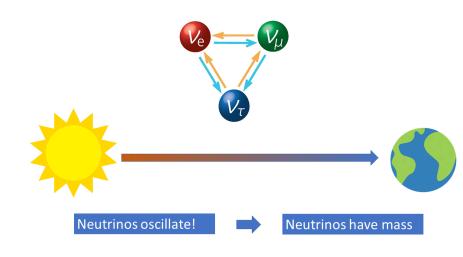

Probing Solar Heavy Neutrinos with Heliospheric Electrons

COSPA, October 2025

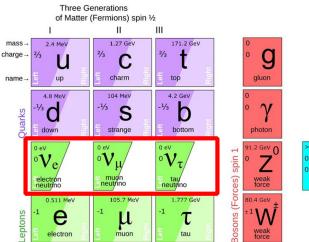
Valentin Weber

Université Catholique de Louvain


Intro on HNLs i

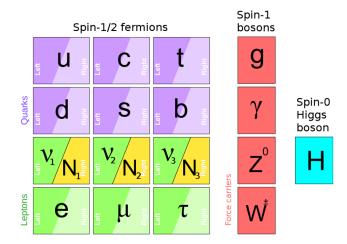

spin 0

Intro on HNLs ii

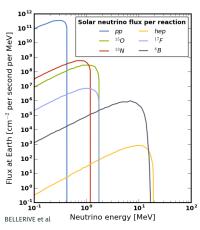


2

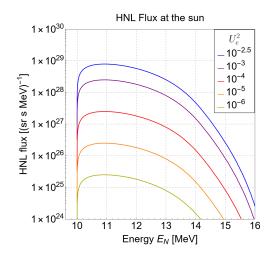
Intro on HNLs iii



Intro on HNLs iv

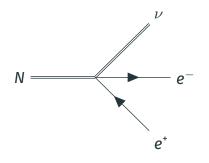


Intro on HNLs v



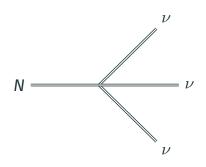
Solar neutrinos i

Solar neutrino spectra



Heavy Neutral Lepton flux i

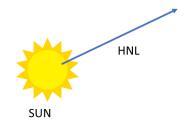
$$\begin{split} &\frac{d\varphi_{HNL}}{dE_N}(E_N,R=o)\\ &=|U_e|^2\sqrt{1-\left(\frac{M_N}{E_N}\right)^2}\varphi_\nu(E_N) \end{split}$$


HNL decay

$$\Gamma_{N
ightarrow
u e^+e^-}pprox rac{G_F^2M_N^5}{192\pi^3}|U_e|^2$$

 $N \rightarrow \nu e^+ e^-$

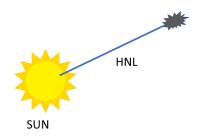
Opens at : $M_N = 1.02 MeV$



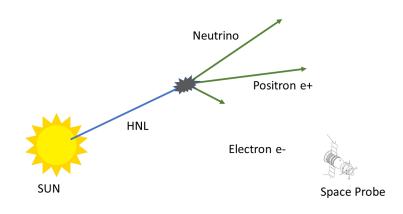
$$N o 3 \nu$$

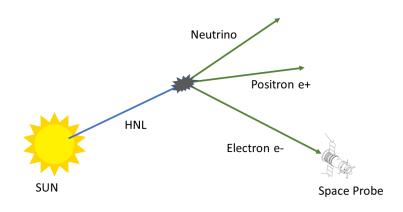
$$\Gamma_{N\to 3\nu} = \frac{G_F^2 M_N^5}{96\pi^3} |U_e|^2$$

Opens at : $M_N \approx oMeV$

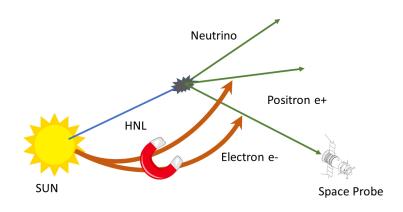

HNL Production i

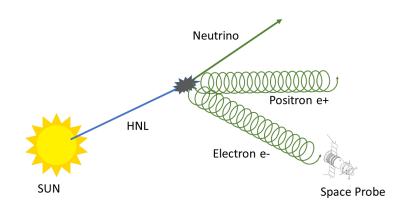
Space Probe

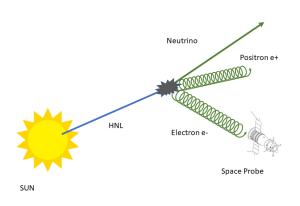

HNL Production ii

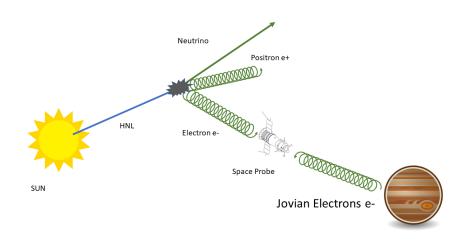


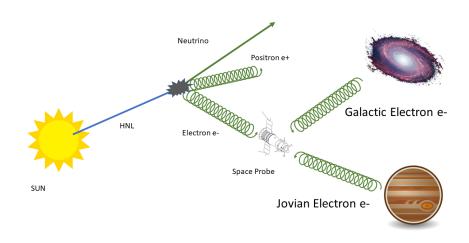
Space Probe

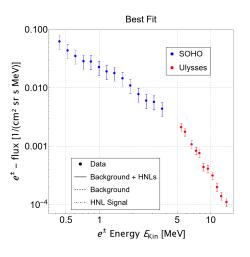

HNL Production iii


HNL Production iv

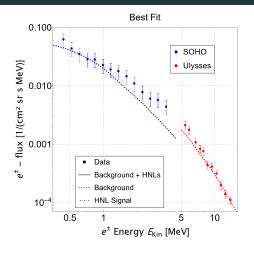

Electron propagation i


Electron propagation ii

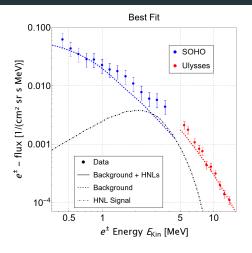

Background electrons i


Background electrons ii

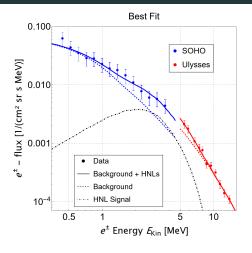
Background electrons iii



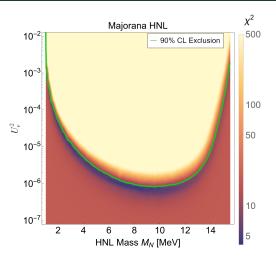
Putting everything together i


(M
$$_N \simeq$$
 8.2 MeV, $U_e^2 \simeq$ 7.9 $imes$ 10 $^{-7}$)

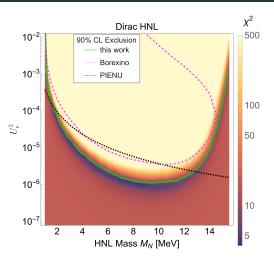
Putting everything together ii


(M_N
$$\simeq$$
 8.2 MeV, $U_e^2 \simeq$ 7.9 $imes$ 10 $^{-7}$)

Putting everything together iii


(M_N
$$\simeq$$
 8.2 MeV, $U_e^2 \simeq$ 7.9 $imes$ 10 $^{-7}$)

Putting everything together iv



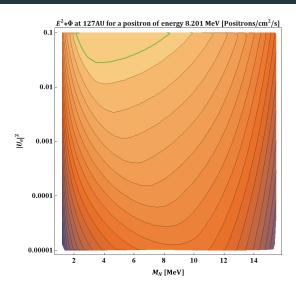
(M_N
$$\simeq$$
 8.2 MeV, $U_e^2 \simeq$ 7.9 $imes$ 10 $^{-7}$)

Putting everything together v

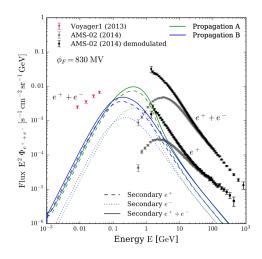
Putting everything together vi

Conclusion i

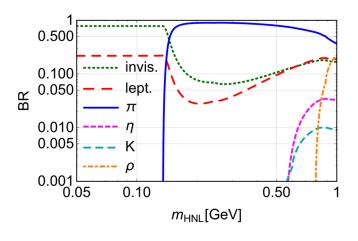
- · Solar neutrinos can be used to probe HNLs
- The decay $N o e^+ e^-
 u$ is studied
- · Added Jovian background
- · Constraints through Ulysses and SOHO

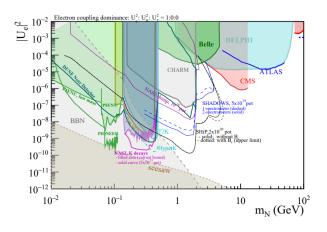

Conclusion ii

More infos in our paper: ArXiv 2412.14752

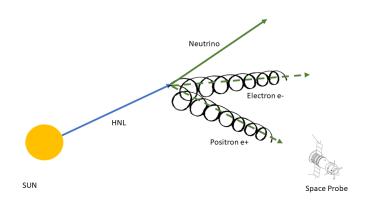


Thanks for listening to my talk!


Additional slides i


Additional slides ii

Additional slides iii


Additional slides iv

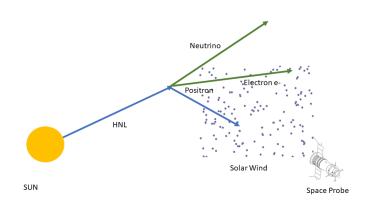
Additional slides v

Channel	Opens at	Relevant from	Relevant to	Max BR	Reference
	[MeV]	[MeV]	[MeV]	[%]	in text
$N \rightarrow \nu_{\alpha}\nu_{\beta}\bar{\nu}_{\beta}$	$\sum m_{\nu} \approx 0$	$\sum m_{\nu} \approx 0$	_	100	(3.5)
$N \rightarrow \nu_{\alpha} e^{+}e^{-}$	1.02	1.29	_	21.8	(3.4)
$N \rightarrow \nu_{\alpha} \pi^{0}$	135	136	3630	57.3	(3.7)
$N \rightarrow e^-\pi^+$	140	141	3000	33.5	(3.6)
$N \rightarrow \mu^- \pi^+$	245	246	3000	19.7	(3.6)
$N \rightarrow e^- \nu_\mu \mu^+$	106	315	_	5.15	(3.1)
$N \rightarrow \mu^- \nu_e e^+$	106	315	_	5.15	(3.1)
$N \rightarrow \nu_{\alpha} \mu^{+} \mu^{-}$	211	441	_	4.21	(3.4)
$N \rightarrow \nu_{\alpha} \eta$	548	641	2330	3.50	(3.7)
$N \rightarrow e^-\pi^+\pi^0$	275	666	4550	10.4	(B.42)
$N \rightarrow \nu_{\alpha} \pi^{+} \pi^{-}$	279	750	3300	4.81	(B.43)
$N \rightarrow \mu^- \pi^+ \pi^0$	380	885	4600	10.2	(B.42)
$N \rightarrow \nu_{\alpha}\omega$	783	997	1730	1.40	(3.9)
$N \rightarrow \nu_{\alpha}(3\pi)^{0}$	$\gtrsim 405$	≥ 1000	?	?	No
$N \rightarrow e^{-}(3\pi)^{+}$	≥ 410	≥ 1000	?	?	No
$N \rightarrow \nu_{\alpha} \eta'$	958	1290	2400	1.86	(3.7)

Additional slides vi

Additional slides vii

Additional slides viii


The rate of energy lost during this process is given by [James J. Condon and Scott M. Ransom]:

$$P = -\frac{dE}{dt} = \frac{4}{3}\sigma_T \beta^2 \gamma^2 c U_B$$

with σ_T the Thompson cross-section and U_B the magnetic energy density $U_B = \frac{B^2}{2\mu_B}$.

- · Energy loss is small enough to be neglected
- · Any directional information gets lost!

Additional slides ix

Additional slides x

The mean free path is given by [Kuznetsova et al. 0911.0118]

$$L = \frac{1}{\langle \sigma v_{\rm rel} \rangle n_{\rm SW}}$$

 $\it L$ being the mean free path and $\it n_e$ being the solar wind particle density.

Additional slides xi

We need the following formula:

$$\langle \sigma V_{\rm rel} \rangle n_{\rm SW} = \frac{\int d^3 p_e \int d^3 p_{\rm SW} \sigma_{ee} V_{\rm rel} f_e(\vec{p}_e) f_{\rm SW}(\vec{p}_{\rm SW})}{\int d^3 p_e f_e(\vec{p}_e)} \tag{1}$$

- $f_{SW}(p_{SW}) = e^{-E_{SW}/T}$ being a Boltzmann distribution (Solar wind particles (electrons))
- $f_{e^+}(p_{e^+})=\frac{\delta^3(\vec{p}_{e^+}-\vec{k})}{V}$ electron from a HNL decay and V being a test volume

Additional slides xii

We have that,

$$\langle \sigma V_{\rm rel} \rangle n_e = g_1 \frac{1}{(2\pi)^2} \frac{1}{4k_0} \frac{1}{2k} \int_{4m_e^2}^{\infty} ds \sigma(s) \lambda^{1/2}(s) T(e^{-E_-/T} - e^{-E_+/T})$$

with
$$E_{\pm} = \sqrt{\frac{\left(k(s-2m^2)\pm k_0\sqrt{s(s-4m^2)}\right)^2}{4m^4}} + m^2$$
, with k^{μ} the external momentum, $\lambda^{1/2}(s) = \sqrt{s}\sqrt{s-4m_e^2}$.

Additional slides xiii

Thermal Möller/Bhabha cross-section for low temperatures $T < m_e$ [Kuznetsova et al. 1109.3546],

$$\sigma(s) = \frac{64\pi\alpha^2}{(s - 4m_e^2)^2} \frac{m_e^4}{m_\gamma^2}$$

with
$$m_{\gamma}$$
 = $8\pi\alpha\frac{n_e}{m_e}$.

Electron propagation i

Do the Electrons reach us all the way from the decay to the detector? Two main ways on how the particles won't reach the detector:

- · Loss of energy during gyromagnetic radiation
- Absorption/ collision with solar wind particles