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Today’s talk 

  1. My research at LHCb   
  The LHCb experiment 

  Z->μ+μ- cross section measurement. 
  Calibration studies of  the VELO detector. 

 
 
 

  2. Searches for new physics at CMS 
  Z’ searches 

  ttbar asymmetry measurements 
  b’ searches 
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LHCb 

3 



LHCb: a forward spectrometer 
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4 
Optimised for b-physics, but provides unique opportunity to 
probe the electroweak sector. 

Full detector coverage in the range  (1.9 < η <4.9) 
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Leading order Z boson production at the 
LHC 
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Theoretically: 

Measuring σ.Br(Z->μ+μ-) at LHCb 

1.Total cross section  
 
2. Differential cross section as a function of  
boson rapidity. 
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Parton level cross 
section, predicted by 
the Standard Model 

Theoretically: 

Measuring σ.Br(Z->μ+μ-) at LHCb 

1.Total cross section  
 
2. Differential cross section as a function of  
boson rapidity. 
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Parton level cross 
section, predicted by 
the Standard Model 

Function which describes 
the momentum sharing of  
the partons 

Theoretically: 

Measuring σ.Br(Z->μ+μ-) at LHCb 

1.Total cross section  
 
2. Differential cross section as a function of  
boson rapidity. 



Measuring σ.Br(Z->μ+μ-) at LHCb 

Test the SM to 1% 
 
In kinematic regions 
where uncertainties on 
σ.Br(Z->μ+μ-) due to 
PDFs are low, the 
measurement tests the 
SM. 
 
Region of  minimum 
uncertainty (1%) is 
accessible to LHCb, 
ATLAS and CMS => 
cross checks. 
 

Constrain PDFs 
 
The (y > 2.5) region is 
unique to LHCb. 
 
 
Here the uncertainties 
are higher (2-4%). 
 
 
In this region the 
measurement can 
reduce PDF uncertainty. 
 

Motivations 
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Selecting the signal 
Offline signal selection 
strategy is based on the large  
di-muon invariant mass  
and muon transverse momenta  
of  the di-muons arising from the 
Z decay. 
 
For simplicity and robustness, 
the requirements are 
composed of  three 
requirements only: 
 
2 oppositely charged muons, with 2 <ημ< 4.5 
 
muon transverse momenta > 20 GeV 
 
81 GeV <di-muon invariant mass <101 GeV  
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First Z candidate at LHCb May 2010 



Signal Yield 
Data: 16.5 ± 1.7 pb -1 of  7 TeV data recorded by 
LHCb in 2010. 

Application of  the selection scheme to this data yields 
830 signal candidates 




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Di-muon invariant mass distributions of candidates: 

NZ->μ+μ-   
= 830 



Making a cross section measurement 

  Data-driven Tag & Probe method is used for most 
efficiency measurements. 

σ.Br(Z->μ+μ-)   = 

NZ->μ+μ-  - Nbackground  

εdetector x ε selection x  Int. Lumi 

εdetector =  εtracking  x εmuonID  x εtrigger   
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•  One needs to know the efficiencies with which Z->μ+μ- 
events are reconstructed, triggered and selected. 

 



Tag & Probe 
  A data-driven method for measuring detector 

efficiencies. 
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TAG 

PROBE  

-TIGHT TRACKING AND MUON ID 

REQUIREMENTS 

-MINIMAL REQUIREMENTS 

Z 

μ 

μ 

Require di-muon 
invariant mass 
to be close to 
the Z peak 

We assume Tag-Probe combinations are all real Z events. 
Efficiency given by fraction of  probes passing requirement under 
scrutiny. 



εtracking 








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Tags –well 
reconstructed 
and tight muon 
identification 
requirements. 
 
Probes 
reconstructed 
independently of  
the tracking 
system. 
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



Fraction of  probes that were fully reconstructed in tracking system gives 
single muon tracking efficiency. 

 εtracking   = .83 ± .04 

Tag-probe combinations 



εmuon ID 
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Tags – well 
identified 
muons 
 
Probes – track 
with no muon  
ID 
requirements. 



Tag-probe combinations 

We assume all tag-probe combinations under the Z peak are real muons. 
 
The single muon ID efficiency is  given by the fraction of  probes which 
pass muon ID requirements. 

εmuonID= .96 ± .01 
 



εtrigger    (I) 

 LHCb trigger: hardware trigger (L0) and two-stage 
software trigger (HLT1 & HLT2) 
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selected signal sample 

Triggered 
by 
μ+  

Triggered  
by 
μ- 

Result: εtrigger(I)   = .96 ± .01  

εμ+ =  εμ- =  
#triggered by both Triggered 

by 
both 

#triggered by μ- 
  

#triggered by μ+ 
  

#triggered by both 



εtrigger    (II) 
•  Trigger imposes Global Event Cuts like 

#VeloClusters <3000.  

•  Efficiencies on signal events depend on 
number of  pp interactions in event.  
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

Inefficiency! 

 

Predict distributions by mixing signal events with 
minimum bias events. 
 
Prediction => 
 

 Results: εtrigger (II)  

 = .93 ± .01  4 
interactions 



Backgrounds 

 Heavy quark - estimated using 
anti-cut on the signal events, 
estimated level = 1.2 ± 1.1 events. 

 Z -> τ+τ-  - taken from 
simulation, estimated level = .2 ± .
2 events. 

 Hadron mis-ID - taken from data 
by parameterising the probability of  
mis-ID, expected level = 0 events. 
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

3 background processes expected to 
dominate. 



Results 
 We set ε selection  = 1, and quote results in  the kinematic region 
specified by the cuts (2 <ημ< 4.5 PT > 20 GeV, 81GeV <ημ< 
101GeV). 
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σ.Br(Z->μ+μ-)  = 71 ± 2 (stat.) ± 3 (sys.) ±7(lumi.) pb 

Comparing to theory: predictions produced using FEWZ and 
MCFM @ NLO in αs with NLO PDF sets 
 



Calibration of  the VELO 
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Calibration of  the VELO 
  VELO consists of  84 silicon micro-strip sensors 

arranged in two retractable halves. 

 

VELO fully closed VELO fully open

interaction regionpileup veto stations

beamline

Two sensor types: 
provide information 
on the radial (r) and 
azimuthal (phi) track 
coordinates. 

Provides excellent 
vertexing capabilities 
to LHCb -> IP 
resolution ~ 15 um 
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Calibration of  the VELO 
  Faulty VELO strips contribute to inefficiency in track 

reconstruction. 

  Number of  these channels monitored over detector’s 
lifetime: possible radiation damage effects  

 

Dead channels 
characterised by noise  

Hot channels characterised by 
occupancy 
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Calibration of  the VELO  

  Investigation of  macroscopic occupancy behaviour in 
proton collisions. 


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

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



R sensors should compensate the R-1.8 particle multiplicity dependence 
and be uniformly occupied as a function of  R. 

Dependence measured at a range of  VELO positions (different colours).  
 
Occupancy seen to increase as detector is closed. 26 



Calibration of  the VELO  

  What about the dependence on position along the 
beamline? 

VELO occupancy mostly flat as a function of  position along the beamline. 
 
Drop in occupancy around the interaction point reflects track multiplicity 
distribution. 
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Calibration of  the VELO  

  Development of  VELO monitoring suite: software 
application which allows detector monitoring by shifters. 

 
Numbers of  faulty 
channels can be 
recorded. 
 
 
Occupancy of  the 
detector can be closely 
inspected. 
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Summary of  Phd work: 

  Measured Z cross section with an uncertainty of  11% 
  Detector efficiencies with Tag & Probe. 

  Data-driven background estimations. 
  Results agree with NLO predictions. 

 

  Contributed to the calibration of  the VELO detector. 
  Occupancy behaviour of  detector agrees with 

expectations. 
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Searches for new physics at 
CMS 

30 



Topics of  interest 

  Topics chosen reflect experience and physics 
interests of  the speaker. 

  List is not exhaustive! 

  Three topics discussed:  

  Z’ searches,  
  ttbar asymmetries,  

  searches for b’ and t’ quarks   
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Z’ searches 

  CMS will access a ttbar sample of  unprecedented 
size. 

  Large event samples allow searches for new physics 
e.g. Z’ 

 

 

 

Compliments searches for high mass μ+μ-, e+ e- or γγ 
resonances. 
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Search in 
ttbar mass 
spectrum 
 



This study is of  particular personal interest as it proposed to 
measure the effect in the forward region at LHCb. 
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ttbar asymmetry 
 

Z’ exchange can result in significant same-signed top 
quark pair production => distinctive signature   
 

Evidence for the Z’ can be found elsewhere->  

This diagram can cause 
 forward-backward ttbar 
asymmetry 
 



ttbar asymmetry 
   Anomalous asymmetry measured at D0 and CDF, 

~2-3σ deviation from SM, depending on ttbar mass . 

Status: Latest CMS 
results consistent with 
SM. 
 
Future: 
Refine measurement 
with more data. 
Proper unfolding in 
asymmetry variable and 
invariant mass to 
investigate effect 
further. 
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b’ and t’ searches 
  A 4th generation quark produced at the LHC would 

manifest itself  in a spectacular decay containing 
numerous heavy objects. 
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Numerous jets, a lepton 
and missing transverse 
energy! 

b’ with mass < 495 GeV 
already excluded using 
1fb-1   



B-tagging  

  Excellent b-tagging capabilities are essential to all 
of  these studies. e.g. BR(t->Wb) ~ 100% 

  B-tagging begins with well calibrated tracking 
detectors and well understood impact parameter 
resolutions. 

My experience with the VELO can help me contribute to 
the optimisation of  the b-tagging procedure at CMS. 
 

Well 
calibrated 
tracking 
detector 

Well 
measured 
impact 
parameters  

Multivariate 
discriminators 

Tagged b-
jets! 



Conclusions 
  My Phd work was on electroweak physics at 

LHCb. 

 

  I gained experience in measuring high 
momentum leptons and calibration of  tracking 
detectors. 

 This experience has led to an interest in various 
new physics searches at CMS. 
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  Contributing to any HEP experiment requires an 
intimate knowledge of  the software environment – I 
gained much experience with HEP software as author of  
the LHCb electroweak trigger and stripping code.  
  First task: Familiarise myself with CMS software 

environment. 

  As BR(t->Wb) ~ 100%, each of  the top studies 
mentioned demand b-tagging capabilities. B-tagging 
begins with well calibrated trackers and well understood 
impact parameters – I have applicable experience from 
VELO work. 
  Second task: Improve b-tagging procedures at CMS 

  Top studies mentioned all require strong data analysis 
and interpretation skills- I have developed these skills in 
Z cross section measurement. 
  Third task: contribute to top studies, especially unfolded, 

large statistics A(ttbar) measurement. 

Plan of  work 
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Top quark studies at CMS (I) 

  Measurements: σt, σtt, σtt/σZ , σtt/σW 
provide tests of  the SM => results published, 
studies are becoming mature. 

 

 

 

  LHC: ttbar pairs produced via gluon or quark fusion. 

 

 

 

 

  LHC: single top quarks also produced via 
electroweak interaction. 

39 


