INDIRECT DETECTION OF DARK MATTER & UNCERTAINTY IN CR PROPAGATION

P. GRAJEK

IIHE SEMINAR - 18 FEB 2010

Several experiments report an anomalous signal. (PAMELA, FERMI, ATIC, DAMA/LIBRA)

Explanations?

(http://heasarc.nasa.gov/docs/cgro/cgro/egret_anti.html)

Astrophysical?

Pulsars, GRB, SNr all possible

FERMI may shed light on this in a few years...

Exotic (new) physics? DM may exist as 'WIMPs'

$$\chi + \chi \rightarrow q \,\overline{q}$$
, $W^+ W^- \rightarrow e^+ \overline{p}$, \overline{D} , γ , ...

MSSM + R-Parity: *Neutralino LSP* the "classic" candidate

Thermal Relic:
$$(\Omega_{cdm} h^2 \approx 0.1109) \quad \langle \sigma_{\chi\chi}^2 v \rangle \approx 3 \times 10^{-26} \, cm^3 / s$$

Required to reproduce excess:

 $\langle \sigma_{\chi\chi}^2 v \rangle \approx O(10^{-24}) cm^3 / s$

Need to **boost** the cross section somehow....

Clumpy halo distribution, Sommerfeld Enhancement, Non-thermal production

Problem: Anti-protons are enhanced as well...

[Donato, et. al., Phys.Rev.Lett. 102 (2009) 071301]

Alternative scenarios: Leptophilic DM, Axions, etc..

A Question: How well do we understand

backgrounds? CR propagation?

Cosmic Rays

- Astophysical CR accelerated in shock front of SNe [DSA]
- Once launched, interact with complex magnetic fields
- CR scatter off of (*Alfven*) turbulences in B-field:

Diffusion

• Thermal/CR-driven galactic winds likely also play a role

• **Primaries** produce secondaries via interaction with matter/gas in disk. Many crossings in lifetime. Escape halo after 10^7 yr.

Cosmic Rays

How is this modelled?

- Assume cylindrical symmetry
- Max radial distance ~20 KPc
- Max height *z_{max}* not well constrained

• Free escape boundary conditions at edge

Abrupt transition to free space [no diffusive scattering]

$$\begin{aligned} \frac{\partial \Psi}{\partial t} &= q\left(\boldsymbol{r}, t\right) + \boldsymbol{\nabla} \cdot \boldsymbol{D}_{xx} \boldsymbol{\nabla} \Psi - \boldsymbol{\nabla} \cdot (\boldsymbol{V} \Psi) + \frac{\partial}{\partial p} p^2 \boldsymbol{D}_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \Psi \\ &- \frac{\partial}{\partial p} \left(\dot{p} \Psi \right) + \frac{\partial}{\partial p} \left[\frac{p}{3} (\boldsymbol{\nabla} \cdot \boldsymbol{V}) \Psi \right] - \frac{1}{\tau_f} \Psi - \frac{1}{\tau_r} \Psi \end{aligned}$$

$$\frac{\partial \Psi}{\partial t} = q(\mathbf{r}, t) + \nabla \cdot D_{xx} \nabla \Psi - \nabla \cdot (\mathbf{V} \Psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \Psi$$
$$- \frac{\partial}{\partial p} (\dot{p} \Psi) + \frac{\partial}{\partial p} \left[\frac{p}{3} (\nabla \cdot V) \Psi \right] - \frac{1}{\tau_f} \Psi - \frac{1}{\tau_r} \Psi$$

$$\Psi \rightarrow \Psi(\vec{r}, p, t)$$
$$q(\vec{r}, t)$$

CR density per unit particle momentum Source term: Inc. primary + secondary contributions

$$\frac{\partial \Psi}{\partial t} = q(\mathbf{r}, t) + \mathbf{\nabla} \cdot D_{xx} \mathbf{\nabla} \Psi - \mathbf{\nabla} \cdot (\mathbf{V} \Psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \Psi$$
$$- \frac{\partial}{\partial p} (\dot{p} \Psi) + \frac{\partial}{\partial p} \left[\frac{p}{3} (\mathbf{\nabla} \cdot \mathbf{V}) \Psi \right] - \frac{1}{\tau_f} \Psi - \frac{1}{\tau_r} \Psi$$

 $\nabla \cdot (D_{xx} \nabla \Psi)$ Spatial diffusion term

 $D_{xx} = \beta D_0 \left(\frac{\rho}{\rho_0}\right)^{\delta}$ Diffusion coefficient - usually assumed independent of position / isotropic

Index associated with power spectrum of turbulence

 $\delta = 1/3$ Kolmogorov $\delta = 1/2$ Kraichnan

$$\frac{\partial \Psi}{\partial t} = q(\mathbf{r}, t) + \nabla \cdot D_{xx} \nabla \Psi - \nabla \cdot (\mathbf{V}\Psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \Psi$$
$$- \frac{\partial}{\partial p} (\dot{p}\Psi) + \frac{\partial}{\partial p} \left[\frac{p}{3} (\nabla \cdot V)\Psi \right] - \frac{1}{\tau_f} \Psi - \frac{1}{\tau_r} \Psi$$

 $\nabla \cdot (V \Psi)$ Convective transport via galactic wind

$$V = \hat{z} \left(V_0 + \frac{dV}{dz} \cdot z \right)$$
$$\frac{\partial}{\partial p} \frac{p}{3} \left(\nabla \cdot V \right) \Psi$$

Wind velocity perpendicular to galactic plane

Wind gradient gives rise to adiabatic energy loss

$$\frac{\partial \Psi}{\partial t} = q(\mathbf{r}, t) + \nabla \cdot D_{xx} \nabla \Psi - \nabla \cdot (\mathbf{V} \Psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \Psi$$
$$- \frac{\partial}{\partial p} (\dot{p} \Psi) + \frac{\partial}{\partial p} \left[\frac{p}{3} (\nabla \cdot V) \Psi \right] - \frac{1}{\tau_f} \Psi - \frac{1}{\tau_r} \Psi$$

Moving Alfven waves give rise to momentum diffusion

$$\frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \Psi$$

Reacceleration Term (stochastic acceleration)

$$D_{pp}D_{xx} \propto p^2 v_a^2$$

$$\frac{\partial \Psi}{\partial t} = q(\mathbf{r}, t) + \nabla \cdot D_{xx} \nabla \Psi - \nabla \cdot (\mathbf{V}\Psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \Psi$$

$$-\frac{\partial}{\partial p} (\dot{p} \Psi) + \frac{\partial}{\partial p} \left[\frac{p}{3} (\nabla \cdot V) \Psi \right] - \frac{1}{\tau_f} \Psi - \frac{1}{\tau_r} \Psi$$

$$\frac{-\partial}{\partial p}(\dot{p}\Psi)$$

Momentum loss due to ionization, brems., inverse Compton

 $\begin{array}{ccc} -\frac{1}{\tau_{f}}\Psi - \frac{1}{\tau_{r}}\Psi & \text{Loss due to particle} \\ \text{fragmentation} \\ + \text{ radioactive decay} \end{array}$

$$\frac{\partial \Psi}{\partial t} = q(\mathbf{r}, t) + \mathbf{\nabla} \cdot D_{xx} \mathbf{\nabla} \Psi - \mathbf{\nabla} \cdot (\mathbf{V} \Psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \Psi$$
$$- \frac{\partial}{\partial p} (\dot{p} \Psi) + \frac{\partial}{\partial p} \left[\frac{p}{3} (\mathbf{\nabla} \cdot \mathbf{V}) \Psi \right] - \frac{1}{\tau_f} \Psi - \frac{1}{\tau_r} \Psi$$

Analytic solution only with significant assumptions

via Green's function if no convection and no re-acceleration.

Fully Numerical: GALPROP [Moskalenko, Strong, Astrophys. J. 493 (1998) 694–707]

Accurate ISRF / B-Fields, gasmaps, spallation cross-sections.

Alternative (?) **DRAGON**

[Evoli, Gaggero, Grasso, Maccione., JCAP 0810 (2008) 018]

Setting Parameters

Parameters are fixed using data: $\{D_0, \delta\}$

 $\{D_0, \delta, v_A, V_0 dV/dz, L\}$

[Gebauer, de Boer, arXiv:0910.2027 [astro-ph.GA]]

 $D \sim 4 \times 10^{28} - 6 \times 10^{28} cm^{2}/s \qquad v_{A} \sim 30 - 40 \ km/s$ $\delta \sim 0.33 - 0.6 \qquad L \sim 4 - 15 \ kpc$ $dV/dz \sim 10 \ km/s/kpc \qquad V_{0} \leq 20 \ km/s$

This "standard model" works well...agreement with many measurements However, galactic wind velocities cannot be **too large**

> For a long time this was considered okay: **no evidence** that Milky Way exhibited a galactic wind

However: ROSAT experiment measured an enhanced X-ray emission toward galactic center.

[Snowden, et. al., Astro.Phys.J 1997, 485, 125]

This emission is best modeled with a thermal + CR-driven galactic wind with moderate velocity

[<mark>Everett, et. al</mark>., Astro.Phys.J 2008, 674, 258]

 $173 \le |V_{conv}| \le 760 \, km/s$

This "standard model" works well...agreement with many measurements However, galactic wind velocities cannot be **too**

large

For a long time this was considered okay: **no evidence** that Milky Way exhibited a galactic wind

However: ROSAT experiment measured an enhanced X-ray emission toward galactic center.

[Snowden, et. al., Astro.Phys.J 1997, 485, 125]

This emission is best modeled with a thermal + CR-driven galactic wind with moderate velocity

[<mark>Everett, et. al</mark>., Astro.Phys.J 2008, 674, 258]

$$173 \le \left| V_{conv} \right| \le 760 \, km/s$$

[Everett, et. al., Astro.Phys.J 2008, 674, 258]

The SOFT \mathcal{Y} -RAY GRADIENT

SNR (pulsar) source distribution peaks towards galactic center

>50 MeV Photon emission dominated by CR interactions with ISM

Naively: Photon emission intensity should follow SNR distribution

IT DOESN'T: EGRET, COS-B observed soft gradient

Can be explained by strong "mixing" due to convective winds. [Breitschwerdt, Dogiel, Volk, A&A 2002, 385, 216]

INTEGRAL Bulge/Disk Ratio

Type-1a SN can produce copious positrons via β -decay of ${}^{56}Co$

Annihilation with electrons observed through 511 keV line emission

&

SN1a concentration higher in disk than galactic bulge Low energy positrons don't diffuse significantly: $D_{xx} = \beta D_0 (\rho / \rho_0)^{\delta}$

SO, expect annihilation close to sources

- Computed annihilation rate in bulge/disk ~ 0.1
 - **INTEGRAL** observed B/D ~ 5

Radially-dependent galactic wind transports positrons from disk to bulge. [N. Prantzos, A&A, 449, 869 (2006)]

Anisotropic Diffusion

Ultimately need to include higher velocity galactic winds.

>>> Spatially dependent, ANISOTROPIC diffusion. [Gebauer, de Boer, arXiv:0910.2027 [astro-ph.GA]]

$$D_{xx} = \beta D_0 (\rho / \rho_0)^{\delta} \rightarrow D_{xx} = \beta D_0 (\rho / \rho_0)^{\delta} |z|$$

Here the **density** of scattering centers **DECREASES** with distance away from the galactic disk

Assuming
$$V = \hat{z}(V_0 + \frac{dV}{dz} \cdot z)$$
 transport in z-direction: $\frac{\partial \Psi}{\partial t} = q(r, t) + \nabla \cdot D_{xx} \nabla \Psi - \nabla \cdot (V\Psi)$
$$\left[\frac{\partial D_{xx}}{\partial z} - V_0 - \frac{dV}{dz} \cdot z\right] \frac{\partial \Psi}{\partial z} + D_{xx} \frac{\partial^2 \Psi}{\partial z^2} - \frac{dV}{dz} \Psi = \frac{d\Psi}{dt}$$

Anisotropic Diffusion

This approach is VERY NATURAL

rigidity=10MV **Diffusion intensity transitions** rigidity=10²MV rigidity=10³MV **SMOOTHLY** to free space rigidity=10⁴MV full lines: protons dotted lines: electrons z_c[kpc] No longer sensitive to cylinder height Instead: **DIFFUSION/CONVECTION** 3 BOUNDARY $Z \sim D_{xx} / V_c$ 16 18 10 12 14 R[kpc]

[Gebauer, de Boer, arXiv:0910.2027 [astro-ph.GA]]

20

Z_c for different rigidities

Anisotropic Diffusion

An interesting outcome:

REDUCTION in Anti-Proton Background

Modifications to GALPROP v50.1

Convective Wind:

$$V(r,z) = Q(r)(V_0 + \frac{dV}{dz} \cdot z) \qquad V_0 = 100 \, km/s \\ \frac{dV}{dz} = 35 \, km/s/kpc \qquad FOSAT$$

$$Q(r, z) = \left(\frac{r}{r_0}\right)^{\alpha} e^{-\beta(r-r_0)/r_0} e^{-|z|/z_s}$$

(Case & Bhattacharya) $\alpha = 1.69$ $\beta = 3.33$ $r_0 = 8.5 \ kpc$ $z_s = 0.2 \ kpc$

Diffusion Coefficient:

$$D_{xx} = \beta D_0 (\rho / \rho_0)^{\delta} \qquad |z| < 1 \, kpc$$
$$D_{xx} = \beta D_0 (\rho / \rho_0)^{\delta} |z|^{\alpha} \qquad |z| \ge 1 \, kpc$$

Combined Fit	Parameter	Best Fit Value	3σ Range
B/C, ¹⁰ Be/ ⁹ Be $\chi^2_{min}/n_{dof} = 38.3/31$	α	1.0	> 0.27
	D_0	$4.6\times10^{28}~{\rm cm^2/s}$	4.3 - 5.1 $\times 10^{28} \text{ cm}^2/\text{s}$
	v_A	52 km/s	47 - 58 km/s
	δ	0.38	0.35 - 0.43
B/C, ¹⁰Be/⁹Be, \bar{p}/p $\chi^{2}_{min}/n_{dof} = 73.7/54$	α	1.0	> 0.51
	D_0	$4.4\times10^{28}~{\rm cm^2/s}$	4.1 - 4.8 $\times 10^{28} \text{ cm}^2/\text{s}$
	v_A	$46 \rm \ km/s$	43 - 49 km/s
	δ	0.36	0.33 - 0.38

With strong convection: Best fits occur with anisotropic diffusion coefficient.

Decent fit to B/C

Excess in \overline{p}/p flux

Fit to PAMELA, B/C, Be^{10}/Be^{9}

Degraded fit to B/C

Marginal fit

Conclusions

• Hints that Milky Way drives a strong galactic wind - existing CR models cannot support this.

- Viable model with adoption of anisotropic diffusion
- Resulting reduced anti-protons means that a light neutralino is not ruled out?
- •CR propagation (backgrounds) extremely important (overlooked by many?).