Observational Cosmology

- a laboratory for fundamental physics

BND School Bruessel 2013 Marek Kowalski

Outline

- 1. The standard model of cosmology
- 2. Cosmological probes & constraints
- 3. Beyond the standard model
- 4. Upcoming surveys

Part 1: The standard model of cosmology

Observation:The Universe is expandingPrinciples:Homogeneous, isotropicTheory:General Relativity

General relativity

Einstein, 1916: General Relativity

 $-8\pi G T_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R$ Energy Curvature

General Relativity: Gravitational bending of light

General Relativity: Gravitational bending of light

Abell 2218: A Galaxy Cluster Lens, Andrew Fruchter et al. (HST)

General Relativity: The Universe can have curvature

Hubble: The Universe is expanding!

Einstein (much later): The cosmological constant was the biggest Blunder of my life

From W. Hu

COBE, 1989-1993, Nobel prize 2006: George Smoot & John Mather

The Universe (i.e. CMB) is remarkable isotropic

COBE Map of CMB Fluctuations 2.725 K +/- \sim 30 μ K rms, 7° beam

... and homogeneous on large scales

Observation:The Universe is expandingPrinciples:Homogeneous, isotropicTheory:General Relativity

Observation:The Universe is expandingPrinciples:Homogeneous, isotropicTheory:General Relativity

$$H^{2} \equiv \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3} - \frac{k}{R^{2}}$$

Friedmann, 1922

Observation:The Universe is expandingPrinciples:Homogeneous, isotropicTheory:General Relativity

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3} - \frac{k}{R^{2}} \qquad \left| \frac{1}{H^{2}} \right|^{2}$$

$$\Omega_M + \Omega_\Lambda + \Omega_k = 1$$

Observation:The Universe is expandingPrinciples:Homogeneous, isotropicTheory:General Relativity

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3} - \frac{k}{R^{2}} \qquad \left| \frac{1}{H^{2}} \right|^{2}$$

$$\Omega_{M} + \Omega_{\Lambda} + \Omega_{k} = 1$$
 Matter Density

Observation:The Universe is expandingPrinciples:Homogeneous, isotropicTheory:General Relativity

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3} - \frac{k}{R^{2}} \qquad \left| \frac{1}{H^{2}} \right|^{2}$$

$$\Omega_{M} + \Omega_{\Lambda} + \Omega_{k} = 1$$
Matter Density
Cosmological Constant/ Dark
Energy

Observation:The Universe is expandingPrinciples:Homogeneous, isotropicTheory:General Relativity

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3} - \frac{k}{R^{2}} \qquad \left| \frac{1}{H^{2}} \right|^{2}$$

Curvature of the Universe & Cosmic Microwave Background (CMB)

Cobe (1989-1992)

WMAP (2001-2013)

Curvature of the Universe & Cosmic Microwave Background (CMB)

Representation of temperature map In Spherical Harmonics:

$$\frac{\Delta T}{T} = \sum_{l=2}^{\infty} \sum_{m=-l}^{m=l} a_{lm} Y_{lm}(\theta, \phi)$$

Power spectrum as a function of angular separation

Cosmic Microwave Background (CMB) & Curvature of the Universe

(Dark) Matter in the Universe

Galaxy Clusters (F. Zwicky, 1933) <u>Virial Theorem</u>:

$$E_{\rm kin} = \frac{1}{2} E_{\rm potential}$$

Visible matter can not explain high velocities!

~80% of matter must be dark

Coma: ~650 galaxies

The cosmological constant Λ

Friedmann, 1922:

 $\left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3}$

For a Universe without matter, $\rho_M = 0$, the solution is simple :

$$R(t) \propto e^{t\sqrt{\Lambda/3}}$$

The cosmological constant Λ

1998: Discovery of Dark Energy

Nobel prize for physics 2011

Vacuum Energy \Leftrightarrow Cosmological Constant

Vacuum energy:Before:E = 0After: $Ax\rho > 0$

Pressure (*p***)** of Vacuum energy follows with assumption of energy conservation: $Ax\rho+Axp = 0 \Rightarrow p = -\rho$

Zeldovich 1968

Х

Vacuum energy has all the properties of the Cosmological constant Λ , i.e. it has negative pressure.

Vacuum Energy

Ground-state of a scalar Quantum-field:

$$E_0 = \frac{1}{2} \sum_i \hbar \omega_i$$

Casimir effect ⇔ Energy difference

Vacuum-Energy density: (with ultraviolet cut-off k_{max})

$$\rho_{\rm vac} = \frac{1}{2} \frac{\hbar}{(2\pi)^3} \int_0^{k_{\rm max}} k d^3 k = \frac{\hbar k_{\rm max}^4}{16\pi^2}$$

However, there is a problem

graviton

Observed energy density

 $\rho_{\Lambda}^{\rm obs} \sim (10^{-12} \text{ GeV})^4 \sim 10^{-7} \text{GeV/cm}^3$

Expected energy density: $\rho \sim k_{\text{max}}^4$

Gravitation: $\rho_{\Lambda}^{Pl} \sim (M_{Planck})^4 \sim (10^{18} \text{GeV})^4 \sim 10^{113} \text{GeV/cm}^3$

SUSY: $\rho_{\Lambda}^{SUSY} \sim (M_{SUSY})^4 \sim (10^3 \text{GeV})^4 \sim 10^{53} \text{GeV/cm}^3$ Electroweak: $\rho_{\Lambda}^{EW} \sim (M_{EW})^4 \sim (246 \text{ GeV})^4 \sim 10^{51} \text{GeV/cm}^3$

Fundamental Problems of Vacuum Energy/Cosmological Constant:

time

The standard model of cosmology: ACDM

Ingredients of ΛCDM:

- Cold Dark Matter
- Cosmological constant
- Baryons
- 3 light neutrino flavors
- Ampl. of primord. fluctuations
- Index of power spectrum

The standard model of cosmology: ACDM

Beyond the standard model:

- Non-Λ dark energy
- Hot dark matter,
 e.g. massive neutrinos
- Additional relativistic species,
 e.g extra neutrino species
- Tensor perturbations
 & running spectral index
 ⇒ physics of inflation

Part 2.

Cosmological probes & constraints Selected new results

WMAP

New ground based data from: South Pole Telescope (SPT) & Atacama Cosmology Telescope (ACT)

New ground based data from: South Pole Telescope (SPT) & Atacama Cosmology Telescope (ACT)

New ground based data from: South Pole Telescope (SPT) & Atacama Cosmology Telescope (ACT)

Galaxy Clusters

Picture credit: ESA

First science results of Planck (A&A, 2011)

Counting Galaxy Clusters

Vikhlinin et al. ApJ, 2009

Upcoming surveys: eROSITA, DES, ...

Distant Type la Supernovae

Supernova Type la

 \Rightarrow White dwarf in binary system

- ⇒Mass transfer up to "critical" Chandrasekhar mass of 1.4 M_☉
- \Rightarrow Thermonuclear explosion
- \Rightarrow Explosion of similar energies
- \Rightarrow Visible in cosmic distances

SNe la as "standard" Candles

- Nearby supernovae used to study SNe light curve (z<0.1)
- Intrinsically brighter SNe have wider lightcurves.

Stretching the timescale: $t' = s \times t$ Correcting the brightness $M' = M + \alpha (s - 1)$

weak deflagration strong detonation

strong deflagration weak detonation

Kasen, Roepke, Woosley, Nature 2009

Simulation of the width-brightness relation

Kasen, Roepke, Woosley, Nature 2009

Observational

SNe la Hubble Diagram

SNe la Hubble Diagram

SNe at large Redshifts (z>1)

SN 1997cj

Twin Keck telescopes on Mauna Kea.

HST Survey of Clusters with $z \ge 1$

Cycle 14, 219 orbits (PI S. Perlmutter) 24 clusters from RCS, RDCS, IRAC, XMM

Survey of z>0.9 galaxy clusters \Rightarrow SNe from cluster & field \Rightarrow about 2 x more efficient \Rightarrow enhencement of early hosts \Rightarrow 20 new HST SNe \Rightarrow 10 high quality z>1 SNe!

Supernova Cosmology Project Suzuki et al., 2011

HST Survey of Clusters with $z \ge 1$

Baryon Acoustic Oscillation

Acoustic "oscillation" lengh scale from CMB visible in the distribution of galaxies \Rightarrow Standard ruler of cosmology.

WiggleZ survey – Blake et al, 2011

Baryon Acoustic Oscillation

Acoustic "oscillation" lengh scale from CMB visible in the distribution of galaxies \Rightarrow Standard ruler of cosmology.

Cosmological parameters

SNe (Union 2.1, Suzuki et. al, 2011) BAO (Percival et. al, 2010) CMB (WMAP-7 year data, 2010)

$$\Omega_{\Lambda} = 0.729 \pm 0.014$$

and allowing for curvature:

 $\Omega_k = 0.002 \pm 0.005$

Dark Energy

Equation of state: *p=wp*

Constant w: *w*=-0.995±0.078

Dark Energy

Equation of state: *p=wp*

Constant w: *w*=-0.951±0.078

Redshift dependent w: $w(a)=w_0+(1-a) \ge w_a$ $W_a = 0.14\pm0.68$

No deviation from w=-1 (i.e. Λ)

Redshift dependent EOS

Assuming step-wise constant w:

Part 3. Moving beyond ΛCDM

Part 3. Moving beyond ΛCDM - **Dark Energy**

Many models to explain cosmic acceleration exist ... but none without difficulties.

Menu of possibilities:

1. Quantum Vacuum Energy (static)

+ it exists!

- 60-120 orders of magnitude to large

2. Quintessence (dynamic)

+ Solves "why now" problem, connects to inflation?

- "smallness" problem persists, small coupling

3. Modification of gravity (hence, no dark energy)

- + no Dark Energy
- Gravitation in solar system well understood

Braneworld Cosmology

Large extra dimensions

can solve the hierarchy problem of particle physics... (e.g. unification of forces) Randall & Sundrum Arkani-Hamed, Dimopoulos, Dvali

...and will weaken Gravity at large distances (Dvali, Gabadadze, Porrati - DGP)

 \Rightarrow apparent acceleration

Braneworld Cosmology

D. Rubin, E. Linder, MK, et al, 2009

Quintessence Example: Growing Neutrinos

Scalar field couples to massive neutrinos

Once neutrinos become subrelativistic, one obtains Λ -like behavior.

Today: Massive neutrinos and deviation from *w* =-1

$$w_0 = -1 + \frac{m_{\nu,0}}{12 \text{ eV}}$$

C. Wetterich (2007), L Amendola et al. (2007),

Quintessence Example: Growing Neutrinos

Lab constraints: $m_v \le 2 \text{ eV}$ Katrin sensitivity: $m_v \le 0.2 \text{ eV}$ v-oszillations: $m_v \ge 0.05 \text{ eV}$

> D.Rubin, E. Linder, MK et al., (2009)

Antrophic principle & cosmological constant

Steven Weinberg, 1987

Once the cosmological constant dominates the energy budget, the Universe inflates and struture will stop forming.

Oldest galaxies formed when the Universe was about 1/10 of its current scale the matter density was 10³ larger then it was today:

 $\Rightarrow \rho_{\Lambda} / \rho_{\rm m} < 10^3$
Antrophic principle & cosmological constant

Steven Weinberg, 1987

$$-10^3 < \rho_{\Lambda} / \rho_{\rm m} < 10^3$$

Once the cosmological constant dominates the energy budget, the Universe inflates and struture will stop forming.

Oldest galaxies formed when the Universe was about 1/10 of its current scale the matter density was 10³ larger then it was today.

Galaxies & stars need time to form, the Universe shouldn't collapse before.

Part 3. Moving beyond ΛCDM - Inflation

Constraints on Inflation parameters

e.g. Chaotic Inflation (Linde, 1983)

 $V(\phi) = \lambda \phi^{\nu}$

Power spectrum of curvature perturbations

 $\Delta_R^2(k) \propto \left(\frac{k}{k_0}\right)^{n_s - 1}$

Constraints on Inflation parameters

Planck 2013

Part 3. Moving beyond ΛCDM - extra relativistic species

Number of relativistic species (neutrinos!)

CMB (& Baryon Nucleosynthesis) sensitive to number of neutrino species N_{eff}

Planck+BAO: N_{eff} = 3.32±0.52 (95% CL)

Observational cosmology - Kowalski

Neutrino mass from CMB & large scale structure

Damping of correlation power due to free streaming at epoch of radiation-matter equality:

$$\left(\frac{\Delta P}{P}\right) \approx -0.8 \left(\frac{\sum m_v}{1 \text{ eV}}\right) \left(\frac{0.1}{\Omega_{\text{m}}h^2}\right)$$

Combination of CMB+BAO:

$$\sum m_v < 0.3 \text{ eV} (95\% \text{CL})$$

Planck (2013)

Part 4. Observing the future

Future projects for Dark Energy

Project	z-range	# SNe
Current	0-1.5	580
LSST (2020)	0.1-0.9	~10 ⁶
Euclid (2020)	0.9-2.0	~2000

Other important future methods: ✓Weak lensing

- ✓ Cluster rates
- ✓ Baryon acoustic osciallation

The Large Synoptic Survey Telescope

Summary

- Cosmology today is about precision
- Multiple probes for highest sensitivity
- ΛCDM looks strong so far despite interpretational problems with dark energy
- Many new surveys committed, hence significant progress expected!

The end