Electroweak Measurements #### Outline - Introduction - Accelerators for electroweak physics - Electroweak measurements at LEP and SLD - Electroweak measurements at hadron colliders - Electroweak measurements at HERA - Electroweak fits - Higgs boson production - Gauge boson production and couplings #### Introduction - Electroweak physics is the physics of the W- Zand Higgs bosons - All bosons have masses in the 100 GeV range, this sets the scale for the energy of the accelerators - The Standard Model predicts the masses, couplings to fermions and couplings among the bosons, so want to test all these parameters # Relevant Feynman graphs for gauge boson production - s-channel production - Large cross section - Useful for mass and fermion couplings - s-channel pair production - Useful for gauge boson couplings - t-channel production - Can be used for cross section measurements # Accelerators for electroweak physics #### Accelerator types - e⁺e⁻: - ◆ Elementary particle → initial state fully known - Polarisation possible → double number of measurements in a parity violating model like SM - Full energy in detector → can use 4-momentum conservation in reconstruction - No strong interaction → low background - However synchrotron radiation goes with (E/m)⁴ - → difficult to reach high energy #### Accelerator types (ii) #### pp,pp: - Easier to reach high energy, limited by B-field - Nowever soup of quarks and gluons → initial state not known on event-by-event basis and parton cms energy much smaller than beam energy - ◆ Proton remnants disappear in beam-pipe → only transverse momentum conservation usable - ◆ Strong interactions → large backgrounds #### ep: - Mainly for measurement of proton structure - Sensitive to electroweak couplings from W, Z tchannel exchange #### LEP - e⁺e⁻ collider at CERN (1989-2000) - Circumference 27 km (tunnel now hosts LHC) - 4 experiments: ALEPH, DELPHI, L3 and OPAL - 1989-1995: - running at or near the Z-pole (√s≈91 GeV) - 4·10⁶ Zs/experiment for Z properties - 1996-2000: - Running at 161 GeV<√s<208 GeV</p> - 750 pb⁻¹/experiment (10000 W-pairs) - W properties and Higgs searches #### LEP (ii) #### SLC - Linear e⁺e⁻ collider at SLAC - Running 1992-1998 at the Z-pole - One experiment: SLD - Low luminosity (≈500000Zs) - However beam polarisation <80%</p> - Competitive measurement of sin²θ #### **Tevatron** - pp collider at Fermilab/Illinois, 1985 2011 - Running at 1.8 TeV<√s<1.96 TeV</p> - Two experiments: CDF, D0 - Total luminosity 10 fb⁻¹/experiment - Discovery of top-quark (1995) - Precise measurement of W-mass - Triple gauge couplings - Higgs searches #### Tevatron (ii) #### LHC - pp collider at CERN (in LEP tunnel) - Two experiments: ATLAS, CMS (+specialised ones: ALICE, LHCb, Totem) - Running 2010-2012 with 7 TeV<√s<8 TeV</p> - Luminosity up to now 25 fb⁻¹/experiment - From 2015 onwards running with √s≤14 TeV - Higgs discovery and properties - First TGC results - Potential for accurate W mass #### LHC (ii) # Electroweak measurements at LEP and SLD #### Situation before LEP - All particles except top and Higgs were discovered - The Standard Model was established as an effective theory - The precision was not good enough to establish quantum effects - Aim at LEP/SLC: - Improve precision by at least one order of magnitude - Establish the Standard Model as a quantum theory History of electroweak couplings #### LEP/SLC goals Dominant process: Important loop corrections: - Observables get dependent on invisible particles - Can constrain new physics with precision measurements #### Electroweak couplings - On tree level need three parameters to define electroweak coupling sector - \rightarrow use the most precise: $\alpha(\Delta\alpha/\alpha=3\cdot10^{-9})$, $G_F(\Delta G_F/G_F=5\cdot10^{-7})$, $m_Z(\Delta m_Z/m_Z=2\cdot10^{-5})$ - Z-fermion couplings: - axial-vector coupling: $g_{Af} = I_3^f$ - vector coupling: $g_{Vf} = g_{Af} \left(1 4|Q_f| \sin^2 \theta_W \right)$ - W-Z mass relation: $\sin^2 \theta_W = 1 \frac{m_W^2}{m_Z^2}$ - Loop corrections introduce differences between sin²θ definitions #### Loop corrections - On the Z-pole resonant diagrams dominate → loop corrections can be parametrised by 2 form-factors - $g(A, f) = \sqrt{1 + \Delta \rho_f} I_3$ - $\sin^2 \theta_{\mathrm{eff}}^f = (1 + \Delta \kappa_f) \sin^2 \theta \, (g_V/g_A)$ - $m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 \frac{\sqrt{8\pi\alpha(1 + \Delta r)}}{G_F m_Z^2}} \right)$ - e.g. Δρ: $$\Delta \rho = \frac{3G_F}{4\pi^2 \sqrt{2}} \left(\frac{m_t^2}{2} - m_W^2 \frac{s^2}{c^2} \ln \frac{m_H}{m_Z} \right) + \dots$$ #### **Z-observables** - Two types of observables: - Partial widths: $$\Gamma_f \propto |g_{Af}|^2 + |g_{Vf}|^2 \to \Delta \rho_f$$ $$\Gamma_q = \Gamma_q^0 \left(1 + \frac{\alpha_s}{\pi} + \dots \right)$$ Asymmetries: $$\mathcal{A}_f = \frac{2g_{Vf}g_{Af}}{g_{Vf}^2 + g_{Af}^2} \to \sin^2\theta_{\text{eff}}$$ Can be measured for leptons, b-quarks, c-quarks and Σ(quarks) #### The Z lineshape - Scan few GeV around Z-resonance - Measure cross section for leptons and hadrons $$\sigma_f(s) = \frac{12\pi}{m_Z} \frac{\Gamma_e \Gamma_f s}{\left(s - m_Z^2\right)^2 + \left(\frac{s}{m_Z}\right)^2 \Gamma_Z^2} + \sigma_{\text{int}} + \sigma_{\gamma}$$ - Express results in terms of minimal correlated variables: - $\rightarrow m_Z$ - $\bullet \Gamma_Z$ - $\sigma_0^{\text{had}} = \frac{12\pi}{m_Z} \frac{\Gamma_e \Gamma_{\text{had}}}{\Gamma_Z^2}$ - $R_l = \frac{\Gamma_{\rm had}}{\Gamma_l}$ #### The Z lineshape (ii) $$\sigma(s) = \frac{N - N_{\text{bg}}}{\epsilon \mathcal{L}}$$ - Need to measure - Number of events, efficiency background - Luminosity - Centre of mass energy #### **Event counting** Event counting, efficiency, background is easy at LEP #### Luminosity measurement - In principle luminosity can be calculated from machine parameters - However, if a gauge reaction is available with known cross section, luminosity can be obtained much more precise from this - Bhabha scattering (e⁺e⁻→e⁺e⁻) at low angles is, apart from small corrections, a pure QED process with a large cross section - Typical LEP acceptance 30mrad < θ < 180mrad - Total cross section above $\theta_{min} \sim 1/\theta^3$ - Need to know very precisely the lower acceptance cut (20 µm is needed for <0.1% error) #### Luminosity measurement (ii) Experimental accuracy: **≈**0.05% Theoretical accuracy: **≈**0.05% • Limiting error for σ_{α} #### Beam energy Measurement - The beam energy was measured at the end of a fill using resonant depolarisation with 0.2MeV precision - However several corrections for time drifts have to be applied: e.g. - Earth tides: <15MeV</p> BND-school 2013 Electroweak Measurements-I #### Beam energy Measurement - Hysteresis effect from TGV Geneva-Bellegarde - Total error from beam energy: - $\Delta m_z = 1.7 MeV$ - $\Delta \Gamma_z = 1.2 \text{ MeV}$ #### **Z-scan results** - Results agree well with lepton universality - The results establish clearly 3 light neutrino species - $M_z = 91.1875 \pm 0.0021 GeV$ - $\Gamma_z = 2.4952 \pm 0.0023 \text{GeV}$ - $\sigma_0^{had} = 41.540 \pm 0.037 \text{nb}$ - $R_1 = 20.767 \pm 0.025$ # Measurements of the weak mixing angle - $\sin^2\theta_{eff}$ is sensitive to g_{V}/g_{A} and measured from asymmetries - Available asymmetries: - Forward-backward asymmetry $$A_{\rm FB}^f = \frac{N_{\rm F} - N_{\rm B}}{N_{\rm F} + N_{\rm B}} = \frac{3}{4} \mathcal{A}_e \mathcal{A}_f$$ Left right asymmetry with polarised beams $$A_{\mathrm{LR}} = rac{1}{\mathcal{P}} rac{N_{\mathrm{L}} - N_{\mathrm{R}}}{N_{\mathrm{L}} + N_{\mathrm{R}}} = \mathcal{A}_e$$ ◆ т-polarisation $$\mathcal{P}_{\tau}(\cos \theta) = \frac{\mathcal{A}_{\tau}(1 + \cos^2 \theta) + 2\mathcal{A}_e \cos \theta}{(1 + \cos^2 \theta) + 2\mathcal{A}_{\tau}\mathcal{A}_e \cos \theta}$$ ### Sensitivity of the As on $sin^2\theta_{eff}$ ## Forward-backward asymmetry for leptons - Relatively easy and clean measurement - Because of large √s dependence technically included in scan # Forward-back asymmetry for quarks - A_{FB} can be measured for band c-quarks - Because A_b is large (A_b≈0.94) A_{FB}^b is a clean measurement of sin²θ¹ - The branching ratio Z→bb is large,however one looses due to the b tagging and charge identification - This is done with leptons or btagging+jet-charge - A_{FB}^b gives the 2nd most precise sin²θ^l_{eff} measurement - A_{FB}^c is less interesting because of the smaller sensitivity and efficiency #### **T-polarisation** - The τ-polarisation is measured from the energy spectrum of the τ-decay products - Especially sensitive are the τ→πν and τ→ρν decays #### Left-right asymmetry • ALR measures $\mathcal{A}_{\rm e}$ independent of the final state \to all final states can be used without flavour tagging The statistical error gets small quickly if polarisation is high The challenge of the experiment is an accurate polarisation measurement ### $sin^2\theta_{eff}$ results - Slight tension (3.2σ) between most precise measurements - Both measurements are statistics limited - No sign for a problem, so probably statistical fluctuation - Total precision 1.6·10⁻⁴ - Restricts Higgs-mass on its own #### Heavy flavour results - The partial width ratios R_b , R_c ($R_q = \Gamma_q \Gamma_{had}$) can be measured at LEP/SLC using b/c-tagging - The coupling parameters A_{b/c} can be measured with the left-right-forward-backward asymmetry and the ratio A_{FB} b/A_{LR} For b-quarks this is interesting because of vertex corrections with top quarks #### The W-mass at LEP - W-bosons at LEP are produced in pairs - The branching ratio W→Iv is 1/9 per lepton - ♦ WW→IvIv (I=e,µ): 5% - ♦ WW→lvqq (I=e,µ): 30% - ♦ WW—qqqq: 44% - Rest involving TS - The W mass must be reconstructed from the final state - To improve the energy resolution of jets the 4momentum constraint is needed #### Constraint fits - 4-momentum conservation gives 4 constraints - For a WW→qqqq event this is sufficient to get the 4 jet energies assuming the jet directions are well measured - For WW→Ivqq (I=e,µ) events 3 constraints are used to "measure" the neutrino - One can also assume that both Ws have the same mass to fix the jet energies also in this case - In WW→IvIv events and in events with Ts due to additional neutrinos there are not enough constraints so that the resolution is worse - In all cases due the constraints the measurements are sensitive to the beam energy #### WW—Ivqq - Cleanest mode with good resolution - Very little background - Result statistics dominated $m_{W}(lvqq) = 80.372\pm0.030(stat)\pm0.021(syst) GeV$ #### WW→qqqq - Largest dataset with no missing information - In principle very good resolution - However serious problem: colour reconnection - W-lifetime shorter than fragmentation time - Colour stings of two Ws can connect - Mass of jet-jet system gets distorted - Can be partially solved by restriction to high momentum hadrons - →larger statistical and still substantial systematic error $$m_W(qqqq) = 80.387$$ ±0.040(stat) ±0.044(syst) GeV # Electroweak measurements at hadron colliders #### Generalities - Hadron colliders have a large cross section for Wand Z-production - Only the leptonic decays are usable, for the hadronic decays the QCD background is too large - Since only one parton out of each (anti)proton interacts and the rest disappears in the beampipe the beam energy cannot be used in the analysis - Transverse momentum conservation can still be used - Hadron colliders are the only place where topquarks can be produced up to now #### The W-mass at the Tevatron W-bosons are produced in qq'annihilation Only W→ev,µv decays are usable for analysis To first approximation the W has no transverse momentum • The lepton p_{T} spectrum ends at $m_{W}/2$ From ISR and underlying event the W gets a small p_¬, transferring to the lepton This can be cured using the transverse mass instead #### W-mass observables - p_t : experimentally clean, smeared by p_T^W - m_T: p_T^W safe, dependent on hadronic resolution #### W-mass observables (ii) - For Δm_w~10MeV need to know - Lepton momentum: 0.01% precision - Hadronic recoil: 1% precision - Must be calibrated using Z, J/Ψ, Y arxiv:12003.0275 #### W-mass extraction - The W-mass is obtained from p_T and m_T and the results are combined - m_T has a slightly smaller error but due to the large correlation it carries most of the weight #### Results - CDF(2.2 fb⁻¹) $m_W = 80.387 \pm 0.012 \pm 0.015 \text{ GeV}$ - D0 (4.3+1.0 fb⁻¹) $m_W = 80.375 \pm 0.011 \pm 0.020 \text{ GeV}$ B. Quinn, Lepton-Photon 2013 | Source | CDF $m_T(\mu, \nu)$ | CDF $m_T(e, \nu)$ | $D \emptyset \ m_T(e, \nu)$ | | | | | |---|---------------------|-------------------|-----------------------------|--|--|--|--| | Experimental – Statistical power of the calibration sample. | | | | | | | | | Lepton Energy Scale | 7 | 10 | 16 | | | | | | Lepton Energy Resolution | 1 | 4 | 2 | | | | | | Lepton Energy Non-Linearity | | | 4 | | | | | | Lepton Energy Loss | | | 4 | | | | | | Recoil Energy Scale | 5 | 5 | | | | | | | Recoil Energy Resolution | 7 | 7 | | | | | | | Lepton Removal | 2 | 3 | | | | | | | Recoil Model | | | 5 | | | | | | Efficiency Model | | | 1 | | | | | | Background | 3 | 4 | 2 | | | | | | W production and decay model – Not statistically driven. | | | | | | | | | PDF | 10 | 10 | 11 | | | | | | QED | 4 | 4 | 7 | | | | | | Boson p_T | 3 | 3 | 2 | | | | | #### World m_w combination #### Mass of the W Boson - Current error of combination: 15MeV - Dominated by Tevatron - LHC had potential to go to 5 MeV - However no results yet #### Top-quark production - Top-quarks are produced in pairs - At the Tevatron they are g mainly produced from qq, at the LHC from gg - The top quark decays almost always in Wb with subsequent W→Iv,qq' - The top mass can be reconstructed from the decay products of the top quark - The most precise channel it tt→WWbb→Ivqqbb (l=e,µ) #### Top-mass measurement - In tt→lvqqbb events the neutrino can be reconstructed from E_t^{miss} and the W-mass constraint and the jet energy scale can be improved using the W-mass constraint - This allows to get the JES error to the 0.5GeV and the total error to the 1 GeV level #### Top-mass results Mass of the Top Quark [GeV] - LHC is getting close - No recent combination exists #### What is the top-mass - The top is not a stable particle → the top-mass is not a well defined quantity - The top is a colour triplet → one can never measure the top-mass from its decay products - In reality the experiments measure a parameter called top-mass in their Monte Carlo - This is believed to be close to the pole-mass - The pole-mass has to be transferred to the running mass for the loop calculations - In the whole procedure there is room for another error which may be about 1 GeV ## Electroweak measurements at HERA - HERA measured neutral currents and charged currents in polarised e⁻p and e⁺p scattering - The data are mainly used for Parton Distribution Functions (PDF) - However they allow also to measure couplings of quarks to gauge bosons #### Charged currents at HERA Running with different beam polarisations **HERA** shows clearly that the W couples to left-handed electrons and right-handed positrons #### Electroweak unification The cross section of charged and neutral current processes also shows that the electromagnetic and weak forces unify at high energy #### Quark couplings - HERA measures also couplings of the Z to light quarks - They are however not (yet) interesting for the electroweak fits Vector and axial-vector couplings of u and d quarks to the Z #### Electroweak fits #### Idea of electroweak fits - Observables receive loop corrections from unseen effects - If the system is overconstrained one can fit for unknown parameters or test the model for consistency - If precision is better than typical loop factor (α≈1/137) one can test the model or try to obtain information on new physics in loops #### Fixing the Standard Model - On tree level need three parameters to define electroweak coupling sector (g, g', v) - \rightarrow use the most precise: $\alpha(\Delta\alpha/\alpha=3\cdot10^{-9})$, $G_F(\Delta G_F/G_F=5\cdot10^{-7})$, $m_Z(\Delta m_Z/m_Z=2\cdot10^{-5})$ - Fixing the loops: m_t from Tevatron, m_H from LHC - Running of α: - α runs with energy (~+10% up to m_z) - Can be obtained from low energy e⁺e⁻-data and theory - Other low energy data play only a minor role #### Extraction of weak couplings (ii) - With the sin²θ and partial width measurements the vector and axial-vector coupling of the Z can be extracted - The couplings confirm lepton universality to better than a percent and are sensitive to loopcorrections #### Individual sensitivity to m_H Fixing the SM parameters each observable can be used to "measure" the Higgs-mass #### Fit history - The precision data have been used since ~1990 to predict the topmass - The Higgs-mass has been varied from the minimum allowed value to 1TeV #### History of top-mass predictions ## Global fit without m_H Predicted Higgs mass well compatible with LHC measurement $(m_H = 94^{+29}_{-24} \, \text{GeV})$ DIAD-2011001 70 13 http://cern.ch/gfitter/Standard_Model/ LIEULIUWEAK IVIEASUREMENTS-I #### Prediction of m_r and m_H - Precision mainly from m_W^2 , $\sin^2\theta_{eff}$ - Partial widths play only minor role #### Fit results including m - Again good agreement of data with fit - Modifications due to m_H inclusion modest - X²/ndf=20.7/14, p-value from a toy MC study: 11% - α_s=0.1188±0.0027 (4th order) in good agreement with world average (α_s=0.1184±0.0007) #### Prediction of W- and top mass #### Numerical results | Parameter | Input value | Free
in fit | Fit result incl. M_H | Fit result not incl. M_H | Fit result incl. M_H but not exp. input in row | |---|--------------------------|----------------|---------------------------------|---------------------------------|--| | $M_H [\text{GeV}]^{(\circ)}$ | 125.7 ± 0.4 | yes | 125.7 ± 0.4 | 94^{+25}_{-22} | 94^{+25}_{-22} | | M_W [GeV] | 80.385 ± 0.015 | _ | 80.367 ± 0.007 | 80.380 ± 0.012 | 80.359 ± 0.011 | | Γ_W [GeV] | 2.085 ± 0.042 | _ | 2.091 ± 0.001 | 2.092 ± 0.001 | 2.091 ± 0.001 | | M_Z [GeV] | 91.1875 ± 0.0021 | yes | 91.1878 ± 0.0021 | 91.1874 ± 0.0021 | 91.1983 ± 0.0116 | | Γ_Z [GeV] | 2.4952 ± 0.0023 | _ | 2.4954 ± 0.0014 | 2.4958 ± 0.0015 | 2.4951 ± 0.0017 | | $\sigma_{ m had}^0$ [nb] | 41.540 ± 0.037 | _ | 41.479 ± 0.014 | 41.478 ± 0.014 | 41.470 ± 0.015 | | R_ℓ^0 | 20.767 ± 0.025 | _ | 20.740 ± 0.017 | 20.743 ± 0.018 | 20.716 ± 0.026 | | $A_{ m FB}^{0,\ell}$ | 0.0171 ± 0.0010 | _ | 0.01627 ± 0.0002 | 0.01637 ± 0.0002 | 0.01624 ± 0.0002 | | $A_{\ell}^{\ (\star)}$ | 0.1499 ± 0.0018 | _ | $0.1473^{+0.0006}_{-0.0008}$ | 0.1477 ± 0.0009 | $0.1468 \pm 0.0005^{(\dagger)}$ | | $\sin^2\!\! heta_{ m eff}^\ell(Q_{ m FB})$ | 0.2324 ± 0.0012 | _ | $0.23148^{+0.00011}_{-0.00007}$ | $0.23143^{+0.00010}_{-0.00012}$ | 0.23150 ± 0.00009 | | A_c | 0.670 ± 0.027 | _ | $0.6680^{+0.00025}_{-0.00038}$ | $0.6682^{+0.00042}_{-0.00035}$ | 0.6680 ± 0.00031 | | A_b | 0.923 ± 0.020 | _ | $0.93464^{+0.00004}_{-0.00007}$ | 0.93468 ± 0.00008 | 0.93463 ± 0.00006 | | $A_{ m FB}^{0,c}$ | 0.0707 ± 0.0035 | _ | $0.0739^{+0.0003}_{-0.0005}$ | 0.0740 ± 0.0005 | 0.0738 ± 0.0004 | | $A_{ m FB}^{0,b}$ | 0.0992 ± 0.0016 | _ | $0.1032^{+0.0004}_{-0.0006}$ | 0.1036 ± 0.0007 | 0.1034 ± 0.0004 | | R_c^0 | 0.1721 ± 0.0030 | _ | 0.17223 ± 0.00006 | 0.17223 ± 0.00006 | 0.17223 ± 0.00006 | | R_b^0 | 0.21629 ± 0.00066 | _ | 0.21474 ± 0.00003 | 0.21475 ± 0.00003 | 0.21473 ± 0.00003 | | \overline{m}_c [GeV] | $1.27^{+0.07}_{-0.11}$ | yes | $1.27^{+0.07}_{-0.11}$ | $1.27^{+0.07}_{-0.11}$ | _ | | \overline{m}_b [GeV] | $4.20^{+0.17}_{-0.07}$ | yes | $4.20^{+0.17}_{-0.07}$ | $4.20^{+0.17}_{-0.07}$ | _ | | m_t [GeV] | 173.18 ± 0.94 | yes | 173.52 ± 0.88 | 173.14 ± 0.93 | $175.8^{+2.7}_{-2.4}$ | | $\Delta \alpha_{\mathrm{had}}^{(5)}(M_Z^2)^{(\triangle \nabla)}$ | 2757 ± 10 | yes | 2755 ± 11 | 2757 ± 11 | 2716^{+49}_{-43} | | $lpha_{\scriptscriptstyle S}(M_Z^2)$ | _ | yes | 0.1191 ± 0.0028 | 0.1192 ± 0.0028 | 0.1191 ± 0.0028 | | $\delta_{ m th} M_W$ [MeV] | $[-4,4]_{\mathrm{theo}}$ | yes | 4 | 4 | _ | | $\delta_{ m th} \sin^2\!\!\theta_{ m eff}^{\ell} ^{(\triangle)}$ | $[-4.7, 4.7]_{ m theo}$ | yes | -1.4 | 4.7 | - | ^(°) Average of ATLAS ($M_H=126.0\pm0.4~({\rm stat})\pm0.4~({\rm sys})$) and CMS ($M_H=125.3\pm0.4~({\rm stat})\pm0.5~({\rm sys})$) measurements assuming no correlation of the systematic uncertainties. (*) Average of LEP ($A_\ell=0.1465\pm0.0033$) and SLD ($A_\ell=0.1513\pm0.0021$) measurements, used as two measurements in the fit. (†) The fit w/o the LEP (SLD) measurement gives $A_\ell=0.1474^{+0.0005}_{-0.0009}$ http://cern.ch/gfitter/ Standard_Model/ #### STU-parameters - The STU parameters were designed to ease BSM analyses: - T absorbs the isospin breaking contributions (Δρ) - S takes the remainder in Δκ - U takes what is still left in ∆r (U=0 in many models) #### STU-parameters (ii) - STU parameters can be calculated by theorists for BSM models without calculating the whole SM - Example: 4th fermion generation before Higgs discovery #### 4th generation A sequential 4th generation has been reanalysed using STU parameters and Higgs couplings A 4th generation is excluded independent of its mass assuming a SM Higgs sector $$pp \to H \to \gamma \gamma$$ $$pp \to H \to WW$$ $$pp \to H \to ZZ$$ $$p\bar{p} \to H \to b\bar{b}$$ $$pp \to H \to b\bar{b}$$ $pp \to H \to \tau\tau$ Eberhardt et al. arXiv:1209.1101 #### **Techincolour** In the same way technicolour could be excluded long before the Higgs discovery (ε₁~T, ε₃~S,ε_b~R_b) # Conclusions electroweak precision measurements - Masses and couplings of electroweak gauge bosons have been measured at the per mille level - They agree perfectly with 2-loop electroweak calculations - This constraints many models beyond the Standard Model - There are only few and moderate improvements possible at the LHC, major progress can only be achieved at an e⁺e⁻ linear collider #### Literature - LEP1/SLD electroweak report: hep-ex/0509008 - LEP2 electroweak report: arxiv:1302.3415 - Tevatron W-mass: arxiv:1204:0042 - Tevatron top-mass: arxiv:1305.3929 - Latest electroweak fits (Gfitter): arxiv:1209.2716