

Gamma-ray spectrometry 225 m underground – Developments, possibilities and applications + Status of GERDA

Mikael Hult

IRMM - Institute for Reference Materials and Measurements *Geel - Belgium*

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

- IRMM was/is (1992 present) a pioneering laboratory for underground gamma-ray spectrometry
- Reduction of muon flux a factor 10,000 open up for low-level radioactivity measurements in many fields.
 Radioecology, specific processes in nature and industry, rare decays, safeguards etc.

•IRMM is making use of this new technology to support EU-policies in a wide range of projects (200).

Structure of the DG-JRC

7 Institutes in 5 Member States

IRMM – Geel, Belgium - Institute for Reference Materials and Measurements Staff: ≈ 250

IE – Petten, The Netherlands - Institute for Energy Staff: ≈ 180

ITU – Karlsruhe, Germany - Institute for Transuranium elements Staff: ≈ 250

IPSC - IHCP - IES – Ispra, Italy

- Institute for the Protection and the Security of the Citizen
- Institute for Health and Consumer Protection

- Institute for Environment and Sustainability Staff: ≈ 350, 250, 370

IPTS – Seville, Spain

- Institute for Prospective Technological Studies Staff: ≈ 100

Total staff: ~ 2200 people

Nuclear Physics Unit

Radionuclide Metrology – 2012 Key projects

- Training (Turkey, pre-accession)
- Security: ITRAP Calibration of Portal Monitors
- REM (Euratom obligation)
- Fukushima support
- EMRP Euramet (European Metrology Projects)
 - •Rad. Waste Management
 - Metro-Fission
 - Metro-Metal Scrap

GERDA?

Not key project but essential to develop state-or-the-art instrumentation!

Also an essential partner due to former EU actions.

HADES

HADES = High Activity Disposal Experimental Site – Operated by EURIDICE* and located at SCK•CEN in Mol

*European Underground Research Infrastructure for Disposal of nuclear waste In Clay Environment

HADES

VUB, Brussel, January 27, 2012

The Sandwich Spectrometer

JP Background Comparison – Gamma-ray spectrometry

EUROPEAN COMI VUB, Brussel, January 27, 2012

Combined activities from several gamma-rays to activity for one radionuclide Combined activities from several daughters to one parent

Ex.: ²²⁶Ra from ²¹⁴Bi and ²¹⁴Pb

MDA = Minimum Detectable Activity (Bq) $CR_{Bkg} = Background Count Rate (s^{-1})$ $t_m = Measurement time (s)$ $\varepsilon = detection efficiency$

Improving MDA

 $MDA \propto \frac{\sqrt{C}\kappa_{Bkg}}{\sqrt{t}} \cdot \frac{1}{\varepsilon}$

 ϵ : Increasing detector size will also increase background ϵ : Increasing sample size may also increase background

t_m : "only" scales with square root

• • It is worth while spending efforts to reduce background in order to obtain better MDAs

Interference free detection limits for a 7-day measurement

	Air filter mBq	Water 2L Marinelli mBq/L	Water on filter* Ba Co-prec. mBq/L
¹⁴⁰ Ba	0.2	6	-
¹³⁷ Cs	0.1	2	**
²²⁶ Ra	0.2	4	0.5

*Depends on amount of water used. Here 2 L.

** Plan for Fukushima project 0.5 mBq/m³

1 mBq ~ decay per hour 1 μ Bq ~ decay per week

⇒To carry out big projects and measurement of numerous samples, <u>networking is essential</u>

Collaboration of European Lowlevel underground LAboRatories

Collaboration of European Lowlevel underground LAboRatories

Mission: To promote higher quality and sensitivity in ultra low-level radioactivity measurements for the improvement of crisis management, environment, health and consumer protection standards of Europe.

CELLAR-labs

VUB, Brussel, January 27, 2012

- Modane France (-2200 m)
- Gran Sasso Italy (-1700 m)
- Asse/PTB Germany (-415 m)
- HADES EU/Belgium (-225 m)
- Unirea, Romania (-208 m)
- University of Iceland (-165 m)
- Baradello Hill, Italy (- 100 m)
- Ferrière (LEGOS)-France (-80 m)
- Felsenkeller Germany (-50 m)
- CAVE Monaco (-15 m)
- MPI-Heidelberg Germany (-10 m)
- + associated partners

e.g. Solotvina salt mine (Ukraine)

Not all partner institutes are in the list!

Detectors in HADES

Detector			Relative efficiency	Year
name	Manufacturer	Crystal type	(%)	installed
Ge-2	Eurisys	n-type semiplanar	8	1995
Ge-3	Eurisys	p-type coaxial	60	1997
Ge-4	Canberra	p-type coaxial (XTRa)	106	2000
Ge-5	Canberra	p-type planar (BEGe)	50	2001
	Canberra /			
Ge-6	Ortec	p-type coaxial	80	2004
		p-type coaxial (XTRa)		
Ge-7	Canberra	with inverted head	80	2005
Ge-8	Canberra	p-type planar (BEGe)	38	2006
Ge-9	Canberra	BE ^{dep} Ge	~45	2010
Ge-10	Canberra	n-type	60	2011
Ge-11	Baltic Instr.	p-type coaxial	100	2011
Ge-12	?	well-type	~100	2012 (expec

Ge-6 + Ge-7 => Sandwich

Ge-10 + Ge-11 =>Pacman (possibility for Nal –shield)

The Sandwich Spectrometer

Low-level measurements – a growing field!

$IRC \quad The \ rare \ \beta^{-} \ decay \ {}^{115}In \rightarrow {}^{115}Sn$

VUB, Brussel, January 27, 2012

At present: Decay energy of 115 In(9/2+) $\rightarrow {}^{115}$ Sn(3/2+) 1.7±4.0 keV ($\Delta m = 499$ keV) *Audi, Wapstra, 2003. Nucl. Phys A729.

 \Rightarrow Not for sure if it is energetically possible or not

HADES 2004-2009

GERDA

Low-level measurements – a growing field!

Tokai-mura, 1999

background above ground (black) and in HADES (blue)

Retrospective Hiroshima Dosimetry

Steel from Yokogawa Bridge

Slant range (m)

- Easy sample preparation
 - Non destructive
 - Low running cost

Why Ultra Low-level Gamma-ray Spectrometry?

In addition to above:....• Low detection limits (improvement: 10-300 times)

.IRC

VUB, Brussel, January 27, 2012

- More robust
- Potentially faster
- Potential to achieve higher temporal resolution
 - Potential to sample small volumes

→ More interesting applications are feasible

 No sample preparation! Direct measurement; Non-Destructive

VUB, Brussel, January 27, 2012

 There is a need to check methods that require sample preparation
Radiochemical methods
Mass spectrometry methods

Some examples

⁴⁰K in water (ICP-MS), ²⁶Al in meteorites (AMS)
Zn in GaAs (ERS and GDMS), ⁶⁰Co (radiochemistry)

Checking of neutron detectors

To compare radioactivity measured in different laboratories one need to ascertain correct measurements

- reliable and comparable measurement results are based on their traceability to measurement units
- participation in Proficiency Testing schemes to confirm

IRMM is organising Proficiency Testing for <u>nominated</u> European laboratories monitoring radioactivity in the environment

- ¹³⁷Cs in air filters (2007)
- ¹³⁷Cs, ⁴⁰K, ⁹⁰Sr in milk powder (2008)
- ²²⁶Ra, ²²⁸Ra, ²³⁴U, ²³⁸U in mineral waters (2010)
- run at present: radionuclides in soil, among them several NORM

IRMM approach to these comparisons

- EU member states nominate monitoring laboratories to participate in European comparisons (Treaty obligation)
- IRMM provides comparison samples, carrying reference values traceable to SI and SIR
- example: in anticipation of a new European directive on drinking water quality, IRMM organised a water comparison to see where monitoring laboratories stored

Metrology approach to being correct and accepted by other laboratories

- allows realistic estimate of accuracy under routine conditions
- reliable monitoring results are necessary to assess the exposure of the population as a whole (done by DG ENER of the European Commission)

Industry

EUROPEAN COMMISSION

JRC

Laboratory

40 submitted results

Not always necessary for obtaining the lowest detection limits

Much better control of background components than above ground \Rightarrow more robust measurements \Rightarrow Important for better QC of reference samples.

...a growing field of science, engineering and metrology

Thank you for your attention!

