Search for a Strange Phase in Beautiful Oscillations

Tristan du Pree (CP3) at IIHE(VUB/ULB), Brussels 20 January 2011

Simplistic: "direct" vs "indirect"

Direct: CMS

 Collide as hard as possible to produce yet undiscovered particle

Indirect: LHCb

 Make many known particles (B_d, B_s,...) and study behavior
Off-shell BSM

Why B-physics?

- CP violation
 - Baryogenesis
 - Too small in SM
 - BSM CP-violation needed
- Complementary to direct searches
 - Off-shell contributions
 - Measure couplings
- Model-independent searches
 - Overconstraining CKM model

B-physics

Study CKM-matrix

CKM matrix constraints

$$V_{CKM} \approx \begin{pmatrix} V_{ud} & V_{us} & |V_{ub}| e^{-i\gamma} \\ V_{cd} & V_{cs} & V_{cb} \\ |V_{td}| e^{-i\beta} & -|V_{ts}| e^{i\beta_s} & V_{tb} \end{pmatrix}$$

Parameter constraints

- Unitarity: $V_{CKM}V_{CKM}^{\dagger} = 1$
- 4 free parameters
 - One complex phase
 - Complex phase: CP violation
- Perform different measurements to overconstrain CKM matrix

Current status

- SM CKM mechanism explanation of CP violation
 - No significant inconsistencies
 - Uncertainty γ , φ_s large
- Some interesting deviations
 - β^{eff} (penguins)
 - $|V_{ub}|(B^+ \rightarrow \tau v) \text{ vs } \beta$
 - "Kπ puzzle"

Overview

LHCb detector Time-dependent CP-asymmetry in $B_s \rightarrow J/\psi \varphi$ • Analysis: selection & fit methods (MC) Other decay channels Status (data) & expectation LHCb

ALICE

LHCb

- Forward arm spectrometer
- ~20m x 10m x 10m
- L = (2-5) x 10³² cm⁻² s⁻¹
- $\sigma_{\rm bb} \sim 500 \ \mu b \ (10\% \ {\rm B_s})$
- '1 year' = 2.0 fb⁻¹
- > Produce O(10¹¹) B_s 's per year
- > Reconstruct O(100k) $B_s \rightarrow J/\psi \varphi$ per year

Advantages

- Number of B_s's
- Proper time resolution
- Mass resolution
- Particle identification

Some cool plots here

The B_s mixing phase β_s Equivalent of β in B_d system

Time dependent CP violaton

- Time-dependent decay rate *B* and anti-*B* differ
 - Measure amplitude
 - Amplitude SM expectation: sin(φ_s)~0
 - Frequency: $sin(\Delta m_s t)$

>To measure asymmetry, measure lifetime accurately

CP-asymmetry

- Goal: measure CP-asymmetry
 - Frequency: $sin(\Delta m_s t)$
- Proper time resolution important
 - $B_s \rightarrow J/\psi \varphi$ at LHCb: ~40 fs

- SM amplitude: $sin(\varphi_s) \sim 0$
- Amplitude \neq 0? \rightarrow BSM contributions!

Background rate

- Most background prompt background
 - Combinations of $K^+K^-\mu^+\mu^-$ produced at *pp*-interaction point
- Events around t=0 contribute to rate, not to sensivity
 - Rate >1 Hz
- > How to get rid of these events while understanding the resolution/efficiency?
 - > Time resolution is determined from prompt peak...

Previous solution

- Many cuts
 - > Many systematic effects
 - Sub-optimal
- Trigger rate not flexible

Pd (up) & prescaled (down)

Sc

Prescaled & detached

- Detached sample
 - Cut on lifetime
 - Online
 - Removes prompt background
 - Almost pure signal
- Prescaled sample
 - Mostly background
 - Control sample
 - Proper time resolution
 - Efficiency turn-on curve
 - Don't need all events, so can be prescaled
- Adjusting prescale factor and lifetime-cut
 - Flexibly adjust trigger rate!
 - No loss of sensitvity, no extra systematic effects!!!

Selection optimization

Now we can use detached sample to optimize selection > Almost pure signal sample!

Goal optimization:

- Maximize sensitivity to φ_s
- Simple selection
 - Few orthogonal cuts
- Understandable selection
 - Optimize by hand
- Ignore cuts if unnecessary/unwanted

Optimization example

- Maximize figure of merit FOM ~ $1/\sigma(\varphi_s)$ ~ $1/\sigma(S)$
- Do this for few, mostly orthogonal variables
- Ignore unnecessary/unwanted cuts

Selection criteria

Variable	Selection criterium	
X ² (B _s vertex)	< 16	
X ² (B _s lifetime fit)	< 9	"Deel" colection
$p_T(\phi)$	> 1100 MeV/c	5 cuts
ΔlogL(K/π)	> -5	0 0010
ΔlogL(μ/π)	> -5	
Variable	Selection criterium	
Variable Μ(φ)	Selection criterium Wide enough	No limit on aidaband
Variable M(φ) M(J/ψ)	Selection criterium Wide enough Wide enough	No limit on sideband study
Variable M(φ) M(J/ψ) M(B _s)	Selection criterium Wide enough Wide enough Wide enough	No limit on sideband study
Variable $M(\phi)$ $M(J/\psi)$ $M(B_s)$ Prescaled factor (f_{pre})	Selection criterium Wide enough Wide enough Wide enough Adjustable	No limit on sideband study

>170k $B_s \rightarrow J/\psi \varphi$ events per 2 fb⁻¹

Sensitivity improvement of ~20% compared to existing selection!

What else?

Final state not a pure CP-eigenstate

i	$f_i(\cos\theta,\cos\psi,\phi)$	$A_i(t \lambda)$	$A_i(t \lambda)$
1	$2\cos^2\psi[1-\sin^2\theta\cos^2\phi]$	$ A_0(t) ^2$	$ \bar{A}_0(t) ^2$
2	$\sin^2\psi[1-\sin^2 heta\sin^2\phi]$	$ A_{\parallel}(t) ^2$	$ \bar{A}_{\ }(t) ^{2}$
3	$\sin^2\psi\sin^2 heta$	$ A_{\perp}(t) ^2$	$ \bar{A}_{\perp}(t) ^2$
4	$-\sin^2\psi\sin2\theta\sin\phi$	$\mathrm{Im}(A^*_{ }(t)A_{\perp}(t))$	$\operatorname{Im}(\bar{A}_{\parallel}^{*}(t)\bar{A}_{\perp}(t))$
5	$\frac{1}{\sqrt{2}}\sin 2\psi \sin^2 \theta \sin 2\phi$	$\operatorname{Re}(A^*_{\mathbb{H}}(t)A_0(t))$	$\operatorname{Re}(\bar{A}^*_{\parallel}(t)\bar{A}_0(t))$
6	$\frac{1}{\sqrt{2}}\sin 2\psi \sin 2\theta \cos \phi$	$\mathrm{Im}(A_0^*(t)A_{\perp}(t))$	$\operatorname{Im}(\bar{A}_{0}^{*}(t)\bar{A}_{\perp}(t))$

$$\begin{aligned} A_{1} &= |A_{0}(0)|^{2} e^{-\Gamma_{s}t} [\cosh(\Delta\Gamma_{s}t/2) - \cos\phi_{s}\sinh(\Delta\Gamma_{s}t/2) + \sin\phi_{s}\sin(\Delta m_{s}t)] \\ A_{2} &= |A_{\parallel}(0)|^{2} e^{-\Gamma_{s}t} [\cosh(\Delta\Gamma_{s}t/2) - \cos\phi_{s}\sinh(\Delta\Gamma_{s}t/2) + \sin\phi_{s}\sin(\Delta m_{s}t)] \\ A_{3} &= |A_{\perp}(0)|^{2} e^{-\Gamma_{s}t} [\cosh(\Delta\Gamma_{s}t/2) + \cos\phi_{s}\sinh(\Delta\Gamma_{s}t/2) - \sin\phi_{s}\sin(\Delta m_{s}t)] \\ A_{4} &= |A_{\parallel}(0)||A_{\perp}(0)|e^{-\Gamma_{s}t} [\sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m_{s}t) - \cos\phi_{s}\cos(\delta_{\perp} - \delta_{\parallel})\sin(\Delta\Gamma_{s}t/2)] \\ A_{5} &= |A_{\parallel}(0)||A_{0}(0)|\cos(\delta_{\parallel} - \delta_{0}) \\ &\times e^{-\Gamma_{s}t} [\cosh(\Delta\Gamma_{s}t/2) - \cos\phi_{s}\sinh(\Delta\Gamma_{s}t/2) + \sin\phi_{s}\sin(\Delta m_{s}t)] \\ A_{6} &= |A_{0}(0)||A_{\perp}(0)|e^{-\Gamma_{s}t} [\sin(\delta_{\perp} - \delta_{0})\cos(\Delta m_{s}t) - \cos\phi_{s}\cos(\delta_{\perp} - \delta_{0})\sin(\Delta\Gamma_{s}t/2)]. \end{aligned}$$

>Every event: measure time, 3 angles, mass, flavor...

Fit

- · Simultaneous likelihood analysis in mass, time, angles and tagging flavour
- Including efficiencies and resolutions using control samples
- Using mass sideband to model background

Sensitivity expectation...with MC

Results $B_s \rightarrow J/\psi \phi$ at LHCb Data summer 2010

Status $B_s \rightarrow J/\psi \phi$ at LHCb

This summer

- Yields as expected
- Mass resolution as expected from MC
- Proper time resolution factor ~two worse
 - Misalignment
- Flavour tagging OK
- >No showstoppers!
- Summer 2010: (23 ± 5) events
- Winter 2010-2011: ~870 events

Most recent results Data 2010

Sensitivity expectation $B_s \rightarrow J/\psi \phi$

3 фs

OTHER CPV DECAY CHANNELS AT LHCB

$B_s \rightarrow \phi \phi$

Compare: phase(tree) & phase(penguin)

• $B_s \rightarrow \phi \phi$ angular analysis à la $B_s \rightarrow J/\psi \phi$

Channel	Yield (2 fb⁻¹)	B/S	Weak phase precision
$B \rightarrow \phi K_s$	920	0.3 < B/S < 1.1	$\sigma(\sin(\Phi_{\phi Ks}))=0.23$
$B_{s} \not\rightarrow \varphi \varphi$	3.1 k	< 0.8	σ(Φ _{φφ})=4.6°

γ : time-dependent oscillation

γ : decay time independent CPV

•
$$\sim V_{cb}V_{us}^*$$
 • $\sim V_{ub}V_{cs}^*$
• D^0 • D^0

- Sum of amplitudes leads to CPV
 - Relative strong phase δ
 - Relative weak phase γ

> For interference: need a common final $D^0 \otimes \overline{D^0}$ state

γ with loops: B \rightarrow hh

Other LHCb topics, not covered today: Rare decays

Wolf and sheep *can* work together!

Dream scenario for 2011/2012...2HDM

CMS: direct

LHCb: indirect

Conclusions

- B-physics complementary to direct BSM searches
- LHCb: a dedicated *B*-physics experiment
- $B_s \rightarrow J/\psi \phi$ sensitive to off-shell processes in $B_s \leftrightarrow$ anti- B_s mixing
 - LHCb's advantages: $#B_s$'s, mass & proper time resolution, particle identification
 - Optimized selection: few cuts, trigger rate flexibly adjustable
 - Multi-dimensional likelihood fit
- Many other probes to γ , ϕ_s
 - Sensitive to different diagrams
- Expectation LHCb for $B_s \rightarrow J/\psi \varphi$
 - Overtake Tevatron at ~0.2 fb⁻¹
- If different from SM...
 - new sources of CPV, BSM particles...and their couplings!

> Stay tuned for the upcoming results!

Search like Sherlock Holmes...

...pay attention to the indirect evidence!

BACKUP!

Discussion

CMS

- Have to know SM QCD accurately
- Don't know where new physics will pop up
 - Search benchmark points and pray...
- Cross section NP small
 - Much background

LHCb

- Can choose
 - Theoretically clean channel
 - Experimentally clean channel
 - Channel with large x-sec/br
- 'Independent' of new physics channel
- Don't need large lumi/high COM-energy
 - Especially handy coming years

$B_s\!\to\!\phi\phi$

Compare: phase(tree) & phase(penguin)

Channel	Yield (2 fb ⁻¹)	B/S	Weak phase precision		
$B \rightarrow \phi K_s$	920	0.3 < B/S < 1.1	$\sigma(sin(\Phi_{\phi Ks}))=0.23$		
$B_{s} \not\rightarrow \varphi \ \varphi$	3.1 k	< 0.8	σ(Φ _{φφ})=4.6°		

γ with trees (2)

Decay time independent CPV in $B \rightarrow DK$

•
$$\sim V_{cb}V_{us}^*$$
 • $\sim V_{ub}V_{cs}^*$
• D⁰ • D⁰

- Sum of amplitudes leads to CPV
 - Relative strong phase δ
 - Relative weak phase γ

> For interference: need a common final $D^0 \otimes \overline{D^0}$ state

Status CP-violating observables

- All measurements consistent
- *B_d* ↔ anti-*B_d* mixing phase known very accurately
- *B_s* ↔ anti-*B_s* mixing phase not yet known very accurately
- 2-3 σ deviations in β_s
- Stronger constraints needed... LHCb!

$\begin{array}{l} \gamma \text{ with loops} \\ \textbf{B} \rightarrow \textbf{hh} \end{array}$

Conclusions

- CKM model successful in describing CP violation
 - …but γ and β_s poorly constrained
 - ...and inconsistencies at the horizon?
- Many different methods to study diagrams
 - Standard model diagrams (trees)
 - Possible new physics contributions (boxes, penguins)
- LHCb will drastically improve the sensitivity to the CKM angles γ and β_s

SOMETHING NEW IN THE BOX OF $B_S \rightarrow J/$ $\Psi \phi$?

BACK-UP

Unitarity Triangle

- Constraints following from unitarity of CKM matrix
 - Three complex numbers add up to zero

- Performing different measurements, overconstrain 4 free parameters in CKM matrix
 - To test consistency of CKM model
 - Inconsistency (e.g. triangle doesn't close) \rightarrow new physics

Current status UT

experimental constraints on unitary CKM matrix

CP angle	Indirect measurements (°)	Direct measurements (°)
α	$95.6^{+3.3}_{-8.8}$	$89.0^{+4.4}_{-4.2}$
β	$27.4^{+1.3}_{-1.9}$	$21.07\substack{+0.90\\-0.88}$
γ	$67.8^{+4.2}_{-3.9}$	70^{+27}_{-30}

Present status Φ_s

2.0 fb ⁻¹	LHCB:
$\sigma(\Phi_s)$	~ 1.8°

	Indirect (CKM fit)	Direct ($B_s \rightarrow J/\psi \phi$ TeVatron)	$\sigma(\Phi_s)$
Φ	, -2.1°±0.1°	[-30°,-68°]U[-112°,-150°] @68%CL	

Example CP violation

2 amplitudes

- Relative weak phase ϕ_w
 - Flips sign under CP
- Relative strong phase δ
 - Does not flip sign under CP

•
$$|A_{tot}|^2 = |A_1 + A_2|^2$$

 Need both nonzero δ and φ_w for CP asymmetry:

$$|A_{tot}|^2 - |\overline{A}_{tot}|^2 = -4 |A_1| |A_2| \sin \delta \sin \varphi_w$$

CP violation at LHCb

Brown = box Green = tree Black = penguin

 γ with time dependent osc • $B_s \rightarrow D_s K$ • $B \rightarrow D^* \Pi$

γ with direct CPV
B → DK (glw)
B → DK (ads)
More bodies

 $\Phi_{s} \rightarrow J/\psi \phi$ $\Phi_{s} \text{ with penguins}$ $\Phi_{s} \rightarrow \phi \phi$

Advantages of LHCb

- Number of B_s's
- Proper time and mass resolution
- Particle ID

LHC

- 27 km
- Proton-proton
- √s = 14 TeV?
- Re-start this fall

HCb L = (2-5)x10³²cm⁻²s⁻¹ σ_{bb}~500µb (10% B_s) '1 year' = 2.0fb⁻¹ Produce O(10¹¹) B_s per y. Expect to reconstruct: O(100k) B_s→J/ψφ per y.

Trees, penguins and boxes at LHCb

Prospects for CP violation measurements at LHCb

To: LHCb

Tristan du Pree (Nikhef) On behalf of the LHCb collaboration 14th Lomonosov conference

19-25 Aug 2009, Moscow

Sensitivity: $\sigma(\Phi_s)$

0.2 fb⁻¹ (8 TeV): • σ_{LHCb}(Φ_s) < σ_{TeVatron} (Φ_s)

2.0 fb⁻¹ (14 TeV): • If $\Phi_{\text{TeVatron}} = \Phi_{\text{true}}$: <u>LHCb 5 σ discovery!</u>

LHCb

CMS

- Have to know SM QCD accurately
- Don't know where new physics will pop up
 - Search benchmark points and pray...
- Cross section NP small
 - Much background

LHCb

- Can choose theoretically clean channel
- 'Independent' of new physics channel
- Can choose channel with large x-sec/br
- Don't need large lumi/high COM-energy
 - Especially handy coming years

CP-even vs CP-odd

- Initial B_s: J=0
- Different final spin states
- Different angular momenta L in final states
- ▷ Different CP: factor (-1)^L
- CP-even and CP-odd opposite proper time behaviour

Angular analysis

- 4 particles: 3 decay angles
- Angles of daughter particles in rest frame parents
- Angular distribution: information about spin polarizations
- CP states different angular distributions
- Perform angular analysis to separate CP-even & CP-odd

If $\Delta \Gamma_s = 0$: (simplified expression, in general $\Delta \Gamma_s \neq 0$) $A_{CP} \sim |A_{even}|^2 \sin \Phi_s \sin \Delta m_s t (1 + \cos^2 \theta)/2$

$$-|A_{\rm odd}|^2 \sin\Phi_s \sin\Delta m_s t (1 - \cos^2\theta)$$

Fit methods

Now describe all observables, including all experimental distortions, using control samples as much as possible

- Observables
 - Time + angles + tagging flavor + mass
- Experimental effects
 - Resolutions + inefficiencies + backgrounds
- Control samples
 - MC sample only used for angular efficiency
 - $B_d \rightarrow J/\psi K^*$ + mass-sidebands + prescaled sample

LHCb with 2 fb⁻¹

Brown = box Green = tree Black = penguin

Example S, B & FOM

- Construct figure of merit to optimize correct variable
 - FOM ~ $\sigma^{-1}(\varphi_s) \sim S/\sqrt{(S+B^*)} \sim \sigma^{-1}(S)$
 - Determine FOM from toy MC or extended likelihood fit
- Choose maximal FOM plateau by eye
 - Stable and understandable

Summary selection

- Simple selection
 - >Few orthogonal cuts
- >Understandable selection
 - Cuts chosen by eye
 - > Ignored cut if possible
 - Stable plateaus
- >170k $B_s \rightarrow J/\psi \phi$ events per 2 fb⁻¹!
 - Sensitivity improvement of ~20% compared to existing selection
 - >Equivalent to yield improvement of ~50%
- >Trigger rates flexible!

