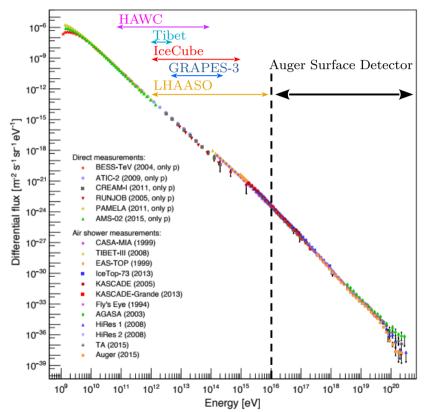


Observation of the Shadows of the Moon and Sun Using the Pierre Auger Observatory at an Average Energy of $7 \times 10^{17} \text{ eV}$


Katarína Šimková^{1,2} for the Pierre Auger Collaboration

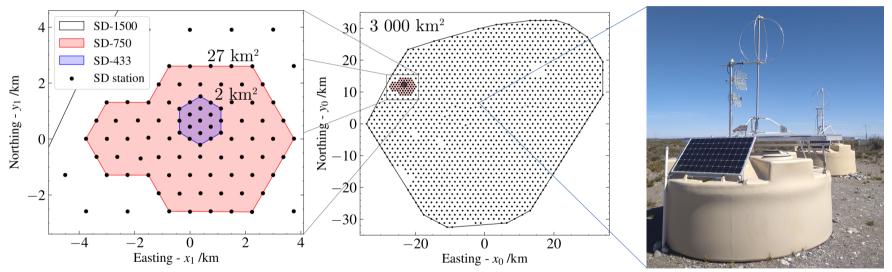
¹ Vrije Universiteit Brussel, ² Université Libre de Bruxelles

CosPa Meeting October 2025


Can we see the lunar and solar shadows above 10^{16} eV?

Cosmic rays are blocked by the Moon and the Sun

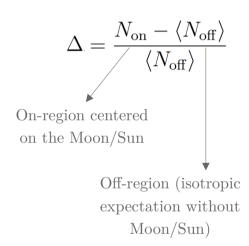
Observations of the shadows of the Moon and of the Sun exist up to 10^{16} eV to verify pointing and resolution of astroparticle observatories

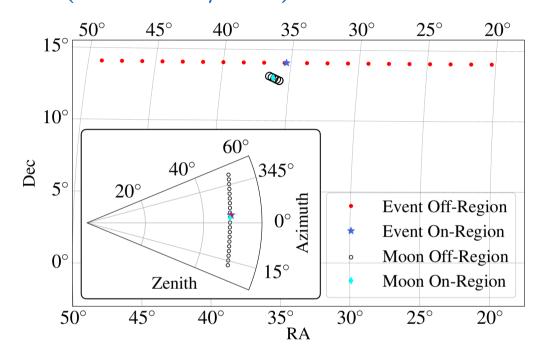

Challenge at the highest energies: Low statistics

 $T.\ L.\ Fehler.\ Hybrid\ Search\ for\ Photons\ with\ the\ Low-Energy\ Extensions\ of\ the\ Pierre\ Auger\ Observatory.\ https://www.hep.physik.uni-siegen.de/pubs/master/fehler-master.pdf$

The Surface Detector arrays of the Pierre Auger Observatory

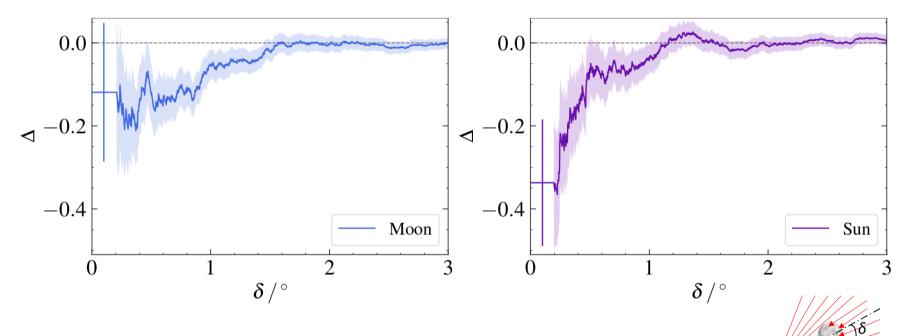
3 Arrays placed on interlaced triangular grids in Malargüe, Argentina Start of data taking in 2004, AugerPrime upgrade installation in 2022 - 2024



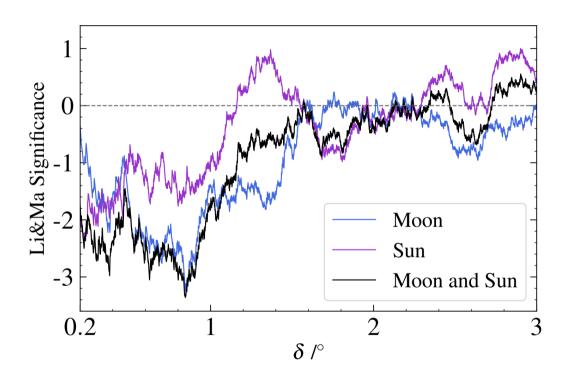

A. Aab et al. (Pierre Auger Collaboration) NIM A 798 (2015)

>18 000 events within 5° of both the Moon and the Sun

Expected isotropic events (no Moon/Sun)


The relative deficit of events:

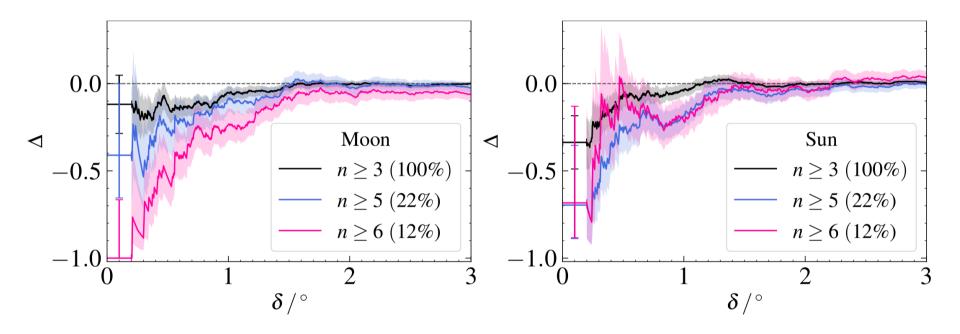
Off-Regions: Shuffling the time of the event within $\pm 1h$ for the Moon (± 30 min for the Sun)


Measured deficit due to the Moon and the Sun

 δ - Angular distance between the event and the celestial body in local coordinates Isotropic background consistent with on-region at large δ

Correct pointing of the Observatory confirmed

Li&Ma significance of the deficits

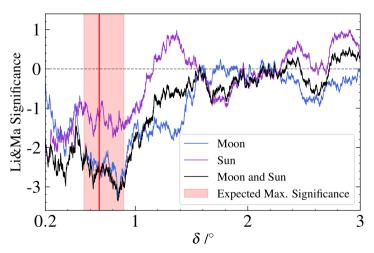

Maximum significance:

Moon: 3.3σ at 0.85°

Sun: 2.4σ at 0.23°

Combined: 3.4σ at 0.85°

Dependence on the multiplicity of events


Decrease of Δ with increasing multiplicity $(n) \to \text{resolution}$ is better for higher multiplicity

From deficit to the effective angular resolution

Likelihood: Shadowed events (disk) smeared by a 2-D symmetric Gaussian with its resolution a multiple of the effective angular resolution of the Observatory σ_{68} is a combination of different event resolutions

Unbinned maximum likelihood fit of the combined shadows: $\sigma_{68} = (0.6^{+0.2}_{-0.1})^{\circ}$

Significance using Gaussian approximation: 3σ $\left(N_{\sigma} = \sqrt{2\left[\log \mathcal{L}(\sigma_{68, \text{best}}) - \log \mathcal{L}(\sigma_{68} = 15^{\circ})\right]}\right)$

Based on σ_{68} from the fit, the maximum

significance is expected at: $\delta_0 = (0.7^{+0.2}_{-0.1})^{\circ}$

The number of shadowed events at δ_0 :

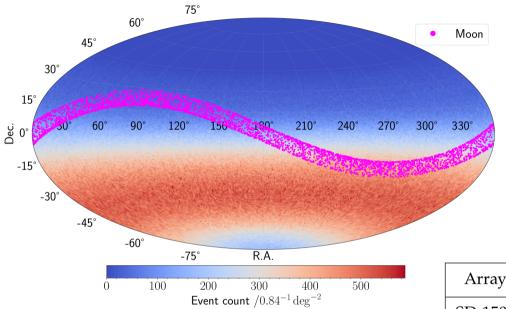
Moon: 43 ± 17

Sun: 21±18

Conclusions

In 20 years of continuous operation, we recorded more than 10 million high-quality events above 10^{16} eV.

We observe the shadows of the Moon and the Sun with a significance of 3σ based on the likelihood and a maximum Li&Ma significance of 3.4 σ .

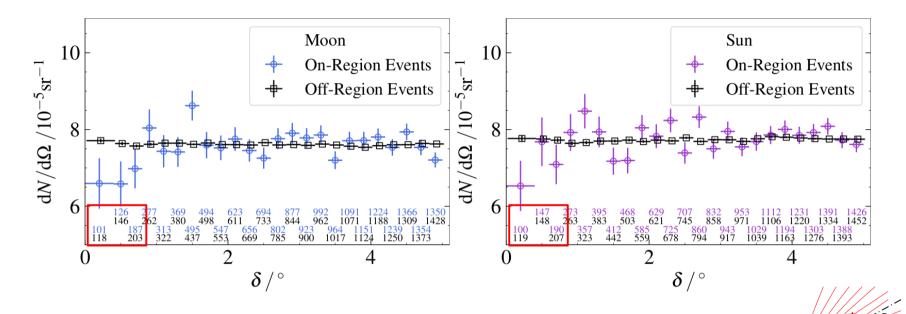

The absolute pointing of the Observatory is confirmed and the measured effective angular resolution is $\sigma_{68} = (0.6^{+0.2}_{-0.1})^{\circ}$.

You shall not pass!!

Backup

10.6 Million events during 20 years of continuous operation

Uniform exposure in right ascension


18 215 Events within 5° of the Moon

18 650 Events within 5° of the Sun

Angular resolution of $\sim 1^{\circ}$

Array	Million Events	Fraction /%	Time Period
SD-1500	3.1	30	Jan 04 - Dec 22
SD-750	6.8	64	Jan 08 - Feb 23
SD-433	0.7	6	Jan 18 - Dec 21
Total	10.6		

Measured deficit due to the Moon and the Sun

 δ - Angular distance between the event and the celestial body in local coordinates Isotropic background flat and consistent with on-region at large δ

From deficit to the effective angular resolution

Number of events in annulus at distance δ from the Moon center [CASA PhysRevd.49.1171 (1994)]

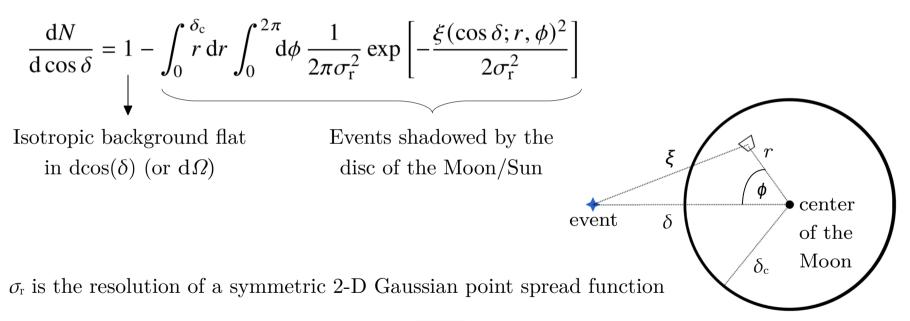
$$\frac{\mathrm{d}N}{\mathrm{d}\cos\delta} = 1 - \int_0^{\delta_{\mathrm{c}}} r \,\mathrm{d}r \int_0^{2\pi} \mathrm{d}\phi \,\mathcal{G}(\sigma_{68}, \delta, r, \phi)$$
 2-D symmetric Gaussian point spread function
$$\sigma_{68} \text{ the resolution (scaled by 1.51)}$$

Isotropic background

flat in $d\cos(\delta)$ (or $d\Omega$)

Events shadowed by a disc with angular radius δ_c

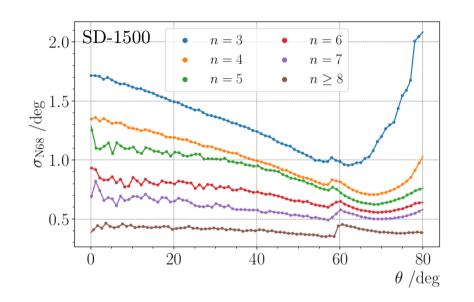
(integrating in polar coordinates r, ϕ)

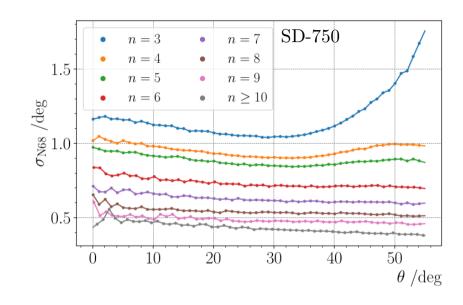

The effective angular resolution σ_{68} is a combination of different resolutions

Unbinned maximum likelihood fit of the combined shadows: $\sigma_{68} = (0.6^{+0.2}_{-0.1})^{\circ}$

Significance using Gaussian approximation:
$$3\sigma$$
 $\left(N_{\sigma} = \sqrt{2\left[\log \mathcal{L}(\sigma_{68,\text{best}}) - \log \mathcal{L}(\sigma_{68} = 15^{\circ})\right]}\right)$

From deficit to the effective angular resolution


Number of events in annulus at distance δ from the Moon center:



Resolution containing 68% events: $\sigma_{68} = \sqrt{2.278} \, \sigma_r$

CASA PhysRevD.49.1171 (1994)

Angular resolution based on the event reconstruction

Medians of the angular resolution of individual events binned in multiplicity n and zenith angle θ (the resolution is scaled to 68% probability of a 2-D Gaussian)

D. de Oliveira Franco for the Pierre Auger Collaboration, PoS ICRC2023, 246 (2023)