

David Heereman for the IceCube Collaboration IIHE Internal Seminar

Outline

- Supernovae & Neutrinos
- The IceCube Detector
- Noise Properties
- SN Neutrino Interactions in Ice
- Detection of Cerenkov Photons in IceCube
- Analysis Method
- Detector Performance and its Simulation

Improving IceCube's Supernova system

Supernova

- Supernova: F. Zwicky & W. Baade (Proceedings of the National Academy of Science 20 (5) 1934) *"The phenomenon of a super-nova represents the transition of an ordinary star into a body of considerable smaller mass"*
- Predicting Neutrinos from core-collapse SN: G. Gamow & M. Schoenberg (Phys. Rev. 58:1117 (1940)) "These neutrinos [...] must carry away very large amounts of energy [...] [and] must cause a rapid contraction of the stellar body [...] resulting in a catastrophic collapse"

Thermonuclear vs. Core-Collapse

[Georg Raffelt, MPI Phsics, Munich - Lecture "Supernova Neutrinos" at ISAPP 2011, Varenna Italy]

Neutrino Luminosity & Energy

25/01/12

ICECUBE

David Heereman 5

Neutrino Luminosity & Energy

25/01/12

ICECUBE

South Pole

The IceCube Neutrino Observatory

25/01/12

Scientific goals:

- Neutrino point source searches
- Atmospheric fluxes of neutrinos & muons
- WIMPs & magnetic Monopoles
- Diffuse neutrino flux
- *Supernova search*

Detection principle:

• Cerenkov radiation emission from charged byproducts of neutrino interaction in the ice

Advantages of Ice:

- Clear : Long absorption length $(\sim]96 \text{ m})$
- No radioactivity, nor bio-luminescence

Perfect for detection of Cerenkov light !

The IceCube Neutrino Observatory

Noise Properties of the DOM

SN Detection Method: Counting single DOM hit rates on top of low noise background

- Poissonian noise (\approx 225 Hz)
- Atmospheric muons (≈ 16 Hz)
- Thermal emission from photo-cathode $(< 10 \text{ Hz})$
- **PMT** induced after-pulses (\approx 30 Hz)
- Correlated noise from Cerenkov radiation and scintillation in the glass of the photomultiplier and the surrounding sphere (radioactive decays)

ו
נ **standard DOM** (4800): **~ 540 Hz** high quantum efficiency DOMs (360) ~ 680 Hz

- Bursts increase in rate and size as the PMT gets colder: $r(T) = G \cdot A_C \cdot e^{-\frac{T}{T_r}}$
- Uncorrelated part follows Richardson's Law: $r(T) = A \cdot T^2 \cdot e^{-\frac{W}{kT}} + C$

IIHE Internal Seminar David Heereman 2008 2009 10

Noise Studies for SN DAQ

- Artificial dead-time $(250\mu s)$ to reduce
- With applied dead-time: 285 ± 25 Hz

Data **Gauss fit Lognormal fit**

SN Neutrino Reactions in Ice

- Inverse β decay accounts for \sim 94% of all interactions: $\bar{\nu}_e + p \rightarrow n + e^+$
- Reaction with the Oxygen-core makes up 1% and $\propto E_\nu^{3/2}$: $\nu_e + 0 \rightarrow F + e^+ \& \bar{\nu}_e + 0 \rightarrow N + e^+$
- Scattering on Electrons (3% and $\propto E_{\nu}$): $\nu_1 + e^- \rightarrow \nu_1 + e^$ with l= e, μ, τ
- Electrons/Positrons in MeV Range: $E_{\rho+} \approx 22 \text{ MeV}$

No single reconstruction possible due to short track length (~ 0.56cm*Ee+(MeV)) No single reconstruction possible due to short track length (~ 0.56cm*Ee+(MeV)) But: low noise and high statistics lead to a collective increase of the hit rate in the whole detector in case of a Supernova in the whole detector in case of a Supernova

Cerenkov Photon Signal in IceCube

- Low energy neutrinos interact mainly via inverse beta decay
- $E_{\rho+} \approx 22 \text{ MeV}$
- N_y rises with $\sim E_v^3$

(cross-section $\sim E_v^2$ & Cherenkov light production directly proportional to track length)

Simulation of Cherenkov photons radiated by 10 e⁺ (15 Mev avg. Energy, thinned out)

Track length: ~ 0.56 cm \cdot E_{e+} (MeV) (GEANT4)

 $\text{N}_\text{y}^\text{300-600nm}\!\sim178\bm{\cdot}\text{E}_\text{e+}\text{(MeV)}$ (Frank-Tamm)

Cerenkov Photon Signal in IceCube

Determing # of detected signal hits N_{y}^{detect} from # of neutrinos crossing the detector: Approach: GEANT-3.21 GCALOR based simulation of individual events:

- SN $v_e \& \overline{v}_e$ on protons, electrons and oxygen
- e⁺ annihilation
- neutron capture
- photon propagation in the ice including dust layer effects
- detector geometry & DOM response
- *10⁷neutrino interactions simulated.* Projected on horizontal plane
- 180.000 \ldots 3.600.000 v induced PMT hits from SN ω 10kpc distance

Analysis Method

SN system in IceCube is based on counting noise rate increase (per DOM) on top of background

Individual DOM's rate expectation values $\langle r_i \rangle$ calculated in moving 300s window: ±30s around t0 excluded for the case of wide signals' impact on mean reates

Most likely *collective rate deviation* $\langle \Delta \mu \rangle$ of all DOM noise rates r_i from their individual rates $\langle r \rangle$: maximized Likelihood:

$$
\mathcal{L}(\Delta\mu) = \prod_{i=1}^{N_{\text{DOM}}} \frac{1}{\sqrt{2\pi} \langle \sigma_i \rangle} \exp\left(-\frac{(r_i - (\langle r_i \rangle + \epsilon_i \Delta \mu))^2}{2 \langle \sigma_i \rangle^2}\right) .
$$
\n
$$
\Delta\mu = \sigma_{\Delta\mu}^2 \sum_{i=1}^{N_{\text{DOM}}} \frac{\epsilon_i (r_i - \langle r_i \rangle)}{\langle \sigma_i \rangle^2} \quad \text{with} \quad \sigma_{\Delta\mu}^2 = \left(\sum_{i=1}^{N_{\text{DOM}}} \frac{\epsilon_i^2}{\langle \sigma_i \rangle^2}\right)^{-1} .
$$
\n
$$
\text{Indication for strength and homogeneity of the}
$$
\n
$$
\xi = \frac{\text{deviation from sliding average}}{\text{uncertainty of deviation}} = \frac{\Delta\mu}{\sigma_{\Delta\mu}}
$$

Detector Performance

Long term DOM rate behavior characterized by

 $r(t) = r_0 + c_1 e^{-t/\tau} + c_2 \sin(2\pi(t/\text{year}))$

Seasonal variation due to atmospheric muons (internal report 201107001)

- DOM rates distribution (after deadtime) better described by lognormal than by Gaussian
- Avg rate: 285 Hz (QE DOM) 359 Hz (HQE DOM)

Performance Simulation

- For SN explosion at 10 kpc distance, different models applied
	- 20 solar mass progenitor (Lawrence-Livermore: SN1987A modeled)
	- 8.8 solar mass progenitor O-Ne-Mg core modeled
- Significance & Galaxy Coverage:
	- # likely progenitors in Galaxy as fct of distance to Earth is important for simulation
		- Detection ability for SN in LMC with significance $\xi \sim 6$, in SMC ~ 3 (no SNEWS alarm!)
		- For Milky Way: observation of at least 25 ξ at 30 kpc!

Expected Signal

- Simulation of SuperNova at 10 kpc distance following LL & Garching models
- IceCube MC simulation with time dependent energy spectra

Clearly visible differences for normal and inverted hierarchy in LL model!

IIHE Internal Seminar David Heereman 2008 2009 18

Improving SN detection for IceCube

- Gain as much information as possible in case of a SN
	- Buffering of Hit Spooling Data at Pole
- So far IceCube has two parallel DAQ system
	- Slow stream: Hit rates recording for SN system (sni3daq)
	- Fast stream: PMT pulses' data stream (pdaq)
- Improvement: Combining the two systems
	- Implementation of an Interface
	- Implementation of raw data stream recording

Improving SN detection for IceCube

- My current work: **Improving SN detection for IceCube**
	- Improving Supernova DAQ
		- Development, testing & implementation of Interface and actual hit spooling at pole
	- SN Data Analysis (Hit Spooling)
		- Low level analysis of raw data
			- Development of standard procedures for raw data: on-line code
			- Optimal atmospheric muon rejection
- Efforts by others Groups
	- Noise Generation for new Noise Maker, after-pulse parametrization (Madison)
	- Study of optimal correlated noise rejection, muon rejection (Mainz)

Improving SN detection for IceCube

Current system: early separation of Sn DAQ and physical Hit data

Improvement: Hit spool file system to store raw data and access it at any time later

Summary

- *World's best detector for fine details in ν flux of close supernovae*
- No single track reconstruction but overall noise-rate increase detection
- Possible due to low noise (well understood with ongoing investigation)
- SN signal strong model dependent
- Distinction of neutrino mass hierarchy possible
- Improvements of the SN DAQ to gain information about type, direction & energy of individual neutrino
- Let's have a galactic Supernova!

Dynamics of the Collapse

t~0s: initial phase of collapse

- Inactive iron core continuously growing due to in-falling matter from outer shells
- Electron-pressure reduced: $e^+ + p \rightarrow n + v_e$

 \blacktriangleright M_{CH} is exceeded

- \bullet core gets gravitationally unstable & collapses
	- v are captured for density $\rho_{core} \approx 10^{11}$ g/cm³

t~0.1s: bounce & shock formation

- $\rho_{\text{core}} \approx 3 \cdot 10^{11} \text{ g/cm}^3$, degeneration pressure stops $collapse \rightarrow PNS$
- In-falling matter bounces back from incompressible core \rightarrow shock formation
- v_e captured and thermalized

Dynamics of the Collapse

t~0.12 s: shock propagation & ν_e burst

- Shock wave propagates and dissociates iron \rightarrow neutronization: $e^+ + N(Z,A) \rightarrow N(Z-1,A) + v_e$
- density decreases \rightarrow v_{e} escaping
- deleptonization peak (\sim 5 ms)

t~0.2 s: stagnation, ν heating & explosion

- Energy loss due to deleptonization & dissociation shock stagnation
- Matter accretion on PNS \rightarrow E_v & L_v
- PNS cooling via neutrino pair-production (\sim 10 s)
- Neutrinos deposing energy (heating) in layer between PNS and shock front

explosion

2d & 3d SN simulations

• Visualization of 2D & 3D models:

[Garching 2D Sim short & Hallmark Filaments](http://news.nationalgeographic.com/news/2010/04/100430-science-space-supernova-first-3d-model/) [Garching Group 15Msolar 2DSim long](http://wwwth.mpp.mpg.de/members/raffelt/talks2/animations/s15Gio_3D_827x768.mov) [Garching 3D sim](http://wwwth.mpp.mpg.de/members/raffelt/talks2/animations/movieGrad8.mov)

The DOM

- Spectral response : $300 \text{ nm} 600 \text{ nm}$ wavelength
- Peak Quantum Efficiency of 25% at 420 nm \rightarrow well-matching Cerenkov-signal spectrum & optical properties of the glacial ice
- QE of HighQE DOMs \sim 1.35 times higher with noise increase of 25%
- Dark count noise rate \sim 540 Hz for Temperatures between -43°C (1450m) and -20°C (2450m)
- Most PMTs operating at gain $= 10⁷$
- SPE-pulses with \sim 8 mV amplitude and 10 ns length
- Threshold of front end pulse discriminator set to 2 mV (= 10 \cdot RMS noise level)
- 85% of all SPE pulses pass the threshold
- **Full on-board digitization of the data!**

ICEO IBE

SN rate

References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro-ph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update.

Georg Raffelt, MPI Physics, Munich

25/01/12

ICEO IB

ISAPP 2011, 4/8/11, Varenna, Italy

Neutrino fluxes

- Simulation of an explosion of an 8-10 M_{\odot} progenitor star (Garching model)
- simulated till 0.8 seconds after bounce
- Flux parametrization:

 $\frac{d\Phi(E,\langle E\rangle,\alpha)}{dE}$ $F^{\alpha}(E,\langle E \rangle, \alpha) =$ $= \Phi_0 \frac{(1+\alpha)^{1+\alpha}}{\Gamma(1+\alpha)} \frac{E^{\alpha}}{\langle E \rangle^{1+\alpha}}$ $1+\alpha)E/\langle E \rangle$

Muon Background Subtraction

Over three years of data taking

V. Baum, L. Köpke and G. Kroll 'A study of SN alarms in IC40, IC59 and IC79', IceCube Note 201107001

SuperNova DAQ

Contributing Neutrino Reactions

Expected Rates

At 10 kpc distance IceCube will see between 180.000 and 3.600.000 ν induced PMT hits!

Exotic Signals

- Quark-star formation (quark-gluon plasma transition):
	- \overline{v} peak clearly visible and hierarchy dependent!

Ice Properties

Millisecond bounce time reconstruction

Cerenkov Photon Signal in IceCube

Determine # of detected signal hits N_γ detect from # of neutrinos crossing the detector:

^{1st Approach: Simulation of interaction + γ_{Ch} creation + propagation + detection (based on tables)}

$$
N_{\gamma}^{\text{detect}} = \epsilon_{\text{deadtime}} \cdot n_{\gamma}^{\text{interact}} \cdot \overline{V_{\text{e}}^{\text{eff}}}
$$

Energy dependent effective volume for detecting an $e^{\text{+}}$ *or* $e^{\text{-}}$ *:* V^{eff}_{e} *=* V^{eff}_{γ} \cdot $N^{\text{}}_{\gamma}$ *(E)*

