Study of Strangeness Production in Underlying Event at 7 TeV

Tomas Hreus

Introduction: Underlying Event (1)

Underlying event (UE) in the presence of hard parton-parton scattering: - any hadronic activity in addition to what is attributed to hadronization of partons involved in the hard scatter

- attributed to multiple parton interactions (MPI) and beam-beam remnants

Introduction: Underlying Event (2)

Topological structure of the hard scattering can be used to characterize the UE activity (transverse region)

Correlation between scale of hard process and UE activity

Strangeness Production

- an important ingredient in understanding the nature of the strong force
- production of s hadrons is relatively suppressed wrt hadrons made of u/d quarks
- amount of strangeness suppression is an important component in MC models

T. Hreus, IIHE internal seminar, 05/05/2011

Strangeness Production

- KOs (m=0.497 GeV, ct=2.68cm) $\rightarrow \pi + \pi -$ (69%)
- Λ (m=1.115 GeV, ct=7.89cm) → p+ π− (64%)
- Abar (m=1.115 GeV, ct=7.89cm) \rightarrow p- π + (64%)

Two tracks forming a secondary vertex, that makes 3 particle hypotheses

Event Selection

Using 7 TeV data from 2010

/MinimumBias/Commissioning10-Jun14thReReco_v1/RECO /MinBias_TuneD6T_7TeV-pythia6/Summer10-START36_V10_SP10-v1/GEN-SIM-RECODEBUG

Primary vertex:

dZ(vtx, beamspot) < 10cm Number of tracks > 4 (ndof > 4)

Leading Track-jet (anti-kt algr.): tracks with pT > 0.5 GeV and |eta|<2.5

V0 Selection

Tracks:

 $|\eta| < 2.5$ pT > 0.3 GeV Nhits >= 3 χ^2 / ndf < 5

secondary vertex:

Distance of closest approach of both tracks < 1cm χ^2 / ndf < 7 $d_T > 8 \sigma(d_T)$; σ accounts for beam spot and sec. vertex errors

V0:

 $|\eta| < 2.0$ 0.5 < pT_KOs; 1.0 < pT_ Λ , Λ bar Transverse flight distance > 1 cm

Leading Track Jet

direction

00

Toward

Away

Transverse

Transverse

60°

120°

Kinematic Fit: Principle

Kinematic fit = iterative minimization of the χ^2 function with kinematic constraints, using covariance of track parameters

3 constraints applied:

- vertexing (daughter tracks come from the same point)
- **pointing** (V0 points to the primary vertex)
- fixed V0 mass to V0 PDG value

Kinematic Fit: V0 Identification

Result of the fit:

- fitted daughter track parameters (pt, θ , ϕ)
- $-\chi^2$ (probability)

Fit done separately for KOs, Lambda and Antilambda hypotheses:

 $\chi^2 \operatorname{prob}(KOs)$ vs $\chi^2 \operatorname{prob}(\Lambda)$ vs $\chi^2 \operatorname{prob}(\Lambda bar)$

The mass hypothesis with the highest χ^2 probability dictates the V0 identification.

Fits with all probabilities < 5% are rejected.

Kinematic Fit: Remaining Background

matched to primary V0

not matched to primary V0

Primary-matched within $R(\Delta \eta \Delta \phi) < 0.1$ and $\delta pT < 0.1$

Background to VO sample estimated from MC:

Background for KOs~1%Background for Λ ~4%Background for Λ bar~6%

= ambiguous identification, photon conversions, nuclear interaction with material (some sources still to be understood)

10

V0 Correction

V0 Correction = 1 / (acceptance x efficiency)

acceptance is restricted to kinematic range of sufficient V0 selection efficiency

- small systematics expected

efficiency is estimated with detailed MC

KOs Correction: Acceptance

Acceptance definition: N_acc / N_gen

N_gen = KOs generated inside: 0.5 < pT < 4.0 GeV $|\eta| < 2.0$ N_acc = fraction of N_gen which passed the acceptance cuts: pT_daughters > 0.3 GeV [n_daughters] < 2.5

gen transv. flight dist. > 1 cm

(simulated isotropic decay of gen KOs)

Lambda decay:

- need angular distribution of decay proton
- Acc*eff depends on Lambda polarization
- never measured!

T. Hreus, IIHE internal seminar, 05/05/2011

KOs Correction: Efficiency

Efficiency definition: N_rec / N_acc

N_rec = KOs passed all reco cuts: |η daughters| < 2.5 pT_daughters > 0.3 GeV |η KO| < 2.0 pT_KOs > 0.5 GeV Transverse flight distance > 1 cm, chi2prob > 0.05

0.6 K0s pT [GeV] 3.5 0.5 0.4 2.5 0.3 2 1.5 0.2 0.1 0.5 -1.5 -0.5 1.5 -1 0.5 2 0 1 KOs η

Efficiency is sufficient

MC is describing efficiency correctly (*lifetime test by Pascal and QCD group*)

→ small systematic uncertainties expected on the rates.

T. Hreus, IIHE internal seminar, 05/05/2011

V0 Correction: Acc x Eff

Closure Test (MC)

- compare TRUE MC distribution to corrected reconstructed level (acceptance, efficiency, background subtracted)
- corrections not perfect
- work in progress

Rates

- acc*eff correction applied
- corrected for background (bin-by-bin basis)
- similar trend with track-jet pT as for primary charged particles: strong correlation with hard scale following by a plateau

Kinematic Fit: DQM

- Kinematic fit allows a detailed study of track parameter pulls:
- contribution to tracker DQM

rel.
$$bias_{unc-fit} = \left\langle \frac{x_{unc} - x_{fit}}{\sigma(x_{unc} - x_{fit})} \right\rangle$$

Conclusion & Plans

- study of rates of the strange particles (K0s, Λ , Λ bar) in the underlying event
- developed a kinematic fit to select relatively clean VO sample
- efficiency and background seem under control
- ready for interesting measurements, i.e: Gosta Gustafson on Lambda polarization:

"Clearly you should measure the polarization if it is possible, also if theorists do not expect a noticeable effect. The most interesting results are the unexpected ones."

Plans

- correction of track-jet pT
- evaluate systematic uncertainties
 - V0 selection efficiency
 - V0 acceptance (different PYTHIA tunes)
 - trigger and event selection
- write PAS/paper

Scalar pT Sum

