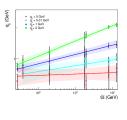
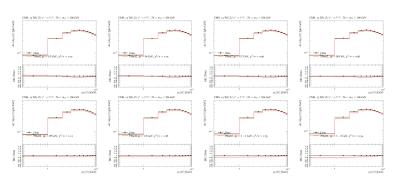

Motivation


```
Where does the slope for PBset2 comes from?
Eur.Phys.J.C 84 (2024) 2, 154:
CMS 13 TeV: qs = 1.04 GeV
Tevatron: qs \approx 1 but big error
```

ATLAS 8 TeV: $qs \approx 0.8-1$ depending on mass window

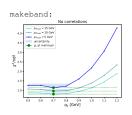
Other measurements (E605, Phenix, LHCb, CMS 8 TeV) $qs \approx 0.7$ GeV.

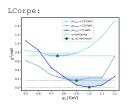
We never focused much on the fact that at 13 TeV CMS gives qs=1 and LHCb qs=0.7 GeV

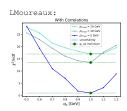


Our official explanation:

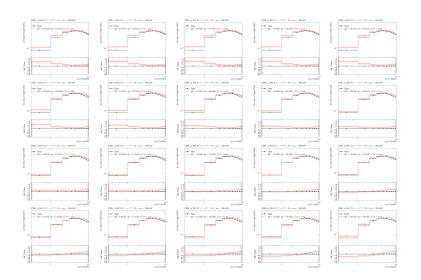
- slope comes from soft gluons treatment (← no doubt about it)
- \blacksquare Eur.Phys.J.C 85 (2025) 3, 278: q0 = 0.01 GeV gives zM still too far away from 1, q0 = 0.000001 gives flat curve (\leftarrow doubts here)

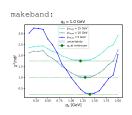

→ this doesn't explain the difference between CMS and LHCb Recent studies suggest: the reason is the method chosen to compute $\chi 2$

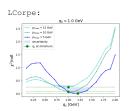

PBset2, CMS 13 TeV,2nd mass window, ptMax 10

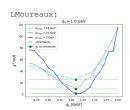


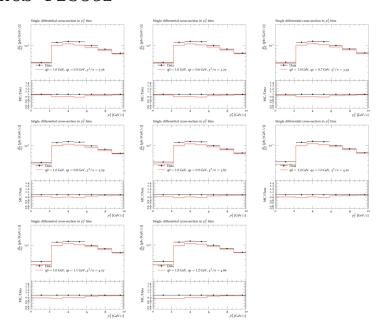
(Hannes LHE files and TMDs)

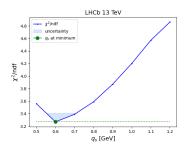

PBset2, CMS 13 TeV, 2nd mass window, comparison of different codes

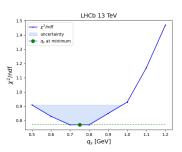





Dyn zmax, CMS 13 TeV,2nd mass window, ptMax 10


Dyn zmax, CMS 13 TeV,2nd mass window, comparison of different codes





LHCb PBset2

makeband vs LCorpe

