Electroweak Measurements

Klaus Mönig (Klaus.Moenig@desy.de)

Outline

- Introduction
- Accelerators for electroweak physics
- Electroweak measurements at LEP and SLD
- Electroweak measurements at hadron colliders
- Electroweak measurements at HERA
- Electroweak fits
- Higgs boson production
- Gauge boson production and couplings

Higgs boson production

Higgs searches at LEP1

- The Higgs mass in the SM is a free parameter
 →≈0<m_H<1 TeV (upper limit from unitarity)
- Before LEP, limits from K and B decays existed, but untrustworthy due to QCD uncertainties
- Higgs production at LEP

Production cross section can be calculated reliably

Higgs production

- For a light Higgs the cross section has two maxima:
 - when the 1st Z is on-shell
 - when the 2nd Z is on-shell
- When m_H approaches m_Z the
 1st maximum vanishes

Higgs branching ratios

- At low mass the decays are non perturbative
- At higher mass one has the usual decays proportional to the mass

k Measuremente ii

200

300

400

+ Total Uncert [%]

Higgs BR

10⁻³

6

1000

M_H [GeV]

LEP1 searches

- All searches looked for a Higgs opposite to a Z decay to leptons and neutrinos
 - For m_H<2m_e the Higgs is ~stable and the search was for missing energy opposite to a leptonic Z decay
 - For m_H<few GeV the search is for two particles recoiling against the Z
 - For m_H<20 GeV one looks for monojets</p>
 - Above ~20 GeV b-tagging can be used on the recoil
- With this set of searches the full range m_H<60 GeV
 could be excluded

Higgs searches at LEP2

- At LEP2 the relevant production mode is a Higgs together with an on-shell Z
- This results in a best possible mass limit around √s-m_z which means around 115 GeV
- In this mass region only H→bb is relevant
- With b-tagging for the Higgs and the Z-mass constraint for the recoil all Z decays can be used
- There is an irreducible background from ZZ events around m_µ=91 GeV

Results at LEP2

- There is a slight excess (1.5σ) around 115 GeV, mainly seen by ALEPH (3σ), which weakens the final limit
- There is a 2σ excess around 100 GeV seen by all experiments which cannot be a SM Higgs

ALEPH Higgs candidate at 115 GeV

Results at LEP2 (ii)

A limit m_H<114.4 GeV has been obtained

 The limit on the signal strength falls quickly below 30% and below 10% for masses < m₂

BND-school 2013

Electroweak Measurements-II

Higgs production at hadron colliders

- gg-fusion produces Higgs and nothing else in the detector
- All other graphs have associated particles that help in the tagging

Higgs cross sections

- gg-fusion dominates
- At LHC WW-fusion significant, rest small
- At Tevatron WW-fusion and W,Z bremsstrahlung relevant
- Total cross section large at LHC, factor 10 smaller at Tevatron
- At 14 TeV cross section is a factor 2 larger than at 8 TeV

Higgs searches at the LHC

At low mass H→γγ has best sensitivity (low BR, but clean)

H→ZZ→4I quickly becomes competitive apart from a window

around 2m_w

 H→WW→IvIv is sensitive between 120 GeV and 250 GeV

For high masses the hadronic Z and W decays and especially H→ZZ→IIvv become important

 With these modes the region up to ~530GeV is excluded with 10 fb⁻¹ apart from a window around 125 GeV

The mode H→WW→IvIv

- The mode H→WW→IvIv has a large rate, however a large background from SM WW and a bad mass resolution
- If the WW come from a Higgs they have same helicity
- WW from SM predominantly have opposite helicity
- Because of the left- (right-) handed coupling of the W⁻ (W⁺) the leptons tend to be close in phase space for H and far for WW

Expected search limits at the LHC

95% CL Limit on $\sigma/\sigma_{ extsf{SM}}$

Observed search limits at the LHC

95% CL Limit on $\sigma/\sigma_{ extsf{SM}}$

Higgs discovery at the LHC

- You all know that the Higgs was discovered on July 4 2012
- In the following I will go through the Higgs measurements using the best available statistics

How to separate production modes?

- gg-fusion results in a Higgs in the detector and nothing else (apart from ISR)
- ZH, WH, ttH has reconstructible W,H,t
- VV fusion:
 - Propagator: $\frac{1}{t-m_W^2}$ $t=(p-p')^2\approx 4pp'\sin^2\frac{\theta}{2}\sim m_W^2$
 - →tag jets visible in the detector
 - ◆ Higgs is colour singlet → no activity between tag-jets and Higgs /

Event categorisation

- In a typical analysis the events are put into different categories
- This has two reasons:
 - the signal to background ratio depends on detector dependencies like conversion status, angle..., this increases the statistical power of the analysis
 - special features like extra jets or leptons give different ratios of different production modes allowing to disentangle them

Categorisation of ATLAS H→γγ

Results in the different channels

- The experiments provide results in the different decay channels:
 - γγ, ZZ, WW, bb, ττ
- Limits exist in some rare decay modes
 - Zγ, μμ, invisible
- From the categorisation the different bosonic production modes can be disentangled
- Special searches exist to look for associated production with tt

- Large background from QCD $qq \rightarrow \gamma \gamma$
- Huge bg. from qq→γj and qq→jj → need excellent y-j separation
- Signal fitted on top of smooth bg.
- Need good mass resolution to get good signal/bg
- ATLAS: very good spacial resolution for y-j separation and photon direction
- CMS: excellent energy resolution in crystal calorimeter, however need vertex for direction

$H \rightarrow \gamma \gamma$ (ii)

ATLAS:

- strong signal with 7.4σ
 evidence (4.3σ
 expected)
- correspondingly slightly high signal strength:

$$\mu = 1.55^{+0.33}_{-0.28}$$

 allows for differential cross section measurement ans spin analysis

H→γγ (iii)

CMS

- downward
 fluctuation signal
 3.2σ evidence
 (4.2σ expected)
- correspondingly low signal strength

$$\mu = 0.78^{+0.28}_{-0.26}$$

cross check cut
 analysis gives
 µ=1.1 with slightly
 larger error

$H \rightarrow ZZ \rightarrow 4I$

- Very clean channel
- Almost only irreducible background ZZ→4I
- Strong signal from both experiments

H→WW→IvIv

- No mass peak, need to understand background very well
- Categorisation in number of jets to separate production modes
- ~4σ signal by both experiments

H→bb

- H→bb is the largest decay mode (57%)
- gg→H→bb is completely hopeless due to QCD background
- VH→Vbb has some chance due to the additional vector boson
- Signal/background is better at lower energy so that the Tevatron is competitive in this channel
- At the LHC one can improve signal/bg by going to boosted topologies (large V,bb energies → merging jets)

H→bb at the Tevatron

arxiv:13036346

Tevatron Run II, L_{int} ≤ 10 fb⁻¹

- The Tevatron has searched for the Higgs with their full luminosity of ~10 fb⁻¹
- In the 115-140 GeV region VH→Vbb is the most sensitive channel

With some upward fluctuation the Tevatron sees

about 3σ evidence for H→bb $m_{H}=125 \text{ GeV/c}^2$ Events / (20 GeV/c²) Combined (68% C.L.) Tevatron Run II, L_{int} ≤ 10 fb⁻¹ Single channel 1+2 b-Tagged Jets $H \rightarrow \gamma \gamma$ Data — Bkgd WZ ZZ $H \rightarrow W^+W^-$ Higgs Signal $m_{\perp}=125 \text{ GeV/c}^2$ $H \rightarrow \tau^+ \tau^-$ 200 0 $VH \rightarrow Vb\overline{b}$ 50 100 150 200 250 300 350 Dijet Mass (GeV/c²) Best Fit $(\sigma \times Br)/SM$ BND-school 2013 Electroweak Measu

H→bb at the LHC

- Both experiments search for VH→Vbb in the 0/1/2-jet mode and in bins of p_{T.H}
- Both experiments see clear signal of VZ production
- CMS has 2σ evidence for H \rightarrow bb ($\mu = 1.0 \pm 0.5$) while ATLAS has a downward fluctuation with similar sensitivity ($\mu = 0.2^{+0.7}_{-0.6}$)

$H \rightarrow TT$

- In H→TT events always (at least) 2 neutrinos are missing
- The τ-momenta can be reconstructed under the assumption that the v is collinear with the τ and if the 2 τs are not collinear in the transverse plane
- This makes the H→TT analysis more sensitive in VBF, VH and gg with significant ISR
- The analyses are split according to the τ-decay mode (leptonic or hadronic) and the jet multiplicity

Н→**тт** (іі)

- CMS sees 2.9σ evidence (2.6σ expected)
- Together with H→bb this gives 3.4σ evidence for the Higgs coupling to down-type fermions
- ATLAS doesn't use the full 2012 statistics yet

Searches for rare modes

- ATLAS searched for several rare modes
- Limits (95% C.L. meas(exp. no Higgs)):
 - ttH ($H\rightarrow \gamma\gamma$): $\mu < 5.3(6.4)$
 - **→** H \rightarrow µµ: µ<9.8(8.2)
 - ♦ $H \rightarrow Z_{\gamma}$: $\mu < 18.2(13.5)$ ATLAS-CONF-2013-009
 - → H→inv.: BR(H→inv)<65%(84%)</p>
 - ◆ t→cH: BR(t→cH)<0.83%(0.53%)
 </p>
- CMS has similar results

Electroweak Measurements-II

The mass of the Higgs boson

 The mass can be obtained in an (almost) model independent way from the two high resolution channels H→γγ and H→ZZ

• ATLAS: $m_H = 125.5 \pm 0.2 \pm 0.6 \text{GeV}$

• CMS: $m_H = 125.7 \pm 0.3 \pm 0.3 \text{GeV}$

This is already better than needed for any application

Spin and CP of the new boson

From the observation of H→γγ one knows that the new particle cannot have J=1 (Landau Yang theorem)

In general J^P can be measured from the decay angles of

the Higgs

 For J≠0 also the production mode (gg, qq) influences the decay angles

Spin and CP (ii)

- H→γγ:
 - cos(θ*) is sensitive to J
 - if J=0 no sensitivity to P

- H→WW→IvIv:
 several variables (Φ_{||}, m_{||}) sensitive to J^P^{g/g}
 - can be combined with BDT
- H→ZZ→4I:
 - full final state sensitive to J^P can be reconstructed
 - combined in BDT or with matrix element method

Spin and CP (ii)

Hypotheses tested pair-wise with log likelihood ratio

$$q = \log \frac{\mathcal{L}(J^P = 0^+, \hat{\hat{\mu}}_{0^+}, \hat{\theta}_{0^+})}{\mathcal{L}(J^P_{alt}, \hat{\hat{\mu}}_{alt}, \hat{\hat{\theta}}_{alt})}$$

0 excluded with ~99% C.L. compared to 0+

37

CMS data

20

Test of scalar vs tensor

- Use minimal coupling graviton inspired model
- Still qq/gg production fraction free parameter
- WW(ZZ) and γγ complementary
- Spin 2 model excluded with >99.9% C.L. over full range!

Higgs couplings

- A single Higgs cross section is proportional to Γ_iΓ_f/Γ_H
- There is no model independent way to measure the Higgs width and consequently the partial widths
- Model independent measurements:
 - measure cross sections and express results as $\mu = \sigma_{meas} / \sigma_{sm}$
 - from fits to different categories can get ratio of partial widths of initial state
 - from ratio of different analyses can get ratio of partial widths of final state
- Any further interpretation needs model assumptions!

Total signal strength

- Experiments measure µ for all analysis and combine
- All results are consistent with µ=1
- Accuracy ~15%

- ATLAS: μ=1.23±0.18
- CMS: μ =0.80±0.14
- TEV: $\mu = 1.44 \pm 0.60$

Higgs production modes

2D fits are only possible in μ_{prod}•BR

The ratio can be obtained in a model independent way

gg production is established without any doubt and vector

boson production with $>3\sigma$

Fermion vs boson couplings

- Assume:
 - all fermion couplings scale
 with κ_F(=κ_b=κ_t=κ_τ...)
 - all boson couplings scale with κ_V(=κ_Wκ_Z)
 - no BSM contributions to Γ_H
 and γ,g loops
- $\kappa_F, \kappa_V \neq 0$ established at $> 5\sigma$
- (κ_F mainly from gg-loop, direct evidence from CMS ~3σ)

Loop induced couplings

- Assume:
 - all tree-level couplings to SM particles as in SM

no direct BSM contributions to Γ,

- κ_{v} and κ_{g} compatible with 1 with ~15% uncertainty
- puts limits on heavy (colour-)charged particles coupling to the Higgs

BSM couplings

- Direct searches ZH→II+inv. gives BR(H→inv)<0.6 (95%C.L.)</p>
- Parametrise $\Gamma_H = \Gamma_{SM} + \Gamma_{BSM}$ (sensitiv to undetectable modes)
- ATLAS:
 - assume κ=1 for all tree level SM modes
 - fit for κ_{γ} , κ_{g} , BR_{BSM}
 - ▶ BR_{BSM}<0.60 (95%C.L.)</p>
- CMS:
 - assume κ_√≤1
 - fit for κ_{V} , κ_{b} , κ_{τ} , κ_{t} , κ_{v} , κ_{g} , BR_{BSM}
 - ▶ BR_{BSM}<0.64 (95%C.L.)</p>

Conclusions on Higgs measurements

- The new particle found at the LHC is most probably a scalar
- Its mass is 125.6GeV with an error <0.5%</p>
- All coupling measurements agree with the SM prediction with errors down to 15%
- By now we can be reasonable sure that the new particle is a Higgs
- E.g. SUSY predicts a Higgs doublet where the light Higgs can agree with the SM prediction to an arbitrary level
- This means we will never know if we found the Higgs unless we find that we didn't