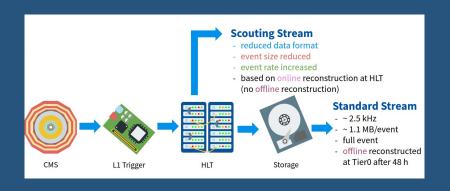
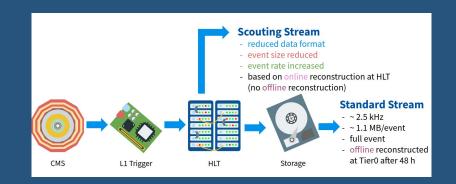
Scouting Data

DY-TMD Workshop



Scouting Intro

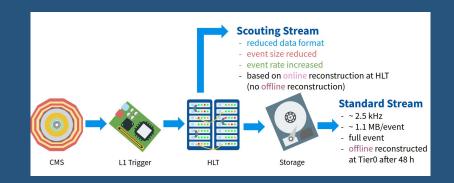
As a reminder:


Scouting is a high rate, small size format

Scouting Intro

As a reminder:

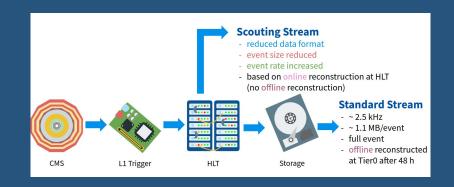
- Scouting is a high rate, small size format
 - Rate is ~25 times higher than the regular stream of data taking
 - \bullet O(10¹⁰) events in 2024



Scouting Intro

As a reminder:

- Scouting is a high rate, small size format
 - Rate is ~10 times higher than the regular stream of data taking
 - Threshold is much lower
 - HLT triggers at muon of p₊ > 3 GeV/c
 - Unprescaled L1s start $p_{\tau} > 4.5 \text{ GeV/c}$



Scouting: What is it?

As a reminder:

- Scouting is a high rate, small size format
 - Rate is ~25 times higher than the regular stream of data taking
 - Threshold is much lower
 - Trade-off is the lower information and no offline reconstruction
 - Not storing all objects information
 - Decreased numerical precision on tracks and PF candidates.

- PF Candidates
- PF jets
- Tracks and Vertices
- Muons
- Electrons
- Photons

- PF Candidates
 - Reconstructed by standard PF algorithm
 - \circ p_T> 0.6GeV & $|\eta|$ < 3
 - Reclustering of Jets
 - AK4 CHS jets
 - AK8 fat jets
- PF jets
- Tracks and Vertices
- Muons
- Electrons
- Photons

- PF Candidates
- PF jets
 - \circ p_T > 20 GeV, $|\eta|$ < 5
 - Includes content in particles' energies and multiplicities
- Tracks and Vertices
- Muons
- Electrons
- Photons

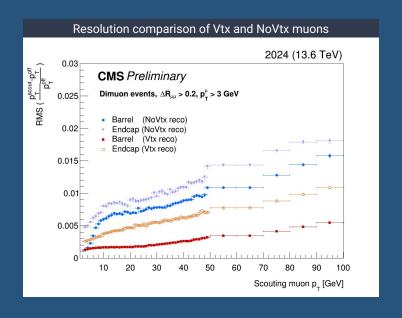
- PF Candidates
- PF jets
 - \circ p_T > 20 GeV, $|\eta|$ < 5
 - Includes content in particles' energies and multiplicities
- Tracks and Vertices
- Muons
- Electrons
- Photons

from TriggerTutorial_Scouting_February2025

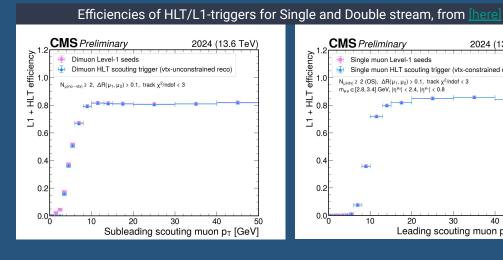
- HLT Filters: None
- HLT corrections: Available in the scouting path but uncorrected jets are stored
 - Does this mean that any jet present in the event is registered?

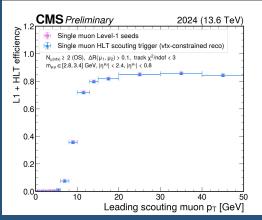
- PF Candidates
- PF jets
- Tracks and Vertices
 - Standard & PF tracking
 - \circ p_T > 1 GeV
 - pixel track information
 - covariance matrix of track fit
- Muons
- Electrons
- Photons

- PF Candidates
- PF jets
- Tracks and Vertices
- Muons
 - Double : NoVtx, p_T > 3 GeV
 - Single: Vtx, No p₊ threshold
- Electrons
- Photons


- PF Candidates
- PF jets
- Tracks and Vertices
- Muons
 - \circ Double: NoVtx, $p_T > 3$ GeV
 - \circ Single: Vtx, No p_T threshold
- Electrons
- Photons

from TriggerTutorial_Scouting_February2025


Scouting Path: Single Muon


- Targets events with ≥ 1 low p_T muons (standard vtx reco with beamspot constraint → better resolution)
 - Tracking update in 2024 to use full tracking and standard PF
 - Track p_T requirement lowered to 1 GeV

- PF Candidates
- PF jets
- Tracks and Vertices
- Muons
 - Double : NoVtx, $p_{\tau} > 3 \text{ GeV}$
 - \circ Single: Vtx, No p_T threshold
- Electrons
- Photons

- PF Candidates
- PF jets
- Tracks and Vertices
- Muons
- Electrons
- **Photons**

- PF Candidates
- PF jets
- Tracks and Vertices
- Muons
 - \circ Double: NoVtx, $p_T > 3$ GeV
 - \circ Single: Vtx, No p_{τ} threshold
- Electrons
- Photons

- PF Candidates
- PF jets
- Tracks and Vertices
- Muons
- Ε/γ
 - \circ Double : $E_T > 12$ GeV, SC H/E < 0.2
 - \circ Single: $E_T > 30 \text{ GeV}$, SC H/E < 0.2

Run3 2024: Datasets

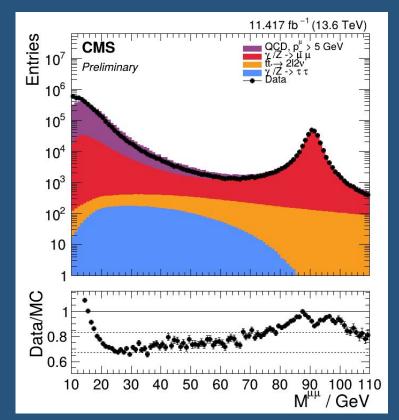
- In 2024, there is a total of 109.08 /fb of data in GoldenJSON.
 - We start with era I of 2024, thus 11.417 /fb
 - Actually 1 run with 0.839 /fb in the plots here, even if marked otherwise

ERA	Delivered by LHC [/fb]	Recorded by CMS [/fb]	Golden JSON [/fb]
В	0.74	0.66	0.13
С	7.95	7.43	7.24
D	8.90	8.30	7.96
E	12.24	11.43	11.32
F	30.47	28.12	27.76
G	42.84	39.40	37.77
Н	6.81	6.20	5.44
	12.85	11.79	11.47
Total	122.81	113.32	109.08

Run3 2024: Datasets

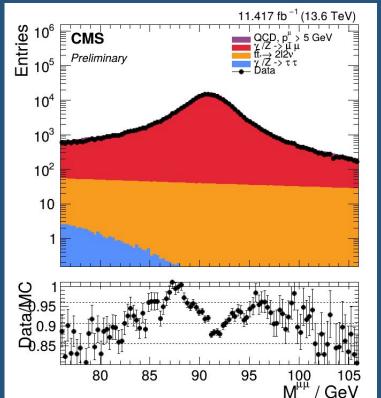
- In 2024, there is a total of 109.08 fb⁻¹ of data in GoldenJSON.
- The following MC samples are used
 - Signal :
 - DYto2Mu
 - Background
 - QCD, MuEnriched
 - TTto2L2Nu
 - DYto2Tau

Sample	Bin	Xsec
DYto2Mu_Bin-MLL-10to50_TuneCP5_13p6TeV_powheg-pythia8	10to50	6744.0
DYto2Mu-2Jets_Bin-MLL-50_TuneCP5_13p6TeV_amcatnloFXFX-pythia8	50	2124.08
DYto2Tau_Bin-MLL-50to120_TuneCP5_13p6TeV_powheg-pythia8	50to120	2219.0
TTto2L2Nu_TuneCP5_13p6TeV_powheg-pythia8	Incl	98.04
QCD_Bin-PT-*_Fil-MuEnriched_TuneCP5_13p6TeV_pythia8	15to20	2982000.0
	20to30	2679000.0
	30to50	1465000.0
	50to80	409500.0
	80to120	96200.0
	120to170	22980.0
	170to300	7754.0
	300to470	699.1
	470to600	68.24
	600to800	21.37
	800to1000	3.913
	1000	1.323

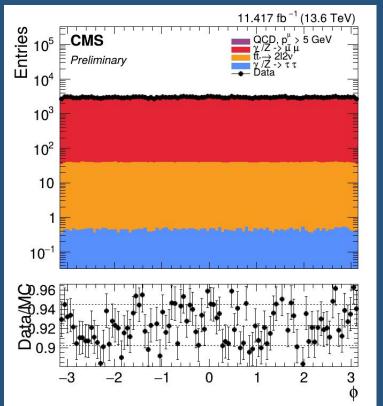

- In 2024, there is a total of 109.08 fb⁻¹ of data in GoldenJSON.
- The following MC samples are used
 - ➤ Signal:
 - DYto2Mu
 - ➤ Background:
 - QCD, MuEnriched
 - TTto2L2Nu
 - DYto2Tau

NLO DYto2Mu_Bin-MLL-10to50_TuneCP5_13p6 TeV_powheg-pythia8 McM - XSDB DYto2Mu-2Jets_Bin-MLL-50_TuneCP5_13p 6TeV_amcatnloFXFX-pythia8 McM - XSDB TTto2L2Nu_TuneCP5_13p6TeV_powheg-p vthia8 McM - XSDB QCD_Bin-PT-1000_Fil-MuEnriched_TuneCP 5_13p6TeV_pythia8 McM - XSDB DYto2Tau_Bin-MLL-50to120_TuneCP5_13p 6TeV_powheg-pythia8

McM - XSDB

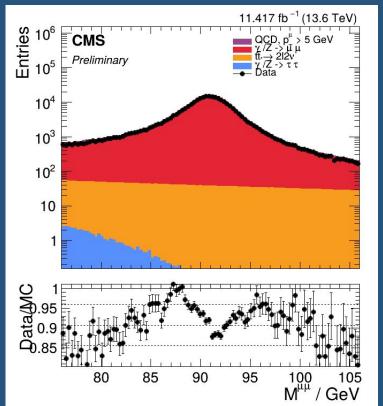

- In 2024, there is a total of 109.08 /fb of data in GoldenJSON.
- The following MC samples are used
 - > Signal:
 - DYto2Mu
 - ➤ Background:
 - QCD, MuEnriched
 - TTto2L2Nu
 - DYto2Tau
- These cuts are applied as a base, if not stated otherwise:

```
pt_mu > 5 GeV/c, |\eta| < 2.4
relativeTrackerIsolation < 0.03
trk_chi2/tkr_ndof < 10
L1_DoubleMu4p5er2p0_OS_SQ_MassMin7
DST_PFScouting_DoubleMuon
sub_pt/mass_pait < 0.25
lead_pt/mass_pair < 0.45
```



- In 2024, there is a total of 109.08 /fb of data in GoldenJSON.
- The following MC samples are used
 - ➤ Signal :
 - DYto2Mu
 - ➤ Background :
 - QCD, MuEnriched
 - TTto2L2Nu
 - DYto2Tau
- These cuts are applied as a base, if not stated otherwise:

```
pt_mu > 5 GeV/c, |\eta| < 2.4
relativeTrackerIsolation < 0.03
trk_chi2/tkr_ndof < 10
L1_DoubleMu4p5er2p0_OS_SQ_MassMin7
DST_PFScouting_DoubleMuon
sub_pt/mass_pait < 0.25
lead_pt/mass_pair < 0.45
```

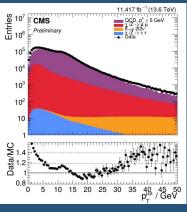

- In 2024, there is a total of 109.08 /fb of data in GoldenJSON.
- The following MC samples are used
 - > Signal:
 - DYto2Mu
 - Background :
 - QCD, MuEnriched
 - TTto2L2Nu
 - DYto2Tau
- These cuts are applied as a base, if not stated otherwise:

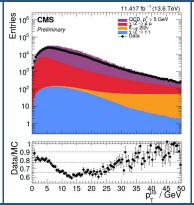

```
pt_mu > 5 GeV/c, |\eta| < 2.4
relativeTrackerIsolation < 0.03
trk_chi2/tkr_ndof < 10
L1_DoubleMu4p5er2p0_OS_SQ_MassMin7
DST_PFScouting_DoubleMuon
sub_pt/mass_pait < 0.25
lead_pt/mass_pair < 0.45
```

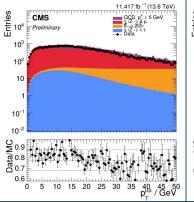

- Need to compute efficiency using other HLT trigger at Z-peak
 - Take HLT_IsoMu24 events with 2 muons of p₊ > 30 GeV
 - Look into these the fraction that trigger HLT/L1 that we use

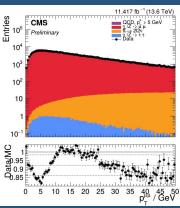
$$\varepsilon = \frac{HLT_IsoMu24 + 2\mu + p_T^{1,2} > 30GeV + HLT/L1}{HLT_IsoMu24 + 2\mu + p_T^{1,2} > 30GeV\Gamma}$$

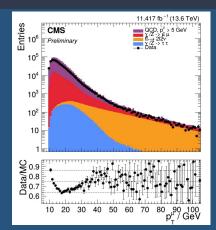
This should show us if there is an issue with the triggers we are using

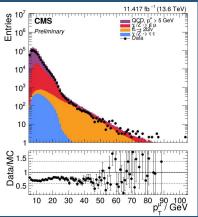

Run3 2024: Mass Windows

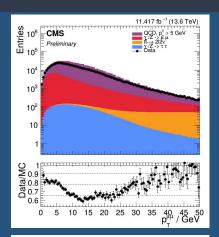

Plots are going to be separated in 5 different mass windows:

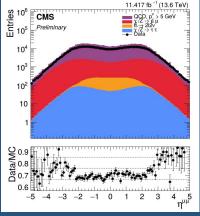

- 1. Upsilon window : [10, 20] GeV
- 2. QCD Window: [20, 50] GeV
- 3. W window: [50, 76] GeV
- 4. Z window: [76, 106] GeV


Pair transverse momentum

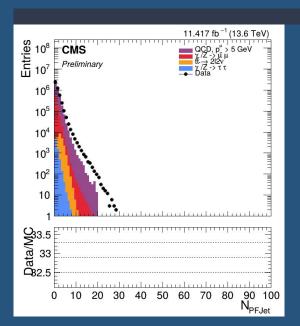


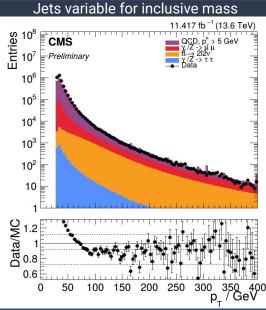


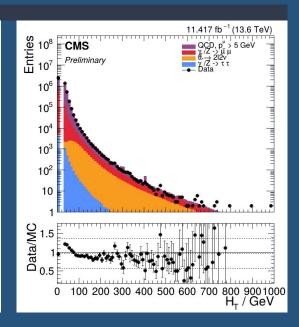




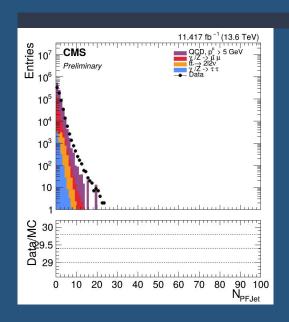
- The data/mc ratio is good
 - > Still, the big issue is the very high background
 - On the left, distribution in the [20, 60] GeV window

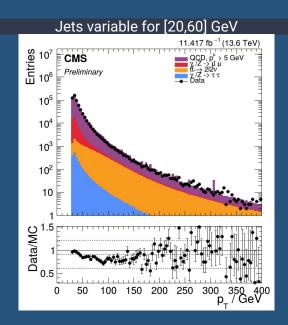


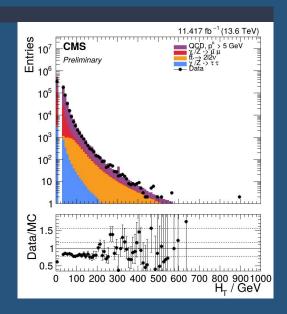




- The data/mc ratio is good
 - Still, the big issue is the very high background
- Things we considered doing:
 - Use hadronic activity H_m, DY events are supposed to be relatively clean of hadronic activity
 - Cuts on PFJet: $p_{\tau} > 30 \text{ GeV}$, $|\eta| < 2.5$

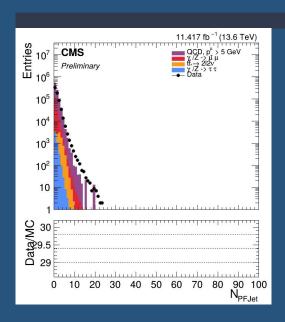


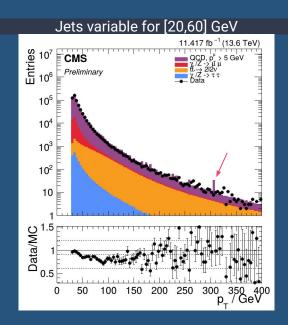




Things we considered doing:

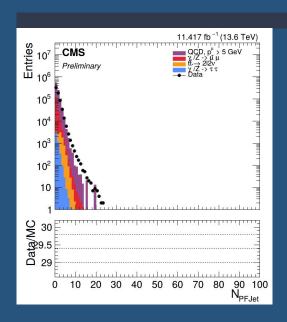
- Use hadronic activity H_T, DY events are supposed to be relatively clean of hadronic activity
- ightharpoonup Cuts on PFJet : p_T > 30 GeV, $|\eta|$ < 2.5

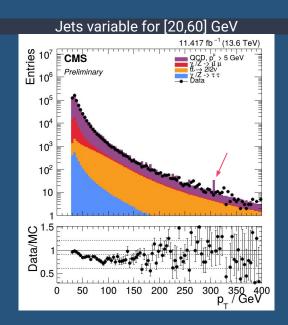


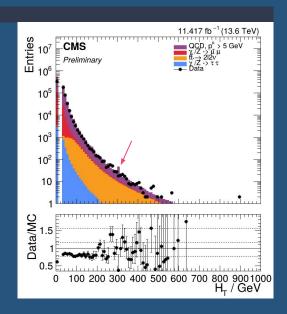


Things we considered doing :

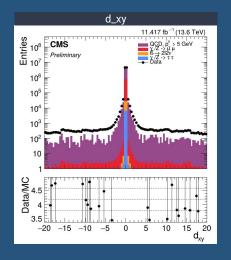
- \succ Use hadronic activity $\mathsf{H}_{\scriptscriptstyle\mathsf{T}}$, DY events are supposed to be relatively clean of hadronic activity
- > Cuts on PFJet : $p_T > 30$ GeV, $|\eta| < 2.5$

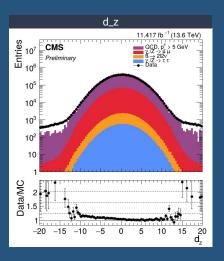


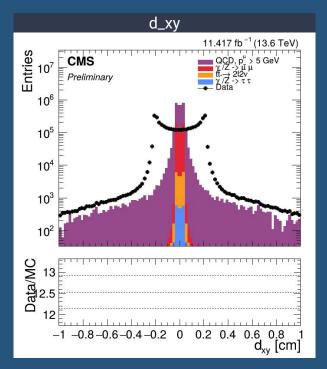




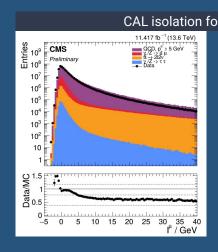
Things we considered doing :

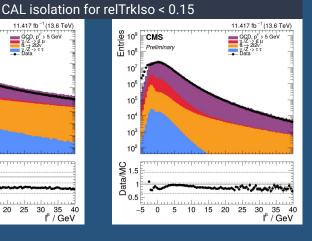

- Use hadronic activity H_T, DY events are supposed to be relatively clean of hadronic activity
- \triangleright Cuts on PFJet : $p_{\tau} > 30$ GeV, $|\eta| < 2.5$





- Impact parameter :
 - could restrain to a small interval from the PV
 - a loose selection is 0.2 cm in d_xy and 0.5 cm in d z
 - This could be also be put in a ScoutingMuonID similar to the PF tight ID


- Impact parameter :
 - could restrain to a small interval from the PV
 - a loose selection is 0.2 cm in d_xy and 0.5 cm in d_z
 - This could be also be put in a ScoutingMuonID similar to the PF tight
 ID
 - Cutting at 0.1 cm could help a lot
 - we could look even closer



- Impact parameter :
 - could restrain to a small interval from the PV
 - a loose selection is 0.2 cm in d_xy and 0.5 cm in d_z
 - This could be also be put in a ScoutingMuonID similar to the PF tight ID
- Can we trust QCD samples ?
 - Could run a validation of it
 - Same-sign region
 - fake estimation methods

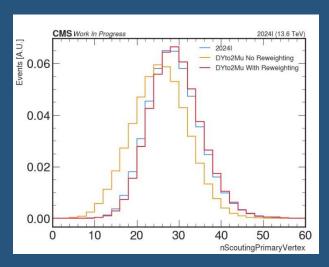
- Impact parameter :
 - could restrain to a small interval from the PV
 - a loose selection is 0.2 cm in d_xy and 0.5 cm in d_z
 - This could be also be put in a ScoutingMuonID similar to the PF tight
 ID
- Can we trust QCD samples ?
 - Could run a validation of it
 - Same-sign region
 - fake estimation methods

- Impact parameter :
 - could restrain to a small interval from the P\
 - a loose selection is 0.2 cm in d_xy and 0.5 cm in d_z
 - This could be also be put in a ScoutingMuonID similar to the PF tight
 ID
- Can we trust QCD samples?
 - Could run a validation of it
 - Same-sign region
 - fake estimation methods
- Expand isolation cone
 - Use a 0.8 cone and PFCandidates to compute track isolation
 - Could hit even harder
- Use some absolute cut for isolation in ECAL and HCAL

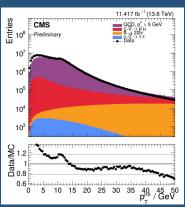
Conclusion

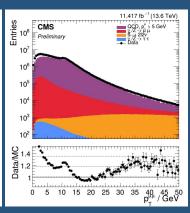
- Understanding of the Scouting format improved
 - What are the different collections and what they represent
 - In particular, ScoutingMuon has been searched extensively
- Good agreement between the Scouting dataset and the simulation
 - There are still some issues, but we have a good baseline
 - Still QCD should be better understood and the efficiency should be explained
- Last points is what will be the focus for coming future

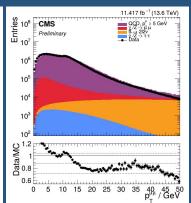

Conclusion

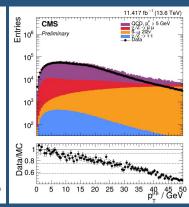

- Understanding of the Scouting format improved
 - What are the different collections and what they represent
 - In particular, ScoutingMuon has been searched extensively
- Good agreement between the Scouting dataset and the simulation
 - There are still some issues, but we have a good baseline
 - Still QCD should be better understood and the efficiency should be explained
 - Defining a ScoutingMuonID
- Last points is what will be the focus for coming future
- Something I have not discussed, low PU have not beer explored yet

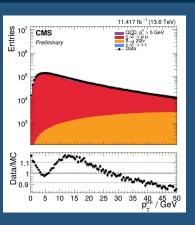
BACKUP

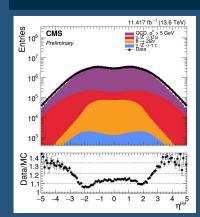

Run3 2024: HLT Scouting Comparison

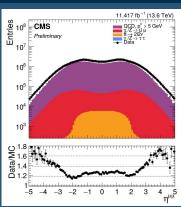

- 2 issues, actually the same as in 2022 :
 - Normalisation is off ~20%, but it is also seen by HLT Scouting group.
 - Simple normalisation to the Z peak to alleviate the issue
 - Z peak is not aligned in data and simulation, not seen by Scouting group
 - Difference with our case is they do the pileup reweighting and do not have the same MC
 - Triggers are also different, but it shouldn't make a big difference

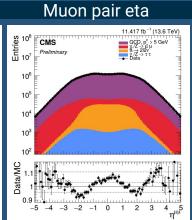


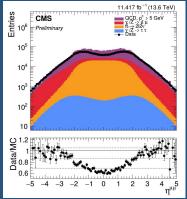


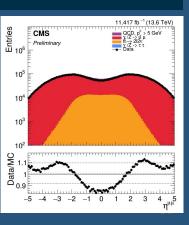

Muon pair p_T

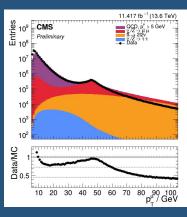


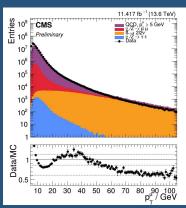


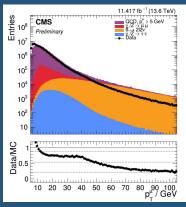


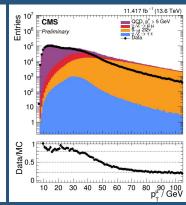


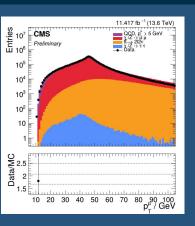


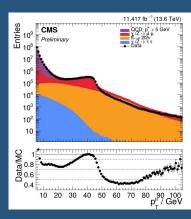


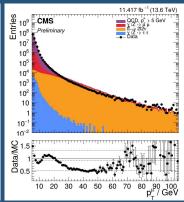


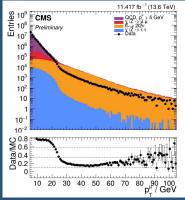


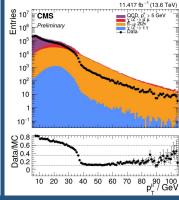


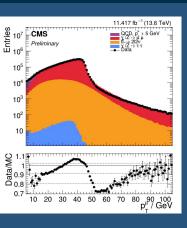

Leading muon p_{τ}

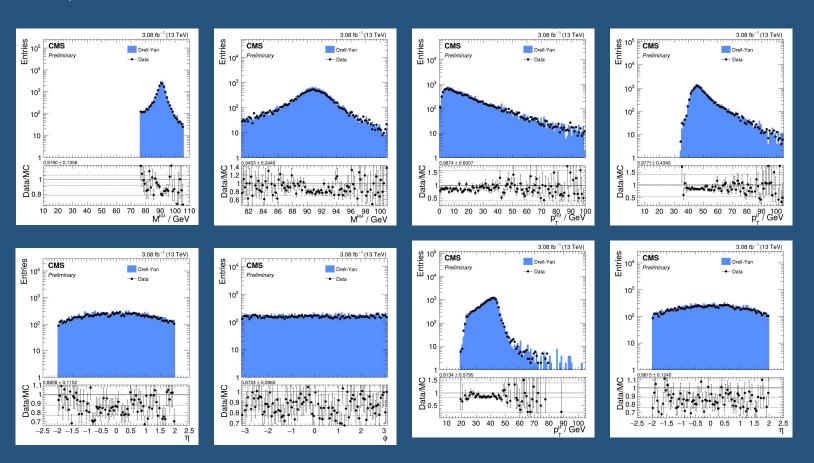








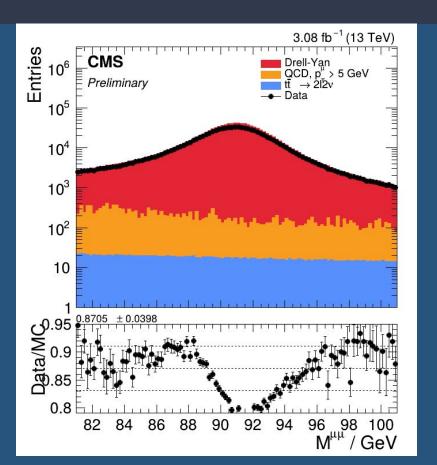

Subleading muon p_T



with p_T > 5.0 + correlation cuts MIIVsPt_I,s

Issue with 2022 Scouting Data

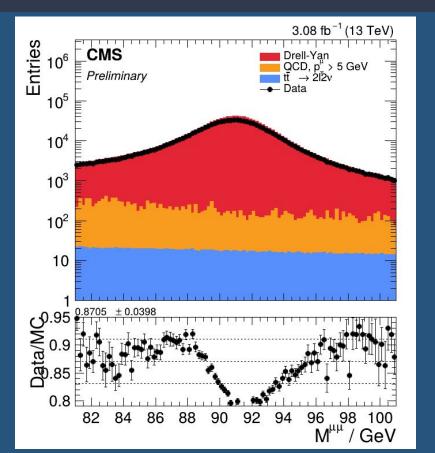
2 big issue with the previous look at the Z peak:

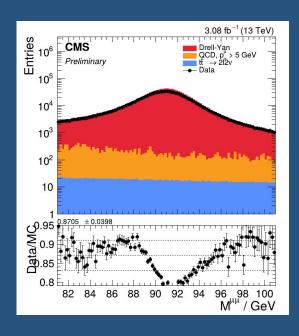

- 1. Normalisation was off ~15%
- 2. The Z peak was shifted by a few GeV

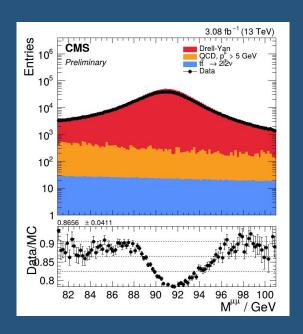
Easy check were performed:

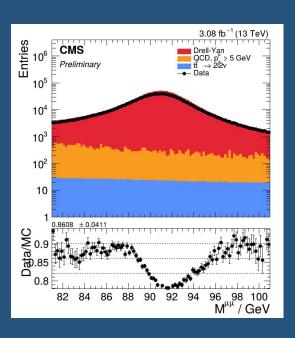
- Add ttbarr samples
- Restrict η -range
- Look at different triggers

Maybe the tool used to produce ScoutingNanoAOD format was the issue :

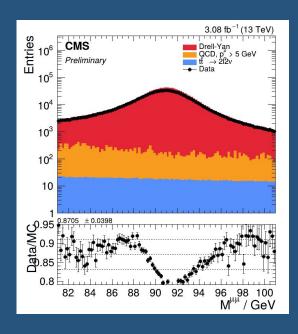

- Tool was mostly in development when I produced the samples
- I actually don't remember if the same version of CMSSW was used to produce data and MC...

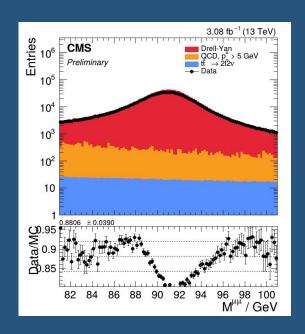

1. Z peak issue : previous result

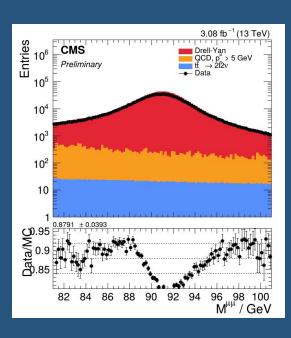

Cuts used :


- $|\eta| < 2.0 + p_{\tau} > 5.0 \text{ GeV}$
- 76 < Mll < 106 GeV
- $p_{T}^{\text{mu2}}/\text{MII} > 0.25 + p_{T}^{\text{mu1}}/\text{MII} > 0.45$
- HLT scouting path and L1 fired
 - DST Run3 PFScoutingPixelTracking
 - L1 DoubleMu4p5er2p0 SQ OS Mass Min7

1. Z peak issue : $|\eta|$ < 2.4

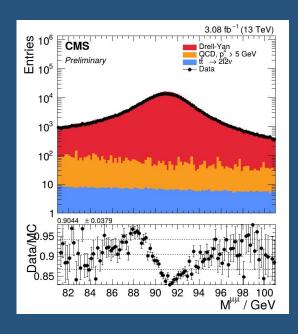


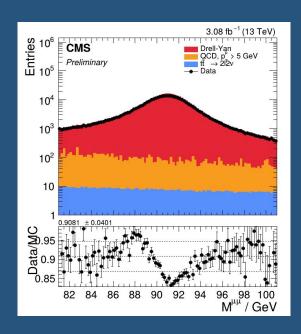

L1_DoubleMu4p5er2p0_OS_SQ_Mass_Min7

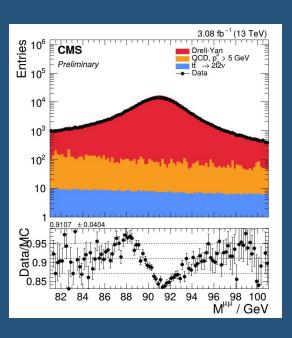

L1_DoubleMu8_SQ

L1_DoubleMu_15_7

1. Z peak issue : $|\eta|$ < 2.0

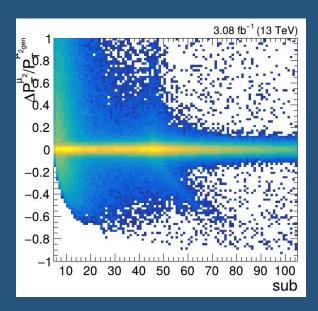


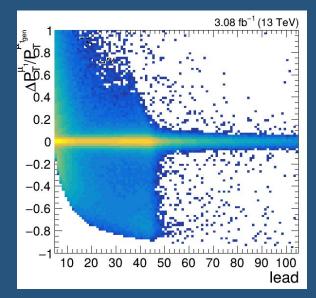

L1_DoubleMu4p5er2p0_OS_SQ_Mass_Min7

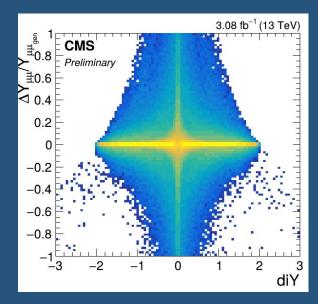

L1_DoubleMu8_SQ

L1_DoubleMu_15_7

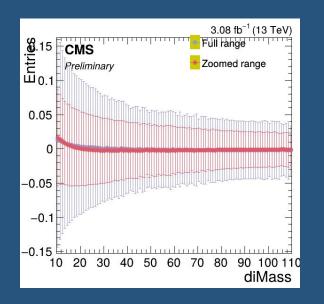
1. Z peak issue : $|\eta|$ < 0.9

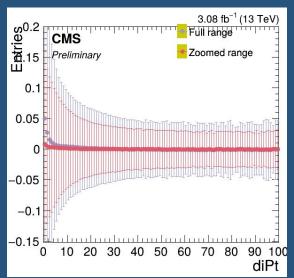

L1_DoubleMu4p5er2p0_OS_SQ_Mass_Min7

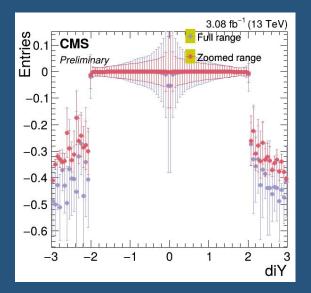

L1_DoubleMu8_SQ

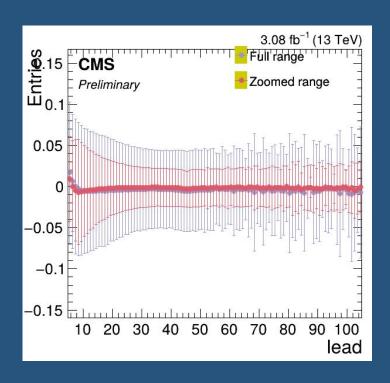

L1_DoubleMu_15_7

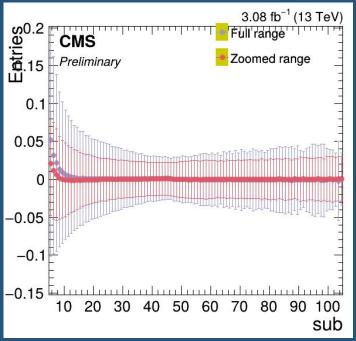
2. Resolution matter: Relative-difference


- relative difference : difference between gen-level and rec-level divided by gen-level
 - Now looks fine for leadin and trailing pt and the comtation was corrected for Y






2. Resolution matter: resolution distribution



2. Resolution matter: resolution distribution

