Proton structure : results from HERA

Amita Raval, DESY

IIHE, March 21, 11

Amita Raval

amita.raval@.cern.ch

Structure of the proton

 $xu_v xd_v$ valence quark distributions xg gluon momentum distribution xS combined sea quark distribution Q² is resolving power of probe x is momentum

x is momentum fraction carried by struck quark

NB: gluon and sea quark are scaled down by 20%!

Structure of the proton

Gluon momentum & combined sea quark (xg, xS) distributions dominate the structure of the proton, starting at x ~ 0.2!

Shown are Parton Distribution Functions (PDFs) from HERA, **HERAPDF1.0** with

- experimental
- model
- parametrization uncertainties

Parton Distribution Functions

What are Parton Distribution Functions?

- They reflect partonic content of proton → provide probability density of finding a parton in a proton carrying its momentum fraction x at scale Q²
- Partonic content is universal → PDFs can be used to make predictions for other processes involving protons, eg. cross sections in proton-proton collisions at LHC
- Are determined experimentally (non-perturbative)
- IF PDFs are precisely determined
 - \rightarrow provide a stringent test of SM
 - \rightarrow can provide a standard candle against new phenomena
 - -- controlling QCD background
 - -- allowing exploration of properties of new particles

... BUT this requires a precise knowledge of the proton-parton distributions which come from the measurements at HERA

HERAPDFs: impact on LHC

W production can be used to determine luminosity of LHC because this measurement can be done with great accuracy

Large extension of knowledge due to HERA

Persistent experimental effort over the last four decades supported by theoretical developments (LO-NLO-NNLO) has extended the explored space in x, Q² compared to the original SLAC results.

HERA data, the main source of knowledge on proton structure, cover most of the x,Q² plane

HERAPDF1.0:

- utilize $\pounds = 230 \text{ pb}^{-1}$
- contain combination of 1402 data points (measurements from 14 publications) to obtain 741 cross-section measurements covering

$$-0.045 < Q^2 < 30000 \text{ GeV}^2$$

 $-6x10^{-7} < x < 0.65$

HERA to LHC kinematics \rightarrow assume validity of (N)NLO DGLAP equations and extrapolate HERA results into the LHC region

HERA operation

HERA: electron-proton collider at DESY, Hamburg delivered luminosity between 1992 and 2007 HERA I: 1992 – 2000 HERA II: 2003 - 2007

End of an (H)ERA

ZEUS HALL on midnight June 30, 07

HERA operation

- average (lumi weighted) polarization achieved: 30 40%
- e⁺p, e⁻p samples balanced
- ~ 20 pb⁻¹ from low (E_p 460) & medium (E_p 575) energy running (F_L)
 ~ 0.5 fb⁻¹ collected per experiment

Deep inelastic e ± p scattering: probing the proton

At HERA, two deep inelastic scattering processes available to probe the proton:

Neutral current: exchange of γ or Z°
 Charged current: exchange of W[±]

$$Q^2 = -q^2 = -(k - k')^2$$

$$x = \frac{Q^2}{2p \cdot q} \quad y = \frac{Q}{2p \cdot q}$$

$$s = (p+k)^2 \quad Q^2 = x \cdot y \cdot s$$

Q² is resolving power of probe
x is momentum fraction carried by the quark (10⁻⁶ ~ 1)
y is inelasticity of e
s is CME

Deep inelastic e ± p scattering: probing the proton

Deep inelastic e±p scattering: NC cross section

NC DIS: $ep \rightarrow eX \longrightarrow gluons$, sea quarks and valence quarks e± proton $\frac{d^2\sigma(e^{\pm}p)}{dQ^2dx} = \frac{2\pi\alpha^2}{Q^4x}Y_+ \left(F_2 - \frac{y^2}{Y_+}F_L \mp \frac{Y_-}{Y_+}xF_3\right); \quad Y_{\pm} = 1 \pm (1-y)^2$ photon Define polarization quar of exchanged boson valence quarks valence + sea quarks gluon Structure functions F_2 , F_L and xF_3 encapsulate parton content of p dominates over most of phase space, except high Q^2 & large y F₂: xF₃: non-zero at high $Q^2 \rightarrow$ parity violating weak effects from γZ interference at $Q^2 \sim M_7^2$ (NB: notice the 'sign of xF₂) F_1 : sizable at large y \rightarrow gluon radiation in the proton

Deep inelastic e ± p scattering: CC cross section

CC DIS: $ep \rightarrow vX$ ---> valence quarks: flavor separation + more ...

$$\frac{d^2 \sigma^{CC}(e^+ p)}{dQ^2 dx} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right) \left[\overline{u} + \overline{c} + (1 - y)^2 (\overline{d} + s) \right] \quad \times (1 + \mathsf{P}_{\mathsf{e}})$$
$$\frac{d^2 \sigma^{CC}(e^- p)}{dQ^2 dx} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2} \right) \left[\overline{u} + \overline{c} + (1 - y)^2 (\overline{d} + \overline{s}) \right] \quad \times (1 - \mathsf{P}_{\mathsf{e}})$$

Combination of charge and helicity conservation provides a flavour specific probe of the proton PDFs

e⁻p: sensitive to u valence q e⁺p: sensitive to d valence q → poorly constrained

NC and CC cross sections

Message:

NC and CC measurements may be used to determine the combined sea quark distribution functions, xS, and the valence distributions, xu_v , xd_v

QCD analysis in DGLAP formalism also allows the gluon momentum distribution, xg, in the proton to be determined (from scaling violations)

DIS: testing ground for SM

SM provides excellent description of data over many orders of magnitude → testing ground for SM and QCD

Neutral Current DIS:

- low Q²: Υ exchange dominates (described by F₂)
- high Q²: Z^o contribution significant (described by xF₃); Z/γ interference:
 - constructive in e-
 - destructive in e+

Charged Current DIS:

- Sensitive to flavor separation and increase/decrease σ
 - e-p (u) enhanced
 - e+p (d) suppressed

CC σ similar to NC σ at high Q² (~ M^2_W) \rightarrow EW unification

The electron probe behaves as expected!

Deep inelastic e+p scattering: CC cross section

Deep inelastic e+p scattering: CC cross section

$$\frac{d^2\sigma(e^+p)}{dxdQ^2} = (1+P)\frac{G_F^2}{2\pi}\frac{M_W^4}{(Q^2+M_W^2)^2}[(\overline{u}+\overline{c})+(1-y)^2(d+s)]$$

Provides a test of chiral structure of SM → parity non-conservation

CC e⁺p DIS cross section becomes zero for fully left-handed ($P_e = -1$) positron beams A NON-zero cross section at $P_e = -1$ might point to a right-handed W!

Test of chiral structure of SM

HERA I CC: ep \rightarrow vX

H1 and ZEUS combined data

Comparison between • σ (CC e+p) and σ (CC e-p) • and to HERA1 PDF

SM describe the data well

Data show flavor sensitivity to charge of electron probe

Final HERA I results $\rightarrow \dots$

HERA I CC: $e-p \rightarrow vX$

JHEP01 (2010) 109

10²

10

1

10 -1

HERAINC: $ep \rightarrow eX$

$$\frac{d^2\sigma(e^{\pm}p)}{dQ^2dx} = \frac{2\pi\alpha^2}{Q^4x}Y_+ \left(F_2 - \frac{y^2}{Y_+}F_L \mp \left(\frac{Y_-}{Y_+}xF_3\right)\right) \xrightarrow{V_+}{Z_+} 10^{3}$$

Dominates at high Q²

JHEP01 (2010) 109

At high Q²: contribution from interference term

H1 and ZEUS

HERAINC: $e^+p \rightarrow e^+X$

Low Q²

$$\tilde{\sigma} = F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)$$

Good agreement between data and NLO QCD over several orders of magnitude in both x and Q² Precision approaching 1%!

As Q^2 grows, $F_2(x,Q^2)$ shows a rise as $x \rightarrow 0$

Scaling violation is an indirect hint of something other than valence quarks...

Scaling violation dramatic on a linear scale...

Large scaling violation at low x:

Indirect hint of large gluon density: contributions to quark component from gluon fluctuations

 \rightarrow gluon splits into quark pair \rightarrow y resolves the quark-pair

Combination of full published HERA-I NC/CC inclusive data $\mathcal{L} = 240 \text{pb}^{-1}$

Power of combining

Systematic uncertainties reduced as well as statistical errors Unprecedented precision due to cross calibration of detectors

Proton structure: more hints of gluon

At medium Q^2 , the measurement of F_2 is in the perturbative region

 $F_2(x,Q^2)$ shows a strong rise as $x \rightarrow 0$

The rise increases with increasing Q²

... at low Q^2 we start seeing a turn over \rightarrow hints of gluon (F_L)

Deep inelastic e±p scattering: gluon

- In quark-parton model, $F_L = 0$ for spin 1/2 quarks (spin $\frac{1}{2}$ quark absorbs spin -1 photon)
- In QCD, F_L > o due to gluon emission
- Large gluon density at low x implies sizable F_L
- F_L is a crucial test of QCD
- *F_L* arises from same mechanism which drives
 DGLAP -> powerful way to check DGLAP

QCD dynamics: directly probing gluon with F_L

FL is an independent structure function BUT

A challenging measurement:

- identify electrons at small energies
- measure at the edge of acceptance
- need different values of y for the same x and Q² → different proton-beam energies

Probing the gluon with F_L: H1

DIS reduced cross section (low x): $\tilde{\sigma} = F_2(x,Q^2) - \frac{y^2}{Y_+}F_L(x,Q^2)$

Linear fit to data at different com energies to obtain F_2 and F_L Relative normalization from low y data F_L vs QCD (HERAPDF1.0)

 F_L is where QCD expects it to be \rightarrow gives us confidence we understand DGLAP (\rightarrow QCD radiation) ... except at low Q², QCD predictions tend to underestimate data

Using NNLO or different heavy flavor schemes may help...

Probing the gluon with F_L:ZEUS

Aside...

- Extraction of F₂ without any assumption on F_L
- Most precise F₂ so far in this kinematic regime (medium Q²)

A perspective: what about quarks?

Rutherford scattering (1910)

"It's as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you." Ernest Rutherford

Hofstadter: Radius of nucleus (1955)

"One can only guess at future problems and future progress, but my personal conviction is that the search for ever-smaller and ever-more-fundamental particles will go on as long as Man retains the curiosity he has always demonstrated." Robert Hofstadter (Nobel lecture)

Deep inelastic scattering (1969)

The proton was not an elementary particle, instead it contained much smaller, point-like objects called partons.

Quark radius today

 $\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \cdot \left(1 - \frac{R_q^2}{6}Q^2\right)$ Is the quark point like? ZEUS ZEUS (prel.) e[±]p 0.44 fb⁻¹ 10 1.1 ----- $R_q^2 = (0.63 \cdot 10^{-16} cm)^2$ NN_{exp} 1.05 $R_{a}^{2} = -(0.57 \cdot 10^{-16} cm)^{2}$ 0.95 0.9 10³ 10 Quark Radius Limits (prel.) 10³ 104 Q² (GeV²)

> Any deviations? Not so far... The limit is: R_Q < 0.6 x 10⁻¹⁸ m We are probing down to 1/1000 proton radius!

Probing matter: a perspective

Probing matter: the future

Summary: which answers has HERA provided?

- HERA remains our source of information on proton structure
 - covering $0.045 < Q^2 < 30000 \text{ GeV}^2 6 \times 10^{-7} < x < 0.65$
 - probed down to 1/1000 of the proton radius
- Recent combined results of the H1 and ZEUS collaborations have allowed to determine proton's PDFs with unprecedented precision
- The improvements in the understanding of the PDFs are relevant for the physics program of the LHC
- Results still to come (NNLO PDFs, new DGLAP analysis based on the full HERA-II data samples) ...

HERA's reward...

HERAPDF1.0 vs HERAPDF1.5 (NNLO)

42

HERAPDF1.0 vs HERAPDF1.5

Extracting the essence of structure functions

HERAPDF1.0 - NLO QCD analysis of the combined HERA data

Separation of:

- experimental
- model
- parametrization uncertainties

Accurate xS and xg at low x due to precise measurement of F_2 !

HERAPDF1.0: crosscheck with Tevatron

Is HERA-only PDF compatible with Tevatron data?

The description of the D0 jet data LOOKS OK but what is the χ^2 for such jet data to HERAPDF1.5 central values?

HERAINC: $ep \rightarrow eX$

xF₃ determined by valence quark distributions and predicted to be only weakly depending on Q²

$$xF_3 \propto \sum_{i=u,d,\dots} (q_i - \overline{q_i})$$
$$xF_3 \sim \sigma(e^-) - \sigma(e^+)$$
$$\sim (2u_v + d_v)$$

Neglecting pure Z exchange term, generalized F_2 :

$$F_2^{\pm} \approx F_2^{\gamma} + k(-\upsilon_e \mp Pa_e)F_2^{\gamma Z}$$

Where:
$$k = \frac{1}{4\sin^2\theta_W \cos^2\theta_W} \frac{Q^2}{Q^2 + M_Z^2}$$

At leading order

$$F_2^{\gamma Z} = x \sum 2e_q v_q (q + \bar{q})$$

To a good approximation, asymmetry A- is a ratio of two structure functions...

Parity violation is observed via polarization asymmetry

HERAICC: $e_P \rightarrow v_X$ Inclusion of HERA II data

HERA I combined results

HERAI + II combined results

New HERA II measurements: increased precision at high Q²

Power of combining

Input: HERA I (1992 – 2000) dataset, ZEUS + H1 combined

Why combine?

- reduction in statistical error
- reduction in systematic error
 - -- fully uncorrelated
 - -- due to energy scale
- no gain in correlated errors
 - -- eg. theoretical calculations needed to extract experimental results...
- → effective cross-calibration of detectors wrt one another using a large sample of independent measurements

Power of combining

1) Uncorrelated uncertainties:

Statistical errors

- Point-to-point uncorrelated uncertainties:

e.g statistical errors due to MC simulations are added in quadrature to the statistical errors

2) Correlated uncertainties:

Point-to-point correlated uncertainties

e.g. electromagnetic and hadronic energy scale calibration Often common for CC and NC for a given experiment and run period

3) Overall normalisation uncertainty:

- Correlated for all data points for a given experiment and run period

4) Correlations between H1 and ZEUS:

- H1 and ZEUS use similar analyses methods

- largest from photo-production MC and hadronic energy scales

There are 110 systematic errors which are combined in quadrature with the statistical errors and 3 sources of errors from the averaging procedure are offset. - Small effects observed when errors are treated as correlated

F_L: ZEUS reduced cross sections

• ... hence limited statistical power

HERA operation: polarization

HERA II: 2002 - 2007

Via emission of synchrotron radiation, e beam at HERA becomes transversely polarized

Spin rotators were installed to obtain longitudinal polarization at both IPs

• polarization was measured in dedicated polarimeters

• average (lumi weighted) polarization achieved: 30 - 40%

Open questions

How do gluons contribute to nucleon spin?

What is the impact of quarks & gluons on the transverse dynamics?

Spatial resolution of quarks: HERA provides first hints via measurements of DVCS but only rudimentary information so far

Diffraction - still a puzzle

The white elephant in the room: the nucleus

Many questions remain... there is a need (and a hope) for new opportunities (detectors/colliders) to answer them!

Open questions: gluon

Open questions: gluon

We could do better in this phase space....

Need more statistics --> access to this kinematic range