

New physics SUSY searches with same-sign isolated dilepton, jets and MET at CMS

Dayong Wang (UF) Seminar at ULB 20110923

09/23/2011 Seminar at ULB

Dayong Wang

Probing the small with the large

 The uncertainty principle relates extremely small distances to very high energies

$$dp \cdot dx \sim \hbar \xrightarrow{p \sim E} 1 \text{ TeV} \propto \frac{1}{2 \times 10^{-19} \text{ meters}}$$

The size of accelarator increase with energy Probing tomorrow's physics with physics of today

- Detector, electronics, all supporting techniques
- Well known process as standard candle

2

Standard Model and Its Shortcomings

Atoms 4.6% Dark Matter 23% Its Shorcomings: (a partial list)

- <u>Does not include the</u> <u>gravitational</u> <u>interaction</u>
- <u>What about dark matter?</u>
- <u>Matter-Antimatter</u> <u>asymmetry</u>
- <u>The hierarchy problem</u>

Some of the shortcomings of the Standard Model can be overcome by introducing a new relationship between fermions and bosons known as Supersymmetry (SUSY).

Name	spin-0	spin-1/2	spin-1	
squarks, quarks	$(\tilde{u}_L \ \tilde{d}_L)$	$(u_L d_L)$	-	
(x 3 families)	ũ _R	u _R	-	
	∂ _R	d _R	-	
sleptons, leptons	$(\tilde{\nu}_L \ \tilde{e}_L)$	$(\nu_L e_L)$	-	
(x 3 families)	ẽ _₽	e_R	-	
Higgs, higgsinos	$(H_{u}^{+} H_{u}^{0})$	$(\tilde{H}^+_u \ \tilde{H}^0_u)$	-	
	$(H^0_d H^u)$	$(\tilde{H}^0_d \ \tilde{H}^d)$	-	
gluino, gluon	-	${ ilde g}$	g	
winos, W bosons	-	$\tilde{W}^{\pm} \; \tilde{W}^{0}$	$W^{\pm} W^{0}$	
bino, B boson	-	₿º	B^0	

The Minimal Supersymmetric Standard Model (MSSM)

5 mSUGRA Parameters M₀: common scalar mass at GUT scale M_{1/2}: common gaugino mass at GUT scale Tan(β): ratio of vaccuum expectation values of two Higgs doublets A₀: a common trilinear coupling constant at GUT scale sign(μ): the algebraic sign of the Higgsino mass parameter

SUSY searches at hadron colliders

- Generic searches addressing most possible final states
- Robust physics objects
 - leptons, jets, missing momentum, τ's...
- Data-driven background prediction for all searches
- Well established statistical techniques

All Channels covered by CMS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

SSDL signature in new physics scenarios

SUSY

- Phys. Lett. B 315(1993) 349
- Phys. Rev. D 52(1995) 133
- Phys. Rev. D 53(1996) 6241

Universal Extra Dimensions

- Phys. Rev. D 66(2002) 056006
- Pair production of fermionic top partners T5/3
 - JHEP 06(2008) 026
- Heavy Majorana neutrinos
 - Phy. Lett. B 400(1997) 331
- Same sign top-pair resonance in warped extra dimensions
 - JHEP 04(2009) 056

Part-II: The LHC and the CMS experiment

- General introduction
- Probe physics of tomorrow with physics of today
- Examples

• Leptonic: Level-1(hardware) endcap muon triggers

 Hadronic: understanding Missing Transverse Energy(MET)

The Large Hadron Collider(LHC)

A proton-proton collider

Parameter	Design	Achieved in 2010							
√s	14 TeV	7 TeV 2x10 ³² cm ⁻² s ⁻¹ 368							
Luminosity (L)	10 ³⁴ cm ⁻² s ⁻¹								
Bunches per beam	2808								

•The total expected events produced for process X in the data:

$$N^{\text{events}} = s \left(pp \to X \right) \cdot \int L \cdot dt$$

•In 2010 the LHC produced ~35 $pb^{\text{-1}}$ of good data

9 km

The Compact Muon Solenoid(CMS)

A general purpose particle detector capable of directly detecting all species of stable particles known to exist, except for the weakly interacting neutrino

- 15 meters in diameter
- 21 meters long
- 3.8 Tesla B-Field
- 100 meters underground
- 3,600 collaborators
- 180 institutions
- 38 countries

The CMS Cooridinate System

Directions of outgoing particles from proton collisions can be deduced from two observables:

- Azimuthal Angle: ϕ
 - \cdot Particles produced uniformly with respect to ϕ
- Pseudorapidity: η = -ln(tan(θ /2))
 - \cdot Particles produced approximately uniform with respect to η
 - \cdot NOT uniform with respect to θ
 - Difference in η between two particles is Lorentz Invariant under longitudinal boosts important since initial P_z is unknown

infinite 3.13

2.44

1.74

1.31

0.88

0.175

D

- Distance Metric: $(\Delta R)^2 = (\Delta \phi)^2 + (\Delta \eta)^2$

Physics selection at the LHC

Physics selection at the LHC

The E_{τ} is calculated by summing vectorially over the transverse momenta of all of the reconstructed particle candidates in the event:

$$|\vec{E}_{T}| = |\sum_{j}^{\text{all particles}} \hat{x} \left(p_{T}^{j} \cdot \cos(j) \right) + \hat{y} \left(p_{T}^{j} \cdot \sin(j) \right)|$$

The total hadronic activity in the event is characterized by H_T : $H_T = \sum_j^{\rm all \, jets} |p_T^j|$

Part-III: the analysis

Full details see: JHEP 1106, 077 (2011)

16

Search signatures

m_B drives the production cross-section

 Δm_{BC} influences the total hadronic activity

 Δm_{CA} influences the p_{T} of the leptons

Missing transverse energy (E_T^{miss}) is large so long as Δm_{BA} is large

Tau enhancement can be a natural outcome in various SUSY models

A: LSP [dark-matter motivated; expect E_T^{miss}]

- **B: gluino/squark** [large σ; expect jets]
- C: chargino [gives exclusive same-sign leptons]

Four search regions

Tuna

Background Classification

туре	Sources
2 same-sign prompt leptons: N_{p-p}^{SS} – small, but irreducible, contribution – reasonably well understood \rightarrow taken from MC	$qq \rightarrow qqW^{\pm}W^{\pm}$, WZ, ZZ, WWW, t \overline{t} W, double parton scattering 2´($qq \rightarrow W^{\pm}$)
2 opposite-sign prompt leptons + charge N_{p-p}^{OS} misidentification (appears as same-sign) - small contribution - relying on MC is not safe \rightarrow derive from data	$t \overline{t}$, tW , Drell-Yan, $W^{\pm}W^{m}$, WZ, ZZ
1 prompt lepton + 1 fake lepton N_{p-f}^{SS} - dominant contribution - relying on MC is not safe \rightarrow derive from data	$(t \overline{t}, tW, tb) \rightarrow lv + jets$ W + jets, Drell-Yan + jets VV $\rightarrow l + jets$
2 fake leptons N_{f-f}^{SS} - sub-dominant contribution - relying on MC is impossible \rightarrow derive from data	$\begin{array}{c} QCD \\ t \ \overline{t} \ (\text{all-hadronic}) \end{array}$

$$N_{bgd}^{tot} = N_{p-p}^{SS} + N_{p-p}^{OS} + N_{p-f}^{SS} + N_{f-f}^{SS}$$

Lepton Selection

Muons (μ) and electrons (e) up to $|\eta| < 2.4$ are reconstructed using standard techniques on CMS. This analysis focuses on the parameter space that features "soft leptons" (low transverse momenta) $- p_T(\mu) > 5$ GeV & $p_T(e) > 10$ GeV

A requirement is placed on the transverse impact parameter at $d_0 < 0.02$ cm in order to suppress leptons from heavy-flavor quark decays.

Prompt-Prompt Same-Sign Di-Leptons: N^{SS}_{p-p}

- These backgrounds include:
 - **Di-boson production:** $q \bar{q} \rightarrow WZ$, ZZ
 - **Double "W-sstrahlung":** $qq \rightarrow q'q'W^{\pm}W^{\pm}$
 - Double-parton scattering: $2(qq \rightarrow W^{\pm})$

- Small predicted cross-sections, so these are not expected to be abundant in only 35pb⁻¹ of data
- Monte-Carlo based estimates are therefore used with:
 - 50% error assumed for cross-sections (conservative)
 - 18% error from experimental acceptance

Di-lepton channel	$\mu\mu$	<i>ee</i>	е µ	total
Number of expected events for VV	0.006	0.000	0.019	0.025
Theoretical systematic error	± 0.003	± 0.007	± 0.010	± 0.013
Number of expected events for $qq \rightarrow q'q'W^{\pm}W^{\pm}$	0.021	0.012	0.025	0.058
Theoretical systematic error	± 0.011	± 0.006	± 0.013	± 0.029
Total Prompt-Prompt backgrounds	0.026	0.012	0.044	0.083
Experimental errors	± 0.005	± 0.002	± 0.008	± 0.015
Total errors	± 0.014	± 0.007	± 0.023	± 0.044

$$N_{p-p}^{SS} = 0.083 \pm 0.044$$

09/23/2011

Prompt-Prompt Opposite-Sign Di-Leptons: N^{OS}

(charge mis-reconstruction)

- **Probability** for this mistake (charge mis-ID) to occur can be measured in data by looking at rate of Z-boson decays, which feature same-sign electrons
- Multiply this charge flip rate by # of oppositesign dilepton events in the signal region (mostly tt)

Fake-Prompt Same-Sign Di-Leptons: \underline{N}_{p-f}^{SS}

• <u>Recipe for the Btag-And-Probe Method</u>

- Select a bb control sample using a high-purity b-jet tagging algorithm
 - Tag = b-tagged jet
 - Probe = lepton in opposite hemisphere: $\Delta R(lepton, jet) > 1.0$
- Build a RelIso template for the probe-leptons in bins of lepton- $p_{_{\rm T}}$ and jet multiplicity (N $_{_{\rm jets}})$
- Use tt MC to re-weight the templates
 - MC should model p_T and N_{jets} well
- Obtain the RelIso selection efficiency for fake leptons in top events from re-weighted templates
- Multiply efficiency by # of events in the *sideband region*

<u>sideband region</u> : all final selection requirements imposed except for RelIso on the least isolated lepton

Fake-Prompt Same-Sign Di-Leptons:N^{SS}_{p-f}

Re-weighted RelIso templates for muons and electrons

Gray curve shows the re-weighting procedure performed on QCD MC, and it agrees nicely with tt MC (red). The **black markers** show the re-weighting procedure with data.

$$N_{p-f}^{SS} = 0.522 \pm 0.354$$

 l_1^{\pm}

Fake-Fake Same-Sign Di-Leptons: N_{f-f}

(aka QCD)

• The background from QCD events can be estimated by exploiting the fact that the 3 variables used in the final selection are <u>uncorrelated</u>

(*i*) RelIso $(l_1^{\pm}) < 0.15$ (*ii*) RelIso $(l_2^{\pm}) < 0.15$ (*iii*) $E_T > 30$ GeV

- Qualitatively, for QCD events we expect
 - The two fake leptons to come from different jets
 - RelIso calculations should involve different tracks and calorimeter deposits
 - The missing energy (if any) should come from jet mismeasurement and not from neutrino activity
- The 3 selection efficiencies should factorize:

$$e_{l_1 l_2 E_T} = e_{l_1} e_{l_2} e_{E_T}$$

• This background estimation method is aptly named: "The Factorization Method"

Fake-Fake Same-Sign Di-Leptons: N_{f-f}

Proof that RelIso(μ_1) factorizes from RelIso(μ_2) in QCD:

 $e_{m_1m_2} = e_{m_1}e_{m_2} = (e_m)^2$

Proof that RelIso factorizes from MET in QCD:

Summary of Background Rates

And when we count the total number of events observed in the data which pass all event selection requirements, we get...

Observed Event Yields in Signal Region for 35 pb⁻¹

$$N_{\rm bgd}^{\rm tot} = N_{p-p}^{SS} + N_{p-p}^{OS} + N_{p-f}^{SS} + N_{f-f}^{SS} = 0.80 \pm 0.33$$

1 event is observed from the $e^{\scriptscriptstyle t}e^{\scriptscriptstyle t}$ channel, which is consistent with the background only hypothesis.

Grand summary of results

Search Region	ee	μμ	еµ	total	95% CL UL Yield)		C	MS √s =7 TeV	$(1)_{int} = 35 \text{ pb}^{-1}$
Lepton Trigger						3	└ ● observe	ed		, 4111 00 00 -
$E_T^{\rm miss} > 80 {\rm GeV}$							bkqd wi	th two fake lep	otons	1
MC	0.05	0.07	0.23	0.35			bkgd with one fake lepton			
predicted BG	$0.23^{+0.35}_{-0.23}$	$0.23^{+0.26}_{-0.23}$	0.74 ± 0.55	1.2 ± 0.8			opposite-sign leptons and charge mis-identification			
observed	0	0	0	0	3.1		same-sign leptons			
$H_T > 200 \text{ GeV}$						2	F	T	Т	-
MC	0.04	0.10	0.17	0.32		S	-			-
predicted BG	0.71 ± 0.58	$0.01^{+0.24}_{-0.01}$	$0.25^{+0.27}_{-0.25}$	0.97 ± 0.74		nt	ŀ			-
observed	0	0	1	1	4.3)e	- -			
H_T Trigger						і ш́.				
Low- p_T						1			e	
MC	0.05	0.16	0.21	0.41						
predicted BG	0.10 ± 0.07	0.30 ± 0.13	0.40 ± 0.18	0.80 ± 0.31						
observed	1	0	0	1	4.4					-
	$e \tau_h$	$\mu \tau_h$	$ au_h au_h$	total	95% CL UL Yield					- -
τ_h enriched						0				
MC	0.36	0.47	0.08	0.91			Lept Trig	Lept Trig	H⊤ Trig	H⊤ Trig
predicted BG	0.10 ± 0.10	0.17 ± 0.14	0.02 ± 0.01	0.29 ± 0.17			E ^{miss} >80	H _⊤ >200	leptons	taus
observed	0	0	0	0	3.4					

- No excess observed in any signal region
- Upper limits range from 3.1 to 4.4 events at 95% C.L.
 - Bayesian w/ flat prior on signal strength
 - Lognormal pdf for systematic errors
 - Errors on bkg and signal assumed to be uncorrelated

Exclusion region in cMSSM exceeds LEP and Tevatron exps

29

0.98 fb⁻¹ updates (July 2011)

Part-IV: Interpretation of the results

- Efforts for model independent interpretations
 - Signal Acceptance Model
- Examples
 - Exclusion limit for the benchmark mSUGRA parameters
 - SUSY models with Sneutrino as LSP
 - Same sign tops from the FCNC based Z' models

Signal Acceptance Model

Lepton efficiencies: $\epsilon(x) = par(1) + par(2) \cdot \left(erf\left(\frac{x-x_0}{par(3)}\right) - 1\right)$

Lepton isolation corrections:

 $\Delta \varepsilon = -0.10 \frac{\langle n \rangle - 25}{15},$

where $\langle n \rangle$ is the average number of stable charged particles with $p_T > 3$ and $|\eta| < 2.4$ H_T : smear by 20-30% depending on the generated H_T (quarks and gluons from hard-scatter)

 E_{T}^{miss} : smear by 7-25% depending on the generated H_{T}

mSUGRA Exclusion Limits

It has become convention to show the limits on the m_0 vs $m_{1/2}$ plane for a particular (but arbitrary) choice of tan(β), A_0 , and sign(μ)

This is approach is common because it allows us to compare results and signal sensitivities to other searches across different experiments

Limits on the models with sneutrino as LSP

Z' model for Tevatron top pair AFB: Implications for LHC

Exclusion limits on FCNS based Z' model

Summary and Outlook

- Searched for new physics with two same-sign leptons + Jets + MET in pp-collisions at 7 TeV using the data set of L=35 pb-1 and 0.998 fb-1
 - Established and validated data-driven techniques for evaluating backgrounds in the context of the experimental signatures
 - Observed no signs of new physics; set limits on new physics; event yields in 4 signal regions
 - Provided parameterization of a signal acceptance to allow for interpreting the observed experimental limits in a context of a broad range of models
 - The results have exceeded LEP&Tevatron exps
- We will learn more soon
 - 5fb⁻¹ is now participated by end of 2011 pp run

