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Introduction

Conclusion Preview

Interactions between DM and DE can be present
Neglecting them can lead to a misinterpretation of observational data

Carrefull choice of the Qν parametrization in order to avoid Instabilities

Large values of the coupling are still allowed by LSS and CMB data

Degeneracies Q− Ωdm and Q− mν shows up

Velocity constraints put stringent bounds on Q in DEvel models
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General Background

Background : Evolution Equations

... for cosmological fluids in an homogeneous and isotropic space time :
Tµν = diag(−ρ, p, p, p)

ρ̇i + 3H(ρi + pi) = 0
pi = wiρi

wm = 0, wr = 1/3, wde = w < −1/3

For an DM-DE System :

ρ̇dm + 3Hρdm =

ρ̇de + 3Hρde(1 + w) =

Q encodes the interaction
for e .g. Q < 0
 more DM in the past

ΛCDM model wde = −1

ρ

ρ

ρm

ρde

r

110−4
a

uncoupled Q = 0
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What Coupling on the Market ?

What is the interaction like : Background

From the Background : Energy exchange...

The DM-DE Interaction ρdm ↔ ρde

ρ̇dm + 3Hρdm =

ρ̇de + 3Hρde(1 + w) =

Interaction rate : Γ can be taken ∝ H,H0, φ̇

Energy density involved ρdark = ρdm Class I, or ρdark = ρde Class II

...Up to the perturbations level, remember :

T0
0 = ρ(1 + δ), T0

i = (ρ+ p)vi,T i
j = p + δp

What is the evolution of the overdensities δ and velocity perturbations v ?
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What Coupling on the Market ? Perturbations and instability

Coupled models at the level of Tµν

To deduce the evolution of perturbations,
we need a parametrization at the level of the stess-energy tensor

∇µTµ(dm)ν = Qν ,

∇µTµ(de)ν = − Qν ,

Conservation of the total energy momentum :∇µTµ(tot)ν = 0

Parametrization of DM-DE energy-momentum exchange : Qν = Q udark
ν

uν =
Pν

P0 : bgd uν = a−1(1,~0), perturb ui ∝ vi

uν is the 4-velocity and Pµ the 4-momentum (6= p = wρ ! !)
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What Coupling on the Market ? Perturbations and instability

Perturbations evolution equations

Gµν = 8πGTµν

Geometry gµν  Newtonian potential Ψ,Φ

For pressureless DM wdm = 0 = δpdm :

δ̇dm = −(kvdm − Φ̇)

v̇dm = −Hvdm + kΨ ,

For a DE δpde 6= 0 and is a function of

ĉ2
s de = δpde/δρde|rf , c2

a de = ṗde/ρ̇de, and d ≡ Q
3Hρde(1+w)

 more complicated expressions for δ̇de, v̇de
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ĉ2
s de = δpde/δρde|rf , c2
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What Coupling on the Market ? Perturbations and instability

Growth equations

For any fluid-component the first order differential evolution equations can be
combined in second order growth equation with 3 main contributions :

.

.

.

.

NB :X′ denotes ∂X/∂a, Ẋ denotes ∂/∂τ
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What Coupling on the Market ? Uncoupled Case

Some examples : The Uncoupled Case (late time)

ΛCDM Cosmology (w = −1)⇒ NO DE perturbations

δ̇de = θ̇de = 0
δ̇dm and θ̇dm + Matter Dominated Era :

δ′′dm =
3
2

Ωdm
δdm

a2 −
3
2
δ′dm
a

w 6= −1⇒ DM-DE perturbations are NOT independent

δ′′dm =
3
2

Ωm
δdm

a2 −
3
2
δ′dm
a

+ F(δde)

δ′′de = −9
2

(ĉ2
s de − w)

δde

a2 − (
5
2
− 3w)

δ′de
a

+ G(δdm) .

 δde 6= 0 and δdm can be affected by w, ĉ2
s de
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What Coupling on the Market ? Uncoupled Case

The Uncoupled Case : w 6= −1

Even for Q=0 DM and DE interact at the perturbation level ! !
see e.g. Bean and Doré ’ 03, Lewis and Weller ’03

Ballesteros and Riotto ’08

Laura Lopez Honorez (ULB) Hint of interacting DM-DE February 25 2011 12 / 25



What Coupling on the Market ? Uncoupled Case

Growth equations-General

(Anti)Damping

leads when A,B negligible
.

.

.

.

Growth or Oscillations
Rapid

In the standard cosmology :

ASC
dm > 0 rapid growth

BSC
dm < 0 damping by Hubble friction

 polynomial rise of δdm

In coupled models with :

with negative Q < 0

 Adm(Q) > ASC
dm & Bdm(Q) < BSM

dm

 larger growth of δdm

 0.01

 0.1

 1

 0.01  0.1  1

δ(
a)

a

δdm (a) with ξ=-0.5,0 and w=-0.9 for fixed Ωdm(0)

ξ=-0.5
no coupling

Q = ξHρdeudm
ν

see also Caldera-Cabral ’09
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What Coupling on the Market ? Uncoupled Case

Parametrization ?
First: Track the instability in the

Dark Energy sector
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What Coupling on the Market ? Uncoupled Case

Limitations due to Instabilities in the DE sector :
δpde = ĉ2

s deδρde − (ĉ2
s de − c2

a de)3(1 + w) (1 + d) θde
k2 Hρde

where ĉ2
s de = δpde/δρde and c2

a de = ṗde/ρ̇de

d ≡ Q
3Hρde(1 + w)

is the DOOM factor

At early time, in strongly coupled regime, (|d| > 1 ie δPde is Q dominated)
instabilities in DE perturbations can arise from the δPde sector

Valiviita ’08, He ’09, Jackson ’09

As a rule of thumb : at early time and large scale when w =cst
 d > 1 Instability ! ! Gavela ’09
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s deδρde − (ĉ2
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What Coupling on the Market ? Uncoupled Case

What Coupling on the Market ?

∇µTµ(dm,de)ν = ±Qν

.

.

.

.

ξ must be negative for w = cst, Γ and α are positive or negative w 6= cst
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Observational constraints

Constraints from data :
In the light of the Dark Matter sector
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Observational constraints

Constraints and Degeneracies : Current data

Dark Coupling : JCAP 0907 :034
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Observational constraints

Q− Ω
(0)
dm degeneracy

For Q < 0, |Q| large
 more growth

 more clustering

 less Ω
(0)
dm needed in the

source term of δ′′dm

Qν = ξHρdeuνdm Gavela ’09

LSS data stringent constraint
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Observational constraints

ξ − mν degeneracy

fν =
Ω

(0)
ν h2

Ω
(0)
dm h2

=

∑
mν

93.2eV
· 1

Ω
(0)
dm h2

Non relativistic neutrinos suppress
the growth of δdm at small scales

For fν 6= 0 the power spectrum
is reduced with respect to fν = 0.

Qν = ξHρdeuνdm Gavela ’09

increase fν

 Non relativistic neutrino effect on P(k) can be
compensated by a DM-DE interaction
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Non relativistic neutrinos suppress
the growth of δdm at small scales

For fν 6= 0 the power spectrum
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Observational constraints

Constraints from near universe observation data
Peculiar velocities

Coupled dark matter-dark energy in light of near
Universe observations : JCAP 1009 :029.
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Observational constraints

Newtonian Limit

Low Redshifts, small scales (k� H), Newtonian limit :

DMvel class I ∝ ρdmuνdm Cont.
√

Euler
√

only bg change
DEvel class I ∝ ρdmuνde Cont.

√
Euler X viol WEP ! ! !

DMvel class II ∝ ρdeuνdm Cont. X Euler
√

DEvel class II ∝ ρdeuνde Cont. X Euler X viol WEP ! !

Linear growth function : v = f (H/k) δ

Uncoupled and Class I : f = d ln δ/d ln a
Class II models, 2d contrib f = d ln δ/d ln a + Q/(ρdmH)
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Observational constraints

Bulk flows : large scale galaxy motion

Watkins ’09 : anomalously large averaged velocities @ 100h−1 Mpc scales
〈u2〉1/2 = 407± 81 km/s while 〈u2

ΛCDM〉1/2 ∼ 200 km/s〈
u2〉 =

1
2π2

∫ ∞
0

dk k2Pv(k)|W̃(k)|2 =
1

2π2

∫ ∞
0

dkH2f 2Pδ(k) |W̃(k)|2

 seems to favour models with larger growth than ΛCDM ? ! Ayaita ’09

Imposing agrement with WMAP5 dA(zrec)

DMvel can’t account for large 〈u2〉1/2

DEvel suffer from WEPV ! ! ! bulk
flows are constraining ξ < −0.35
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Conclusion

Conclusions

Interactions between DM and DE can be present
Neglecting them can lead to a misinterpretation of observational data

Carrefull choice of the Qν parametrization in order to avoid Instabilities

Large values of the coupling are still allowed by LSS and CMB data

Degeneracies Q− Ωdm and Q− mν shows up

Velocity constraints put stringent bounds on Q in DEvel models
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Conclusion

This is the End
Thank you for your attention ! !
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Backup
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One typical example : Coupled Quintessence

Lde−dm = 1
2 DµφdeDµφde − V(φde) + 1

2 DµψdmDµψdm − 1
2 m2

dm(φde)ψ
2
dm

Assuming ψdm ≡ CDM, i.e. Pdm = 0, we get :

ρ̇dm + 3Hρdm = Q

φ̈de + 3Hφ̇de + V(φde),φde = −Q/φ̇de

with Q = βφ̇ρdm and β = ∂ ln mdm(φde)
∂φde

 Q ∝ ρdm typical ClassI model

This corresponds to : ∇µTµν = ±Qν see also Amendola ’00 - Corasaniti ’09

Qν = βρdm∇νφde and Qν ∝ ρdmu(de)
ν typical ClassI DMvel model

 Coupled Quintessence is a typical example of Qν ∝ ρdmu(de)
ν ClassI DMvel model

What would be the other possible combinations ?
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Some coupling from conformal transformation

From a Brans-Dicke action (with ω = 0) in the Jordan (string) frame :

SJ =
M2

Pl
2

∫
d4x
√
−gJΦRJ + SM(ψ, gJ

µν)

we get in the Einstein frame (Φ = Ω−1) :

SE =

∫
d4x
√
−gE

{
M2

Pl
2

RE −
1
2
∂µϕ∂

µϕ

}
+ SM(ψ,Ω2gE

µν)

Using conformal transformation with

gE
µν = Ω−2gJ

µν

ϕ/MPl = −
√

6 ln Ω.

In that framework, assuming that in the Jordan Frame : 5µTµνM = 0
we get in the Einstein frame coupled DE-DM system :

5µTµνM = TµM µgµνE ∂ν ln Ω = −5µ Tµνϕ
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Peculiar velocities and Redshift space distortions
zobs = ztrue +~vpec.x̂

Neglecting vpec  distortion in redshift space

Redshift space distortions seen in galaxy surveys
carry an imprint of the rate of growth of LSS

(Kaiser 1987, Song & Percival ’10)

Galaxy surveys offer a measure of fσ8 ! ! Applied to coupled cosmologies :

for DMvel & DEvel Class II Q = ξHρde with ξ = −0.5 and DMvel Class I Q = −aΓρdm and Γ = −0.3H0 (best fit point Valiviita ’09)
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Violation of the Weak Equivalence Principle -DMvel test

Kesden & Kamionkowsi : Extra force between DM can lead to an asymmetry in the
leading compared to the trailing tidal stream of a DM dominated satellite orbiting in
the halo of a much larger host galaxy.

From 2MASS and SDSS surveys : Sgr Dwarf galaxy orbiting in the MW has roughly
equal streams |ab − adm/ab| < 0.1 K&K ’06.

 0.01

 0.1

 1

 10

 100

 1000

-0.001-0.01-0.1-1

|(
v. b-

v. dm
)/

v. b|

ξ

 w=-0.9
 w=-0.7

K.and K. for Qν = βρdm∇νφ/Mp

Gdm = GN(1 + β2) |β| < 0.22 K&K ’06

for Qν = ξHρdeude
ν

kv̇b = Hδ̇b + k2Ψ.

kv̇dm = H
(

1 + ξ ρde
ρdm

)(
δ̇dm + ξHδdm

ρde
ρdm

)
+k2Ψ ,

k2Ψ = − 3
2H

2(Ωbδb + Ωdmδdm)
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Origin of instabilities in coupled models - δP sector

Adiabatic processes :
δPde → c2

a deδρde

c2
a de =

Ṗde

ρ̇de
which for w = cst, c2

a de = w < 0

G
δ

2
c   > 0

⇒

G
δ

2
c   < 0

 Instability as c2
a de < 0, pressure no more counteract gravity

 Exponential growth from the A-term contribution
see e.g. Bean, Flanagan and Trodden ’07 AND

slow-roll suppression see Corasaniti ’09
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Origin of instabilities in coupled models - δP sector

Non adiabatic processes :

δPI 6= c2
a IδρI ,

In any frame for coupled DE-DM :

δPde = ĉ2
s deδρde − (ĉ2

s de − c2
a de)ρ̇de

θde

k2 where ĉ2
s de =

δPde

δρde

∣∣∣∣
DE rf

where we define the DOOM FACTOR : d ≡ Q
3Hρde(1+w)

|d| > 1 strongly growing non-adiabatic mode
at early time-large scales (i.e. k� H)
 drive NON-ADIABATIC instabilities

see also Valiviita et all ’08, He et all ’08 and Jackson et all ’09
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our choice

Analytical treatment of Perturbations

Qν = Q u(dm)
ν with Q = ξHρde

no fith force effects and ξ < 0 with w > −1 to avoid instabilities

Gauge invariant formalism δH must be included in ∆Q

Derive initial conditions

Imposing adiabatic initial conditions Sab ≡ ∆0
a

ρ̇a/ρa
− ∆0

b
ρ̇b/ρb

= 0
for dm, b, γ, ν, automatically implies :

 ∆0
de = 3

4

(
1 + w + ξ

3

)
∆0
γ

Adiabatic initial conditions for dark energy (depend on ξ ! !)
for uncoupled Doran’03, for coupled also Majerotto’10
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our choice dynamical DE ?

What would be w̃(z) reconstructed

...from H(z) data assuming no coupling and dynamical DE :

RH(z) =
H2(z)

H2
0

= Ω
(0)
dm (1 + z)3 + Ω

(0)
de exp

[
3
∫ z

0
dz′

1 + w̃(z′)
1 + z′

]

⇒ w̃(z) =
1
3

R′H(1 + z)− 3RH

RH − Ω
(0)
dm (1 + z)3

.

However in presence of dark couplings :

RH(z) = f (w,Q,Ω(0)
dm ,Ω

(0)
de )
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our choice dynamical DE ?

Reconstructing w̃(z) as a function of w and ξ

For Q = ξHρde For Q = ξHρdm

 divergent w̃(z) for ξ > 0
Similar behaviour in f(R) cosmologies see e.g. Amendola & Tsujikawa ’07
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our choice dynamical DE ?

Future Constraints : from CMB lensing Martinelli’10

Lensing deflection d = ∇Φ whit Φ the lensing potential. In harmonic space,
multipoles follows dm

l = −i
√

l(l + 1)φm
l ,

For Cdd
l ≡

〈
dm

l dm∗
l

〉
and Cφφl ≡

〈
φm

l φ
m∗
l

〉
, we have Cdd

l = l(l + 1)Cφφl .
 breaking of Ωdm − ξ degeneracy with EPIC that will greatly reduce its

noise on CMB lensing
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our choice dynamical DE ?

Q = ξHρdecase
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our choice dynamical DE ?

Gauge transformations

1 There is always some freedom in the way we do the correspondence
between the background and the physical perturbed universe ≡ Gauge
Freedom

2 Some quantities are gauge invariant like (vj = ikjv and c2
s = δP/δρ) :

wΓ = (c2
s − c2

a)δ
∆ = δ + ρ̇/ρ(v− B)

For example in synchronous or Newtonian gauge (B = 0) :

wdeΓde|rf de = (ĉ2
s − c2

a)δ̂de = (c2
s − c2

a)δde = wdeΓde|any frame

∆de|rf de = δ̂de = δde +
ρ̇de

ρde
vde = ∆de|any frame

 δPde = ĉ2
s deδρde − (ĉ2

s de − c2
a de)3(1 + wde) (1 + d) vdeHρde
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our choice dynamical DE ?

Values of Ωdm that fit CMB

We use the values of Ωdm with dA(zrec) in agreement with WMAP5 :

For e.g. Q = ξHρde

Background dependent only ! !
quite independent of w

Constraints from voids :
Voids are more empty than expected
from Λ CDM (factor 10) :
too few small galaxies with velocity
below 35 km/s Thikonov & Klypin ’08

AND coupled models can lead to a
depletion of DM for Q < 0

Fitting obs. results : depletion of DM of at most 20%
 ξ > −0.2
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