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PAMELA Collab., Nature 458 (2009) 607-609 
FERMI Collab., Phys.Rev.Lett.102:181101,2009

Several experiments report an anomalous signal.
(PAMELA, FERMI, ATIC, DAMA/LIBRA)

Motivation

Explanations?Explanations?



  

Yuksel, Kistler, Stanev, Phys.Rev.Lett. 103 (2009) 051101 

                     

image: NASA 
(http://heasarc.nasa.gov/docs/cgro/cgro/egret_anti.html)

Astrophysical?Astrophysical? 
Pulsars, GRB, SNr all possible

FERMI may shed light on this in a few years...{

Motivation



  

Motivation

DM may exist as 'WIMPs'

〈
2 v〉≈3×10−26 cm3/s

MSSM + R-Parity:  Neutralino LSP  the “classic” candidate

Clumpy halo distribution, 
Sommerfeld Enhancement,
Non-thermal production

Thermal Relic:

Required to reproduce excess: 〈
2 v〉≈O 10−24cm3/ s

cdm h
2≈0.1109 

Need to boost the 
cross section somehow.... {

Exotic (new) physics?Exotic (new) physics?

 qq ,W,W− ,e, p , D , , ...



  

Motivation
Problem: Anti-protons are enhanced as well...

Alternative scenarios:   Leptophilic DM,  Axions, etc..

[Donato, et. al., Phys.Rev.Lett. 102 (2009) 071301] 

A Question:  How well do we understand 
CR propagation?

backgrounds? {



  

● Astophysical CR accelerated 
in shock front of SNe [DSA]

● Once launched, interact with
complex magnetic fields

● CR scatter off of (Alfven) 
turbulences in B-field:      

● Thermal/CR-driven galactic 
winds likely also play a role

D i f f u s i o nD i f f u s i o n
●  PrimariesPrimaries  produce  
secondariessecondaries via interaction 
with matter/gas in disk.  Many 
crossings in lifetime.  EscapeEscape  
halo after      yr.107

Cosmic Rays



  

Cosmic Rays

● Assume cylindrical 
symmetry

● Max radial distance ~20 KPc

● Free escape boundary conditions at edge

Abrupt transition to free space [no diffusive scattering]

How is this modelled?How is this modelled?

● Max height         not well 
constrained

zmax
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Transport Equation



  

Transport Equation

CR density per unit particle momentumr , p ,t 

q r , t  Source term: Inc. primary + secondary 
contributions
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Transport Equation

CR density per unit particle momentumr , p ,t 

q r , t  Source term: Inc. primary + secondary 
contributions

q  r , z =q0 rr 0



e−r− r0  /r 0 e−
∣z∣/ z s

=1.69 =3.33

r 0=8.5 kpc z s=0.2kpc
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∂ p [ p3 ∇⋅V ]− 1
 f

− 1
r


[Everett, et. al., Astro.Phys.J 2008, 674, 258]



  

Transport Equation

Spatial diffusion term

D xx=D0 
0




∇⋅D xx∇ 

Diffusion coefficient - usually assumed 
independent of position / isotropic

Index associated with power spectrum of turbulence

=1/2=1/3 Kolmogorov Kraichnan
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Transport Equation

∇⋅V  Convective transport via galactic wind

V=z V 0
dV
dz

⋅z  Wind velocity perpendicular to 
galactic plane

Wind gradient gives rise to adiabatic
energy loss
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Transport Equation
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Moving Alfven waves give rise to momentum diffusion 



  

Transport Equation
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Momentum loss due to 
ionization,
brems., inverse Compton

Loss due to particle 
fragmentation
 + radioactive decay
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Transport Equation
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Analytic solution only with significant assumptions

Fully Numerical: GALPROP Accurate ISRF / B-Fields, gas-
maps, spallation cross-sections.

Alternative (?)  DRAGON

[Moskalenko, Strong,  Astrophys. J. 493 (1998) 694–707]

[Evoli, Gaggero, Grasso, Maccione., JCAP 0810 (2008) 018]

via Green's function if no convection and no re-acceleration.



  

Setting Parameters

{D0 , , vA ,V 0,dV /dz , L }Parameters are fixed using data: 

D~4×1028−6×1028 cm2/ s vA~30−40 km/ s

~0.33−0.6 L~4−15 kpc

V 0≤20 km/sdV / dz~10km/ s / kpc

[Gebauer, de Boer, arXiv:0910.2027 [astro-ph.GA]]



  

Some Problems
This “standard model” works well...agreement with many 
measurements
However, galactic wind velocities cannot be too large

For a long time this was considered okay: 
    no evidence that Milky Way exhibited a galactic wind

However: ROSAT experiment measured an enhanced X-
ray emission toward galactic center.

This emission is best modeled with a 
thermal + CR-driven galactic wind 
with moderate velocity

[Everett, et. al., Astro.Phys.J 2008, 674, 
258]

173≤∣V conv∣≤760 km/ s
[Snowden, et. al., Astro.Phys.J 1997, 485, 125]



  

Some Problems
This “standard model” works well...agreement with many 
measurements
However, galactic wind velocities cannot be too 
large For a long time this was considered okay: 

    no evidence that Milky Way exhibited a galactic wind

However: ROSAT experiment measured enhanced X-ray   
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This emission is best modeled with a 
thermal + CR-driven galactic wind 
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[Everett, et. al., Astro.Phys.J 2008, 674, 
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173≤∣V conv∣≤760 km/ s
[Snowden, et. al., Astro.Phys.J 1997, 485, 125]
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Some Problems

The SOFT    -RAY GRADIENT

SNR (pulsar) source distribution peaks
towards galactic center

 >50 MeV Photon emission dominated 
by CR interactions with ISM

Naively:  Photon emission intensity should follow SNR distribution

IT DOESN'T:  EGRET, COS-B observed soft gradient

Can be explained by strong “mixing” due to convective winds.
[Breitschwerdt, Dogiel, Volk, A&A 2002, 385, 216]

[Everett, et. al., Astro.Phys.J 2008, 674, 258]



  

Some Problems

INTEGRAL Bulge/Disk Ratio

Type-1a SN can produce copious positrons via     -decay of  Co56

Annihilation with electrons observed through 511 keV line emission

SN1a concentration 
higher in disk than 

galactic bulge

  Low energy positrons 
don't diffuse significantly:

SO, expect annihilation close to sources

&

Computed annihilation rate in bulge/disk     ~ 0.1
INTEGRAL observed B/D   ~ 5

Radially-dependent galactic wind transports positrons from disk to bulge.
   [N. Prantzos, A&A, 449, 869 (2006)]

D xx=D0/0




  

Anisotropic Diffusion
Ultimately need to include higher velocity galactic winds.

 >>>> Spatially dependent, ANISOTROPIC 
diffusion.

D xx=D0/0
 D xx=D0/0

∣z∣

[ ∂ D xx

∂ z
−V 0−

dV
dz

⋅z ] ∂
∂ z

D xx

∂2 
∂ z 2 − dV

dz
=

d 
dt

      Here the density of scattering centers DECREASES 
with distance away from the galactic disk

Assuming                             transport in z-direction:V=z V 0
dV
dz

⋅z 

[Gebauer, de Boer, arXiv:0910.2027 [astro-ph.GA]]
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Anisotropic Diffusion

● This approach is VERY NATURAL

Diffusion intensity transitions 
SMOOTHLY to free space

● No longer sensitive to cylinder height  
 
   Instead: 

DIFFUSION/CONVECTION 
BOUNDARY

[Gebauer, de Boer, arXiv:0910.2027 [astro-ph.GA]]

Z~D xx /V c



  

Anisotropic Diffusion

[de Boer, arXiv:0910.2601 [astro-ph.CO]]

An interesting outcome:    
REDUCTION in Anti-Proton Background

60 GeV 
Neutralino

[Donato, et. al., Phys.Rev.Lett. 102 (2009) 071301] 



  

Fits to Data

D xx=D0/0


D xx=D0/0
∣z∣

∣z∣1kpc

∣z∣≥1kpc

Modifications to GALPROP v50.1

(Case & Bhattacharya)

Q r , z= rr 0



e−r−r0/r0 e−
∣z∣/ zs =1.69 =3.33

r 0=8.5 kpc z s=0.2kpc

Diffusion Coefficient: 

V r , z=Q rV 0
dV
dz

⋅z 
V 0=100km /s

dV
dz

=35km/ s /kpc

Convective Wind: 

} Compatible with 
ROSAT



  

Fits to Data

min
2 /ndof =38.3/31

min
2 /ndof =73.7/54

With strong convection:  Best fits occur with anisotropic 
diffusion coefficient.



  

Consistent with MHD

Alfvén speed a tad high

Reduced Dep. on 
cylinder height

Fits to Data

[PG, K. Hagiwara, arXiv 1012.0587 [astro-ph.HE]] 



  

Fits to Data

Decent fit to B/C Excess  in            fluxp / p

Fit to               and     B /C Be10 /Be9



  

Fits to Data

Degraded fit to B/C Marginal fit

Fit to  PAMELA,             ,                   B /C Be10 /Be9



  

Conclusions

● Hints that Milky Way drives a strong galactic 
wind - existing CR models cannot support this.

● Viable model with adoption of anisotropic 
diffusion

● Resulting reduced anti-protons means that a 
light neutralino is not ruled out? 

●CR propagation (backgrounds) extremely 
important (overlooked by many?).
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