Searches for new phenomena at the LHC: backgrounds and optimization Lukas Vanelderen Universiteit Gent

1 / 61

2 / 61

Bigger picture W/Z + jets studies **SUSY with** *b*-jets

3 / 61

Bigger picture W/Z + jets studies **SUSY with** *b*-jets

Large Hadron Collider 4/6

MS

ALICE

Large Hadron Collider 5/61

- proton-proton, 4 collision points
- $\sqrt{s} = 7$ TeV
- general purpose detectors: ATLAS, CMS
- dedicated to specific physics: LHCb, ALICE
- a rich physics program:
 - Higgs
 - new phenomena: SUSY, W' and Z', extra dimensions, 4th generation, etc.
 precision measurements of SM*

*Standard Model

Large Hadron Collider 6/61

CMS

CMS

F

2010: 36 pb⁻¹ collected
 2011: 5.2 fb⁻¹ collected

► 2011. 5.2 lb Collected

similar numbers for ATLAS

Searches for new 7/61 phenomena at the LHC

2010, 2011: Many searches, no discoveries

Desperation is not justified yet Still much work before making the following statement

"we can say with a high level of confidence that the LHC data does not contain hints for new phenomena"

We are making great progress...

Tremendous progress

Precision measurements of the SM

- new constraint SM parameters
- indirect constraints on new phenomena
- improvements/better tunes of MC simulation

8 / 61

Better calculations

- NLO is taking over

Improved understanding of detector

=> better background estimates for searches

Tremendous progress

Precision measurements of the SM

- new constraint SM paramete more to come:
- indirect constraints on new $p \frac{W/Z}{W/Z}$ + jets studies improvements/better tunes or wice simulation

8 / 61

Better calculations

- NLO is taking over

Improved understanding of detector

=> better background estimates for searches

Tremendous progress

9 / 61

Higgs searches Searches for new phenomena

- exclusion regions grow

a more general interpretation of searches

- slowly moving away from cMSSM
- use of more general models (e.g. pMSSM)
- use of simplified models

=> better understanding of potential new phenomena

Let's put the pieces together

Combine all available information about SM processes and new phenomena to interpret the results and design the next generation of searches* 10 / 61

*if it still doesn't work:

- wait for more data
- wait for a new machine
- try turning it off an on again

Let's put the pieces together

Combine all available information about SM processes and new phenomena to interpret the results and design the next generation of searches*

*if it still doesn't work:

- wait for more data
- wait for a new machine

- try turning it off an on again

more to come: optimization of a SUSY search with *b*-jets (novel Bayesian technique) 10 / 61

11 / 61

Bigger picture W/Z + jets studies **SUSY with** *b*-jets

An early W/Z + jets study with CMS:

"Jet Production Rates in Association with *W* and *Z* Bosons in *pp* Collisions at $\sqrt{s} = 7$ TeV"

CMS-EWK-10-012 arXiv:1110.3226 [hep-ex] submitted to JHEP

Why?

- important backgrounds to many
 - Higgs searches
 - searches for new phenomena
 - top quark studies
- validation/tuning of (N)LO matrix element + parton shower MC predictions
- probes proton structure

What?

14 / 61

- 2010 proton-proton data
- ▶ 36 pb⁻¹, $\sqrt{s} = 7$ TeV
- ratios of $\sigma(W/Z+\geq n ext{ jets})$, n=1,2,3,4
- corrected for detector effects
- compared to Leading Order calculations

What?

4 Channels, 4 independent measurements:

15 / 61

• $W(\rightarrow e\nu)$ • $W(\rightarrow \mu\nu)$ • $Z(\rightarrow ee)$ • $Z(\rightarrow \mu\mu)$

I will present all results,

What?

4 Channels, 4 independent measurements:

- $W(\rightarrow e\nu)$
- $W(\rightarrow \mu \nu)$
- $Z(\rightarrow ee)$
- $Z(\rightarrow \mu\mu)$

I will present all results, but only the analysis for $W(o \mu u)$

(Note: not all figures/tables are officially approved)

16 / 61

W/Z + jets studies $W(\rightarrow \mu \nu)$ analysis data, reco and selection signal extraction unfolding systematics general results

- simple muon triggers
 - $p_T > 15 \text{ GeV}$

- simple muon triggers
- event reconstruction with Particle Flow (PF)

- simple muon triggers
- event reconstruction with Particle Flow (PF)
- selection of \boldsymbol{W} candidates

leading muon

- p_T > 20 GeV, $|\eta|$ < 2.1,
- loose identification, isolation, vertex requirements
- match with trigger object

- simple muon triggers
- event reconstruction with Particle Flow (PF)
- selection of W candidates

leading muon - $p_T > 20$ GeV, $|\eta| < 2.1$ - loose identification, isola - match with trigger objec - muon p_T and η - jet multiplicity

ents

- simple muon triggers
- event reconstruction with Particle Flow (PF)
- selection of W candidates
- Z-veto
 - no second muon
 - p_T > 10 GeV, $|\eta|$ < 2.4
 - well-reconstructed ("global muon")
 - 60 $< M_{\mu\mu} <$ 120 GeV

- simple muon triggers
- event reconstruction with Particle Flow (PF)
- selection of W candidates
- *Z*-veto
- neutrino energy reconstruction

missing transverse energy

$$\vec{E}_T^{miss} = -\sum_{i,j,r} \vec{p}_{T,i}$$

all part

- simple muon triggers
- event reconstruction with Particle Flow (PF)
- selection of W candidates
- *Z*-veto
- neutrino energy reconstruction
- W boson mass reconstruction

transverse mass

$$m_T = \sqrt{2p_T^{\mu} E_T^{miss} \left[1 - \cos(\Delta \Phi(\mu, E_T^{miss}))\right]}$$

 $m_T > 20 \text{ GeV}$ eff measured in simulation,
cross checked with TnP in
 $Z(\rightarrow \mu\mu)$ data

- simple muon triggers
- event reconstruction with Particle Flow (PF)
- selection of W candidates
- Z-veto
- neutrino energy reconstruction
- W boson mass reconstruction
- jet definition:
 - cluster PF-particles
 - leading muon not included
 - anti- k_T , R=0.5
 - calibration (L1 FastJet, L2, L3)
 - loose identification criteria

- simple muon triggers
- event reconstruction with Particle Flow (PF)
- selection of W candidates
- Z-veto
- neutrino energy reconstruction
- W boson mass reconstruction
- jet definition:
- b-tagging
 - "Track Counting High Efficiency" algorithm
 - "Medium working point" (mistag eff. $\sim 1\%$, *b*-tag eff. $\sim 50\%$)

Jet multiplicity Steep !

A lot of top !

19 / 61

W/Z + jets studies $W(\rightarrow \mu \nu)$ analysis data. reco and selection signal extraction unfolding systematics general results

assign data to "jet bins"

"exclusive jet bins" for 0 ... 3 jets "inclusive jet bin" for 4 jets 20 / 61

Determine $W(\rightarrow \mu \nu)$ per jet bin with Maximum Likelihood fit

- unbinned
- functional forms
- calibrated mainly on data
- control samples to test assumptions
- weight events 1/ ϵ (TnP)

$W(ightarrow \mu u)$ vs. QCD:

transverse mass, m_T

Shapes for fit:

Cruijff functions most important shape parameters floated

Similar for other jet bins

$W(\rightarrow \mu \nu)$ vs. top: *b*-tagged jet multiplicity

22 / 61

 $W(
ightarrow \mu
u)$ vs. top:

distribution of *b*-tagged jet multiplicity determined by

- jet multiplicity
- true b-jet multiplicity
- average mistag eff
- average *b*-tag eff

23 / 61

→ determine true *b*-jet multiplicity per jet bin → $W(\rightarrow \mu\nu) \sim 0$ true *b*-jets → top ~ 1,2 true *b*-jets

 $W(\rightarrow \mu \nu)$ vs. top: Calibration through:

average mistag eff

from top and $W(\rightarrow \mu \nu)$ MC simulation, corrected for differences between data and MC (SF)

24 / 61

average *b*-tag eff

pure control sample of top quark pairs in data (double leptonic decays)

Signal extraction Results

25 / 61
W/Z + jets studies $W(\rightarrow \mu \nu)$ analysis data. reco and selection signal extraction unfolding systematics general results

Unfolding

Jet resolution effects \rightarrow events migrate between jet bins unfolding corrects for such detector effects

(SVD unfolding algorithm)

W/Z + jets studies $W(\rightarrow \mu \nu)$ analysis data. reco and selection signal extraction unfolding systematics general results

Systematics

Jet counting

- jet energy callibration (L2, L3)
- pile-up subtraction

Unfolding

- algorithm
- MC simulation for unfolding matrix
- jet resolution

signal extraction

- b-tag and mistag eff
- m_T shape parameters
- selection efficiency

Systematics

Jet counting

- jet energy callibration (L2, in MC
- pile-up subtraction

Unfolding

- algorithm

repetition of measurement

effects studied

- MC simulation for unfolding matrix
- jet resolution

signal extraction

- b-tag and mistag eff
- m_T shape parameters
- selection efficiency

W/Z + jets studies $W(\rightarrow \mu \nu)$ analysis data. reco and selection signal extraction unfolding systematics general results

Results quoted on "particle level" (= corrected for detector effects)

Signal extraction and unfolding $\rightarrow \sigma(V + n \text{ jets})$ $\rightarrow \sigma(V + \ge n \text{ jets})$ $\rightarrow \text{ ratios, the final results}$

Compared against two sets of predictions:

Pythia

- exact leading order for W + 0,1 hard parton
- more hard partons described approximately with parton shower

MadGraph + Pythia

- exact leading order for W + 0,...,5 hard partons
- matched to parton shower with MLM

includes parton shower, hadronization, Underlying Event (UE) (D6T, Z2)

MadGraph + Pythia performs very well no sensitivity to UE tunes (Z2 and D6T)

MadGraph + Pythia performs very well no sensitivity to UE tunes (Z2 and D6T)

W Charge asymmetry

$$A_{W}^{n} = \frac{\sigma\left(W^{+}\right) - \sigma\left(W^{-}\right)}{\sigma\left(W^{+}\right) + \sigma\left(W^{-}\right)}$$

alternative signal extraction: bins of

- jet multiplicity
- W charge

excellent performance of MADGRAPH + PYTHIA

Berends-Giele scaling

Describe cross sections as function of *n* jets:

$$\alpha + \beta n = \frac{\sigma (V + \ge n \text{ jets})}{\sigma (V + \ge (n+1) \text{ jets})}, \quad n = 1, 2, 3, 4$$

Berends Giele hypothesis: $\beta = 0$

Measure α and β with all-in-one fit:

- all jet bins simultaneously
- eff correction (weighted events)
- unfolding (smearing matrix)
- impose relation above

Berends-Giele scaling

Bigger picture W/Z + jets studies **SUSY with** *b*-jets

SUSY with *b*-jets about searches optimization of searches SUSY with *b*-jets outlook

Inclusive searches

What?

searching for the unknown

How?

search for an excess of events w.r.t. SM predictions in one or more pre-defined "Search Regions"

41 / 61

Challenges?

reasonable definition of the Search Region(s) SM background predictions

Search region examples^{42 / 61}

Case 1:

- Search for a specific model
- single search region
 - ▶ 1 search is the best choice,

Search region examples^{43 / 61}

Case 2:

- Search for a model with ${\sim}100$ free parameters (e.g. MSSM)

- single search region

- for different points of parameter space, different optimal search regions
- what is an overall reasonable search region?
- probably better to have more than 1 search region

Search region examples^{44 / 61}

Case 3:

- Search for a model with ${\sim}100$ free parameters (e.g. MSSM)

- multiple search regions

- same problems as in Case 2
- and, more regions =
 - more excess from signal
 - look-elsewhere-effect
 - problematic bkg predictions

Search region examples^{45 / 61}

new physics models with multiple free parameters \times complex final states (many discriminating variables) =>intuition falls short

SUSY with *b*-jets about searches optimization of searches SUSY with *b*-jets outlook

optimization of searches^{7 61}

A novel Bayesian approach

Under the hypothesis of a new physics model with free parameters, maximize the expected evidence, taking into account all available prior information

Documented in CMS-AN-2011-351 Many updates being documented

optimization of searches^{7 61}

$$H_{NP}$$
 = new physics hypothesis

$$heta = parameters of H_{NP}$$

$$egin{aligned} E(e|H_{NP}) &= \int eP(e|H_{NP}) \mathrm{d}e \ &= \int \int eP(e| heta, H_{NP}) \pi(heta) \mathrm{d}e \mathrm{d} heta \ &pprox \sum_i \int eP(e| heta_i, H_{NP}) \pi(heta_i) \mathrm{d}e \end{aligned}$$

optimization of searches^{7 61}

$$E(e|H_{NP}) = \sum_{i} \int eP(e|\theta_{i}, H_{NP})\pi(\theta_{i}) \mathrm{d}e \mathrm{d}\theta_{i}$$

 $\pi(\theta)$ prior probability that True State of Nature (TSN) is θ built from previous measurements

 $P(e|\theta_i, H_{NP})$ probability to observe evidence eif TSN is θ_i obtained from simulation

A multi-parameter model: pMSSM

pMSSM

- phenomenological MSSM*
- 19 free parameters at the SUSY scale
- well-motivated assumptions, reducing MSSM

50 / 61

- no correlations between sparticle masses \rightarrow rich phenomenology

*Minimal Supersymmetric extension of the Standard Model

$\pi(\theta)$ for pMSSM

Pre-LHC Measurements (PLMs)

i	Observable	Limit	Likelihood function		
1	Δa_{μ}	$\begin{array}{c} (28.7\pm8.0)\times10^{-10}~[e^+e^-] \\ (19.5\pm8.3)\times10^{-10}~[{\rm taus}] \end{array}$	Weighted Gaussian average		
2	${\it BR}(b o s \gamma)$	$(3.55\pm0.34) imes10^{-4}$	Gaussian		
3	$BR(B_s o \mu\mu)$	\leq 4.7 $ imes$ 10 ⁻⁸	Upper limit		
4	$R(B_u o au u)$	1.66 ± 0.54	Gaussian		
5	m _t	173 ± 1.1	Gaussian		
6	$m_b(m_b)$	$4.19\substack{+0.18 \\ -0.06}$	Two-sided Gaussian		
7	$\alpha_s(M_Z)$	0.117 ± 0.002	Gaussian		
8	m _h	LEP & Tevatron (HiggsBounds)	$L_8 = 1$ if allowed. $L_8 = 10^{-9}$ if m'_h sampled from $Gauss(m_h, 1.5)$ is excluded.		
9	SUSY mass	LEP & Tevatron (micrOMEGAs)	$L_9 = 1$ if allowed $L_9 = 10^{-9}$ if excluded		

$\pi(\theta)$ for pMSSM

CMS measurements

Analysis	Final state and signal region	N	В	δB	$\int \mathcal{L}$
RA2	Inclusive jets+ H_T^{miss}	12	10	2.5	882 pb ⁻¹
	HT > 500, MHT > 350				
RA4	Single lepton+jets+ E_T^{miss}	73	66.66	20.2	1100 pb ⁻¹
	MET > 250, HT > 500				
RA5	Same sign (SS) dileptons+jets+ <i>E</i> _T ^{miss}	1	2.3	1.2	980 pb ⁻¹
	Inclusive leptons, HT > 400, E_T^{miss} > 120				
RA6	Opposite sign (OS) dileptons+jets+ E_T^{miss}	8	4.2	1.3	980 pb^{-1}
	HT > 300, E_T^{miss} > 275				

$\pi(\theta)$ for pMSSM

53 / 61

= a combined interpretation

SUSY with *b*-jets about searches optimization of searches SUSY with *b*-jets outlook

documented in SUS-11-006

Search definition (previous version)

- PF object reconstruction
- at least 3 jets
 (anti-kt, $p_T > 50$ GeV, $|\eta| < 2.4$)
- no isolated muons or electrons $(p_T > 10 \text{ GeV})$
- *b*-jets: TCHEM
- search region defined by lower bounds on

$$H_T = \sum |p_T^{jet}|$$

- E_T^{miss}
- $\Delta \Phi(\vec{E}_T^{miss}, jets)$

Optimization

"evidence"

$$e = \begin{cases} 0 & \text{if } S/\sqrt{S+B} < 3\\ 1 & \text{if } S/\sqrt{S+B} > 3 \end{cases}$$

56 / 61

 $ightarrow E(e|H_{NP}) pprox$ probability for discovery under H_{NP}

Optimization

Discovery probability vs.

- lower limit on H_T
- lower limit on E_T^{miss}
- lower limit on $\Delta \Phi_{min}^N$

red: 1 fb⁻¹, black: 5 fb⁻¹

Optimization

Discovery probability vs. - lower limit on H_T - lower limit on E_{τ}^{miss} **Conclusions** - lower limit on $\Delta \Phi_{min}^N$ - broad optima - "low" E_T^{miss} and H_T red: 1 fb⁻¹, black: 5 fb⁻¹ regions favored

SUSY with *b*-jets about searches optimization of searches SUSY with *b*-jets outlook

Outlook

Proposal for the 2012 Analysis

- identical object definitions and variables
- multiple independent search regions
- shape analysis
- alternative Bayesian interpretation

... work in progress
60 / 61

Bigger picture W/Z + jets studies **SUSY with** *b*-jets

Summary

Summary

A lot of progress on many fields

e.g.:

- SM measurements (W/Z + jets)
- new physics interpretation of measurements

61 / 61

- design of searches (SUSY with *b*-jets)

Put the pieces together, Design the next generation of searches!