^+\tau^-\gamma$	[f] < 7.3	$\times 10^{-4}$	CL=95%	
Γ ₅₂	$\ell^+\ell^-\gamma\gamma$	[g] < 6.8	\times 10 ⁻⁶	This	
				I nis r	numbe

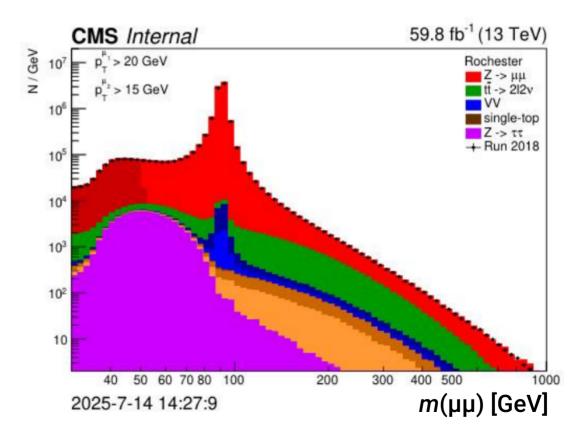
Counting couplings

$$lpha\sim$$
 0.01, $lpha_{
m s}\sim$ 0.1

MadGraph NLO EW prediction

Madgraph5_aMC@NLO: JHEP 07 (2018) 185

CMS analysis


Ojars Martins Eberlins, Ying An, Patrick Connor, Ankita Mehta, Louis Moureaux, Markus Seidel

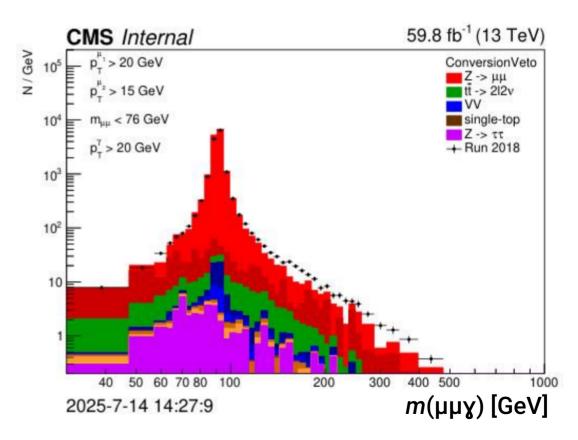
Measure $Z \rightarrow \mu \mu \gamma$

- Branching fraction
- Differential distributions

Preliminary selection (2018 only)

- Two tight muons, $p_T > 15$, 20 GeV
- One tight photon, $p_T > 20 \text{ GeV}$
- 40 < m(μμ) < 76 GeV
- 76 < m(μμγ) < 106 GeV
- ~13% efficient

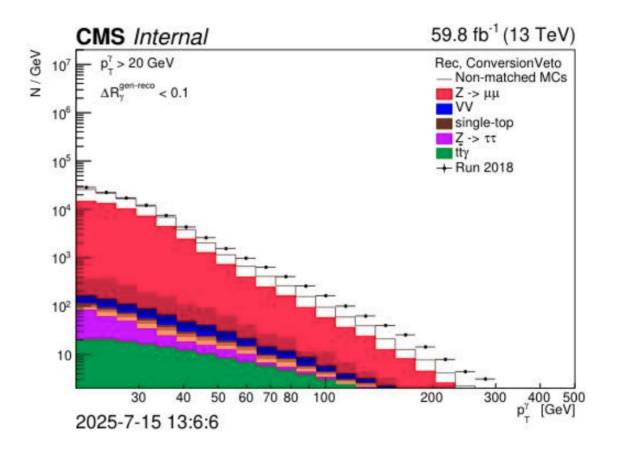
CMS analysis


Ojars Martins Eberlins, Ying An, Patrick Connor, Ankita Mehta, Louis Moureaux, Markus Seidel

Measure $Z \rightarrow \mu \mu \gamma$

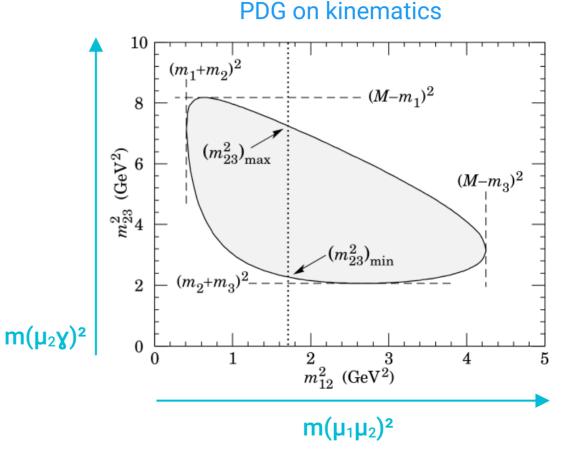
- Branching fraction
- Differential distributions

Preliminary selection (2018 only)


- Two tight muons, $p_T > 15$, 20 GeV
- One tight photon, $p_T > 20 \text{ GeV}$
- 40 < m(μμ) < 76 GeV
- 76 < m(μμγ) < 106 GeV
- ~13% efficient

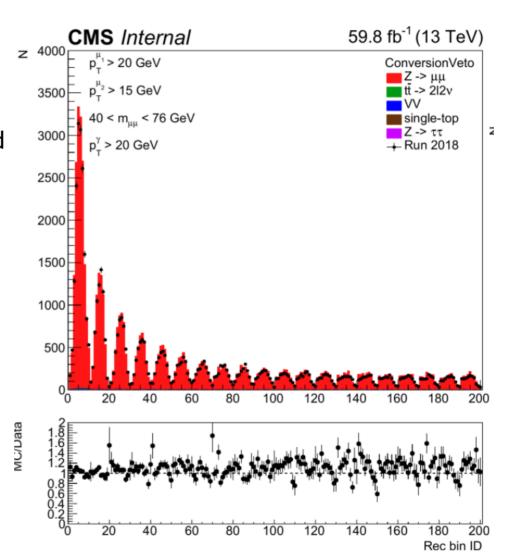
Single-differential

Planning to repeat <a>EWK-11-016


- Photon p_{T}
- ΔR_{γµ}
- m_{μμ}, m_{μμγ}

Double-differential

Parametrization of 3-body decays: Dalitz plots


- Invariant masses of object pairs
- Complete description of the decay (ignoring spin effects)

Double-differential

First 2D plot

- All muon & photon corrections applied
- General description is OK
- 10-20% too much simulation?
 Affecting wide-angle radiation more
- We do not know yet if this is real

