

Searches for dilepton resonances

with the ATLAS detector

Dr Tracey Berry

Royal Holloway University of London

Why are we looking for high-mass dilepton resonances?
ATLAS & LHC

- 7 TeV search 5 fb⁻¹ (full 2011 dataset) http://arxiv.org/pdf/1209.2535v2.pdf
 - Event selection
 - Backgrounds
 - High energy electrons and muons
 - Signal search and limit setting
- 8 TeV search 6 fb⁻¹
- •Summary and Outlook

Further information can be found at:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults?redirectedfrom=Atlas.ExoticsPublicResults Seminar, Brussels, Nov 2012 Tracey Berry 2

- The Standard Model of Particle Physics is a very successful theory, but cannot be the end of the story...
- For example, it doesn't
 - have a dark matter candidate
 - explain why gravity is so weak compared to the other fundamental forces
- Questions remain:
 - Are there more symmetries beyond $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$?
 - → GUTs with larger symmetry group? Left-right symmetry?

Dilepton Resonances

 Dilepton resonances have been the window to a better understanding of elementary particles and forces before....

- di-lepton signature (ee + µµ,)
 is a relatively clean final in a hadron collider
 - easily identifiable final state with low backgrounds

- has a useful calibration point: Z⁰
 - can study selection efficiency, cross-check luminosity and calibrate calorimeter energy and tracker p_T scales
- broad sensitivity to a range of new physics scenarios
 - Z's, Technicolor, Large Extra Dimensions (ADD), Universal Extra Dimensions, Warped Extra Dimensions, Torsion Models, Z*
 - all of the above can show up as an excess in the di-lepton mass spectrum

Dilepton resonances could be a signature of

- new heavy gauge bosons

(eg. in the E6 model (Grand Unified Theory model))

----> spin-1

----> spin-2

Z

...and many others (resonance search is fairly model independent)

New heavy gauge bosons are predicted in several extensions of the SM Dilepton resonances could be a signature of

 new heavy gauge boson in the E6 model (Grand Unified Theory model) (Phys. Rev. D 34 (1986), arXiv:0801.1345v3)

GUT theories

Unification of electroweak and strong forces at high energies

----> 1 overall symmetry, which breaks down at lower energies

$$E_6 \to \mathrm{SO}(10) \times \mathrm{U}(1)_{\psi} \to \mathrm{SU}(5) \times \mathrm{U}(1)_{\chi} \times \mathrm{U}(1)_{\psi}$$
$$\mathrm{SU}(5) \to \mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$$

2 additional U(1) groups lead to new neutral gauge fields ψ and χ

The particles associated with the additional fields can mix in a linear combination to form the Z' candidate:

$$Z'(E_6) = Z'_{\psi} \cos \theta_{E_6} + Z'_{\chi} \sin \theta_{E_6}$$

where θ_{E6} is the mixing angle between the two gauge bosons. Seminar, Brussels, Nov 2012 Tracey Berry

E6 Z' models

$$Z'(E_6) = Z'_{\psi} \cos \theta_{E_6} + Z'_{\chi} \sin \theta_{E_6}$$

- The pattern of spontaneous symmetry breaking and the value of θ_{E6} determine the Z' couplings to fermions;
- six well motivated choices of θ_{E6} lead to the specific Z' states named:

Model	Z'_{ψ}	$Z'_{ m N}$	Z'_{η}	Z'_{I}	$Z'_{ m S}$	Z'_{χ}
$\sin \theta_{E_6}$	0	-1/4	$\sqrt{3/8}$	$\sqrt{5/8}$	$3\sqrt{6}/8$	1
$\cos \theta_{E_6}$	1	$\sqrt{15}/4$	$\sqrt{5/8}$	$-\sqrt{3/8}$	$-\sqrt{10}/8$	0

The expected intrinsic width of the Z' for any E6 model is predicted to be between 0.5% and 1.3% $M_{Z'}$

- Benchmark model for these searches is the Sequential Standard Model (SSM)
 - Z' has the same couplings to fermions as SM Z
 - The expected intrinsic width of the Z'_{SSM} is 3.1% $M_{Z'}$
 - Z' width assumed comparable to detector resolution
 - Not theoretically motivated

2010 data: PLB700: 163-180, 2011 2011 data 200 pb-1 update: ATL-CONF-2011-083

Extra Dimensions

In the late 90's Large Extra Dimensions (LED) were proposed as a solution to the hierarchy problem M_{EW} (1 TeV) << M_{Planck} (10¹⁹ GeV)?

KK towers/particles

When particles go into the extra dimensions....

Signature:

Narrow, high-mass resonance states in dilepton/dijet/diboson channels

 $q\overline{q}, gg \rightarrow G_{KK} \rightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma, jet + jet$

Model parameters:

• Gravity Scale: $\Lambda_{\pi} = M_{pl} e^{-kR_c\pi}$ 1st graviton excitation mass: $m_1 \rightarrow position$

$$\Lambda_{\pi} = m_1 M_{pl} / kx_1, \& m_n = kx_n e^{krc\pi} (J_1(x_n) = 0)$$

• Coupling constant:
$$c = k/M_{Pl}$$

 $\Gamma_1 = \rho m_1 x_1^2 (k/M_{pl})^2 \longrightarrow width$

k = curvature, R = compactification radius

Davoudiasi, Hewett, Rizzo hep-ph0006041

Seminar, Brussels, Nov 2012

Tracey Berry

The LHC & ATLAS Detector

Large Hadron Collider

Seminar, Brussels, Nov 2012

Magnets: solenoid (Inner Detector) 2T, air-core toroids (Muon Spectrometer) ~0.5T

LHC data

LHC performing extremely well
 Peak luminosity up to 10³³ cm⁻¹ s⁻²
 Expected luminosity by end of 2012 ~ 25 fb⁻¹
 About 90 % of delivered pp collision are used in the analyses

Dilepton Search

5 fb⁻¹ @ 7 TeV

Analysis Procedure

- Select events with two leptons of same flavor (ee, $\mu\mu$)
- Search for excess above SM expectations in high invariant mass region

Event Selection

•ATLAS data quality (stable beam, functioning subdetectors etc.)

Event Selection

ATLAS data quality (stable beam, functioning subdetectors etc.)

Acceptance (Z', 1.5 TeV): 42% (Z', 2.0 TeV): 43 % (G*, 2.0 TeV): 47%

Highest mass ee event

Highest Mass µµ event

M_{mm} =1.25 TeV

 $P_T \text{ of } 648 \text{ GeV}$ (η, ϕ) = (-0.75, 0.49)

 P_T of 583 GeV (η , ϕ) =(-0.36, -2.60)

Backgrounds

- Backgrounds with two prompt electrons/muons:
 - Drell Yan γ*/Z-> I+I⁻

(irreducible, primary background)

- Dibosons (WW,WZ,ZZ)
- ttbar (dileptonic decay)
- Backgrounds with QCD jets, which can fake prompt leptons
 - W+jets
 - QCD multijet production
- Cosmic Rays (negligible contribution to muon channel)

All background except for QCD multijet taken from simulated samples ----> What is the fake rate at high energies? Seminar, Brussels, Nov 2012 Tracey Berry

Main Backgrounds

Main Backgrounds

•SM Z/γ Drell-Yan (irreducible, primary background) •Produced using Pythia 6.421 with MRST2007 LO* •Interference with heavy resonances is small and ignored •NNLO K-factors generated using PHOZPR with MSTW2008 •QCD (electron channel only) •estimated using "reversed electron identification" and others •Top quark pair production Produced using MC@NLO 3.41 •Predicted to approximate-NNLO with 10% uncert. •SM W+jets (electron channel only) Produced using Alpgen cross-section rescaled to inclusive NNLO calculation of FEWZ •Dibosons (WW, WZ, ZZ) •Produced using Herwig 6.510 with MRST2007 LO*

•NLO cross-sections calculated using MCFM

•Cosmic Rays (negligible contribution to muon channel)

QCD Multijet Background: electrons

Jets can fake electrons. How large is the fake rate?

- 1. Baseline Method
- ► Reverse Identification
- dijet shape from reverted electron identification cuts¹⁰
- extrapolation to high invariant

masses by fitting with empirical function

- normalization by 2-component template fit
- 2. Cross-check and systematic uncertainties
- ► Isolation fit method
- use calorimeter isolation distributions
- fit signal/background templates from data for 1st and 2nd electron

Fake rate estimate

- measure probability for jet-like objects to pass Z' selection (η , E_T) - apply fake rate on normalization sample (Z' selection on leading, jet selection on second electron)

High p_T Leptons

Looking for resonances at high invariant masses

---> need to understand properties of highly energetic objects in ATLAS

Very small control sample, handles:

- Muons: calibration runs, cosmics,
- Tag-and-Probe around Z pole ---> extrapolation, simulation

Electrons (Resolution 1.2 (barrel)- 1.8% (endcaps) at 1 TeV)

- energy measurement from electromagnetic calorimeter
- resolution at high energies dominated by constant term

Muons (Resolution > 15% at 1 TeV):

- pt measurement from hits in inner detector and muon spectrometer
- require stringent cuts on number of hits, veto misaligned areas
- measured (as a function of pt) using cosmics, magnet off runs, overlap regions, inner detector vs. muon spectrometer comparisons, Z peak

Seminar, Brussels, Nov 2012

Efficiencies and scale factors

Electrons: No decrease of selection efficiency expected at high energies (careful with isolation cut)

leptons from W/Z decay: no estimate above ~200 GeV

Determine trigger, reconstruction and identification efficiencies

- allows to get relatively unbiased control sample by applying

- strict cuts on "Tag" and test efficiency on "Probe"

in data with Tag-and-Probe

(Z ---> |+|-)

- electrons: need to subtract QCD jet background
- extrapolation by observing of trends, simulation

Dilepton Kinematics

Good agreement with background expectations

Dilepton Distributions

Backgrounds are normalised to data in Z-peak region (70 - 110 GeV)

The bin width is constant in log(mll)

Tracey Berry

No evidence of New Physics... so we set limits!

Tracey Berry

- Because normalize MC to data in Z peak region (70 < m_{ll} < 110 GeV) luminosity and other mass independent systematics cancel between Z and Z'/G
- Uncertainties treated as correlated across all bins

Table 1.	Summary of systematic uncertainties on the expected numbers of events at $m_{\ell\ell}$ =	= 2 TeV.
NA indica	es that the uncertainty is not applicable, and "-" denotes a negligible entry.	

Source	Dielectrons		Dimuons	
	Signal	Background	Signal	Background
Normalization	5%	NA	5%	NA
PDF/α_s /scale	NA	20%	NA	20%
Electroweak corrections	NA	4.5%	NA	4.5%
Efficiency	2	28	6%	6%
$W+{\rm jets}$ and QCD background	NA	26%	NA	
Total	5%	34%	8%	21%

Z' Limits

Upper limit on signal cross-section set at 95% C.L.
Bayesian technique using a template shape fit & a prior assumed to be flat in signal cross-section

95 % C.L. mass lower limit in TeV on Z'_{SSM} resonance

44	$Z'_{\rm SSM} ightarrow e^+ e^-$	$Z'_{\rm SSM} \rightarrow \mu^+ \mu^-$	$Z'_{\rm SSM} \to \ell^+ \ell^-$
Observed limit [TeV]	2.08	1.99	2.22
Expected limit [TeV]	2.13	2.00	2.25

Comparison of Z'_{SSM} Limits

Tevatron experiments exclude M_(Z' SSM) < 1.071 TeV
LHC experiments, using ~40 pb⁻¹ 2010 data exclude M_(Z' SSM) < 1.042 TeV (ATLAS) & 1.140 TeV (CMS)
Indirect constraints from LEP extend these limits to 1.787 TeV

Tracey Berry

Z' Combined Limits

RS Search: Analysis Strategy

- Use same dataset as for Z' search
- Set limits in a similar bayesian way

0.01

0.91

0.03

1.45

Model/Coupling

Mass limit [TeV]

0.1

2.16

0.05

1.71

 $\sigma(Z' \text{ for } M_{Z'} = 2.5 \text{ TeV}) \sim 2 \text{ x higher at}$ 8 TeV than 7 Te V 7->8 gives us extra 10 fb⁻¹ at 2 TeV

$7 \rightarrow 8 \text{ TeV}$

improvements to the electron reconstruction and identification, w.r.t 2011, to maintain good performance in high pile-up conditions.

□ The ATLAS track pattern recognition and global χ^2 fit were updated to account for energy losses due to bremsstrahlung, □ and the track-to-cluster matching algorithm was improved to be less sensitive to bremsstrahlung losses.

Seminar, Brussels, Nov 2012

Tracey Berry

8 TeV Analysis

Follows the analysis strategy presented for 7 TeV search ee changes

Changed to diphoton trigger with Et _{leading e} > 35 GeV & Et _{subleading e} >25 GeV preferred over the dielectron trigger as the lack of requirements on the electron track is advantageous in the background-determination method.

Pt $_{\text{leading e}}$ > 40 GeV & Pt $_{\text{subleading e}}$ >30 GeV Improved e reconstruction algorithm

8 TeV

Table 1: The expected and observed number of events in the dielectron channel. The errors quoted include both statistical and systematic uncertainties.

m_{ee} [GeV]	110 - 200	200 - 400	400 - 800	800 - 1200	1200 - 3000
Z/γ^*	36200 ± 1500	4330 ± 180	412 ± 20	21.6 ± 1.5	3.03 ± 0.35
tī	2190 ± 250	750 ± 130	53 ± 19	0.86 ± 0.18	0.041 ± 0.017
W + jets	470 ± 130	130 ± 40	10.6 ± 3.0	0.30 ± 0.09	0.026 ± 0.009
Diboson	482 ± 34	172 ± 22	21 ± 8	0.91 ± 0.05	0.117 ± 0.014
Dijet	720 ± 240	250 ± 120	34 ± 23	2.1 ± 2.0	0.4 ± 0.5
Total	40100 ± 1600	5620 ± 260	530 ± 40	25.8 ± 2.5	3.6 ± 0.6
Data	39875	5760	615	31	5

Table 2: The expected and observed number of events in the dimuon channel. The errors quoted include both statistical and systematic uncertainties.

$m_{\mu\mu}$ [GeV]	110 - 200	200 - 400	400 - 800	800 - 1200	1200 - 3000
Z/γ^*	27800 ± 1800	2800 ± 250	247 ± 27	12.4 ± 1.6	1.8 ± 0.3
tt	1390 ± 170	470 ± 100	33 ± 15	0.68 ± 0.30	0.04 ± 0.04
Diboson	306 ± 25	107 ± 17	12 ± 6	0.47 ± 0.09	0.050 ± 0.020
Total	29500 ± 1800	3370 ± 270	293 ± 31	13.6 ± 1.6	1.9 ± 0.3
Data	28516	3341	276	10	3

Highest Mass Event

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

Summary of Recent LHC SSM Z' Limits

excluded at at 95% C.L.

7 TeV 2011 data (5 fb⁻¹) ATLAS 2.21 TeV

CMS 2.33 TeV

7 TeV 2011 + 4 fb⁻¹ of 8 TeV 2012 data

8 TeV 2012 data (6fb⁻¹) 2.49 GeV 2.59 TeV

Conclusion

- LHC has been working very well at beam energy 4 TeV
- ATLAS detector has been efficiently collecting data
 - distributions so far consistent with SM expectations
- We have analysed at presented limits using 6 fb⁻¹ 2012 data
- ATLAS has recorded over 20 fb⁻¹ 2012 data @ 8 TeV
 - We look forward to analysing all of this data
 - Expect updated 8 TeV results in early 2013
- We look forward to searching for New Physics at a higher center of mass energy following the upgrade of the LHC

Thank You!