Electroweak Measurements

Klaus Mönig (Klaus.Moenig@desy.de) √s (GeV)

Outline

- Introduction
- Accelerators for electroweak physics
- Electroweak measurements at LEP and SLD
- Electroweak measurements at hadron colliders
- Electroweak measurements at HERA
- Electroweak fits
- Higgs boson production
- Gauge boson production and couplings

Gauge boson production and couplings

Gauge boson pair production

- W-pairs are produced by fermion t-channel and Z/γ schannel exchange
- The latter involves gauge boson self-couplings predicted by a non-Abelien gauge theory
- Z-boson pairs are only produced via the t-channel and the SM contains no couplings among neutral gauge bosons

Gauge cancellations

- For W-pair production the t- and s-channel violate unitarity individually
- The unitarity gets only restored by the interference term
- This means that the gauge couplings must asymptotically be exactly as predicted, otherwise the theory doesn't work

Vector boson scattering

- Something similar happens in vector boson scattering
- This processes is mediated by gauge boson and Higgs s-, t-channel exchange
- Without a Higgs unitarity is violated at 1.2 TeV
- This either constraints VVH couplings or something else must restore unitarity
- This is only relevant for longitudinal gauge bosons, since the SM with massless gauge bosons and without the Higgs is a finite theory

Vector boson scattering (ii)

If Higgs is non-standard expect deviations in vector boson scattering at high energy, including resonances, like in

Triple gauge couplings

The triple couplings are usually parametrised as

$$\mathcal{L} = g_1^V V^\mu \left(W_{\mu\nu}^- W^{+\nu} - W_{\mu\nu}^+ W^{-\nu}\right) + \kappa_v W_\mu^+ W_\nu^- V^{\mu\nu} + \frac{\lambda_V}{m_W^2} V^{\mu\nu} W_\nu^{+\rho} W_{\rho\mu}^-$$
 + more terms violating C,P...
$$V = \gamma, Z \qquad V_{\mu\nu} = \partial_\mu V_\nu - \partial_\nu V_\mu$$
 (em gauge invariance requires $g_1^\gamma = 0$)

Magnetic dipole moment

$$\mu_W = \frac{e}{2m_W} (1 + \kappa_\gamma + \lambda_\gamma)$$

Electric quadrupole moment

$$q_W = -\frac{e}{m_W^2} (\kappa_\gamma - \lambda_\gamma)$$

SM:

$$g_1^V = \kappa_V = 1, \ \lambda_V = 0 \qquad \Delta x = x - 1$$

Triple gauge couplings (ii)

- Dimension 4 operators (g,κ) grow like \sqrt{s}
- Dimension 6 operators (λ) grow like s
- In analyses often regulated by form factor

$$x = \frac{x_{bare}}{\left(1 + \hat{s}/\Lambda^2\right)^n}$$

- In e⁺e⁻ experiments with fixed √s results can be converted a posteriori
- In hadron colliders put Λ around centre of mass energy

Measurement of TGCs

- The cross section is already very sensitive
- The W-production angle separates s- and t-channel
- The W-decay angles separate to the W-polarisation states

arxiv:1302.3415

TGCs at LEP

- TGCs are measured in W-pair production
- The cross section proved that TGCs must be present
- Without beam polarisation WWγ and WWZ couplings cannot be separated
- Quantitative analyses add full event information

TGCs at LEP (ii)

- In semileptonic events the full information is available apart from the separation of the quark and the anti-quark
- The full polarisation state can be obtained from the decay angles apart from the polarisation direction of the hadronic W

• WW γ and WWZ couplings are related, inspired by gauge invariance $\kappa_Z = g_1^Z - (\kappa_\gamma - 1) \tan_W^2$

$$\lambda_Z = \lambda_{\gamma}$$

TGCs at LEP

(iii)

- Single parameter fits give errors of 2-4%
- Confirms gauge structure of SM
- However not precise enough to see deviations from new physics

ADLO TGC Combination

$$\kappa_{\gamma}$$
 = 0.982 $^{+0.042}_{-0.042}$
 λ_{γ} = -0.022 $^{+0.019}_{-0.019}$
 g_1^Z = 0.984 $^{+0.018}_{-0.020}$

TGCs at LEP

(iv)

Correlations in 2d fits are modest

TGCs at the LHC

- At the LHC WW, Wγ and WZ production is accessible
 - WWγ and WWZ couplings can be separated
- Decay angles only partially accessible:
 - → γ is stable → only production angle can be measured
 - → Z not maximally parity violating → Z polarisation sensitivity is weaker
 - In WW events two neutrinos are missing → events not fully reconstructible
- Up to now only cross sections as function of √ŝ or a typical p_¬ measured
- Only 2011 data (7 TeV) used for TGCs up to now
- n-dimensional limits are possible because at the current sensitivity TGCs always increase the cross section

2-Boson cross sections

All cross sections agree with SM prediction

WW cross sections

 $\frac{1}{2}$

m(WW) not reconstructible, use leading p_{T,I} instead

TGC sensitivity at high p_{T,I}

Data consistent with SM

Wy cross section

transverse mass m_τ(Wγ) is accessible to experiment

especially κ limit much worse than LEP

WZ cross section

- Total cross section and as a function of p_{T,7}
- Good TGC limits for g and λ, κ much worse

TGC summary

 At the moment LHC, Tevatron and LEP are at the same level

However much more to come from the LHC (more energy,

more luminosity)

aTGC Limits @95% C.L.

Neutral TGCs

- Neutral TGCs can be parametrised in terms of 4 coupling constants $h_{4,5}^{\gamma,Z}$ (Zyy, ZZy) and $f_{4,5}^{\gamma,Z}$ (Zzy, ZZZ)
- They can be measured from Zγ, ZZ production
- Dimension is higher than for neutral TGCs (6,8) → energy helps more
- All neutral TGCs consistent with 0

Quartic couplings

- The quartic couplings are regulated by the Higgs
- If the Higgs is non-standard one can still expect deviations
- The interesting couplings are between longitudinal (i.e. massive) gauge bosons
- To measure them need high energy and very high luminosity
 - → may show final results at BND school 2033

γγWW quartic couplings

CMS idea to measure γγWW: look at pp→ppWW where each proton radiated a photon

Mostly empty detector with 2 leptons

2.2 expected signal events in 2011 data and see 2

Can be used to set limits on QGCs

BN

arxiv:1305.5596

asurements-III

W

Conclusions on gauge boson production

- Gauge boson pair production clearly observed at LEP, Tevatron, LHC
- The gauge structure of the Standard Model is established from the measurements of the TGCs
- However there is no sensitivity to loop corrections yet
- Limits on quartic couplings exist only for γγWW
- For massive gauge bosons there is a long way to get sensible limits