Master Thesis on JUNO

Status Report 01

Téo Bruffaerts

Université Libre de Bruxelles - IIHE

October 22, 2025

Outline

Introduction

My background Purpose of the Master Thesis

Atmospheric muon background

Previous work

Atmospherical Neutrinos

Simulations
Type of interactions
Charge Spectrum
First Hit Time

Next steps

Introduction: My background

- ▶ Bachelor and Master in Physics at ULB
- Mostly particle and mathematical physics courses
- Research internships at IIHE about JUNO (2023 and 2025)

Introduction 1/10

Introduction: Purpose of the Master Thesis

Title: Atmospheric neutrino signal - Analysis of the first data from the JUNO experiment (provisional)

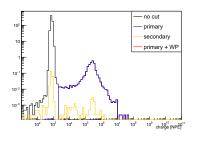
1. First Part

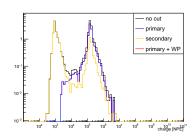
- Overview of the JUNO experiment
- Simulation data analysis for atmospheric neutrinos

2. Second Part

- JUNO first data analysis in its final configuration (scintillator)
- ▶ Identifying and characterizing atmospheric neutrino events
- Selection cuts and reconstruction algorithms optimized and validated with simulations

Introduction 2/10


Atmospheric muon background : Previous work


For water in the detector:

- 1. Offline Data Simulations
 - Monte Carlo simulation for cosmic ray muons
- 2. Real Data with water
 - Data taken in early 2025
 - ▶ TQ level (COTI reconstruction at software level)

Atmospheric muon background : Previous work

Atmospheric muon background :

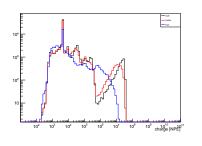
- ► Atmospheric muon **charge spectrum** for water data in JUNO
- Comparison between MC simulations and TQ data

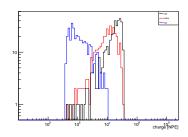
Atmospherical Neutrinos: Simulations

Data set

- ▶ GENIE neutrino MC simulations for atmospheric neutrinos (TQ level)
- Energy distribution up to 20 GeV
- $ightharpoonup 5 imes 10^5$ events simulated $(
 u_e +
 u_\mu)$
- Propagation of secondary particles in liquid scintillator with GEANT4

Event selection


 Based on atmospheric muon background study (parameters to be optimized)


Atmospherical Neutrinos: Type of interactions

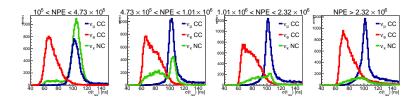
Different types of neutrino detected:

- ▶ Charged Current (CC) : ν_e and ν_μ
 - W[±] exchanges with matter
 - Produces a charged lepton : $\nu_{\ell} + N \rightarrow \ell^{-} + X$
 - Lepton flavour is preserved
- ▶ Neutral Current (NC) : ν_{x}
 - Z⁰ exchanges with matter
 - ▶ Neutrino remains in final state: $\nu_{\ell} + N \rightarrow \nu_{\ell} + X$
 - No charged lepton produced, harder to detect

Atmospherical Neutrinos: Charge Spectrum

- Charge spectrum for atmospheric neutrino events before (left) and after (right) selection cuts (secondary particles and background noise removed)
- NC events lower in charge : ν_e+ atom $\rightarrow \nu_e+$ atom* (energy stays in the ν_e)

Atmospherical Neutrinos 7/10


Atmospherical Neutrinos: First Hit Time

- ► High precision measurement of the **photon arrival time** on the PMTs
- Gaussian smearing applied on the true MC hit time (3" PMTs)
- Residual time, t_{res}, to be aligned with a realistic DAQ window:

$$t_{\text{res}}^{i} = t_{\text{hit}}^{i} - \left(\frac{n.R_{V}^{i}}{c}\right)$$

- **FHT** $\equiv \sigma(t_{\text{res}})$ defined by the RMS of t_{res}
- ▶ Discrimination variable for ν_e , ν_μ and ν_x interactions

Atmospherical Neutrinos: First Hit Time

Graph taken from *Atmospheric neutrino spectrum reconstruction with JUNO*, Oct. 2019 (ROOT stopped running on my computer...)

- ► **FHT distribution** for CC and NC interactions
- Separated by deposited charge (NPE)
- Variable used for event selection in order to discriminate neutrino types

Next steps

- Optimization of selection cuts (including FHT)
- ► **Neuronal Network** implementation ??
- State of the art (JUNO experiment and atmospheric neutrino analyses/parameters)

Next steps 10/10