Electroweak interactions - Exercices

In order to fix the notations, here we follow the notations of [1] describing a Dirac spinor as

$$
\begin{equation*}
\psi(x, t)=\sum_{s} \int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{2 E_{k}}}\left(a_{k, s} u(k, s) e^{-i k x}+b_{k, s}^{\dagger} v(k, s) e^{i k x}\right) \tag{1}
\end{equation*}
$$

The sum runs over spin values s and $a_{k, s}^{\dagger}\left(b_{k, s}^{\dagger}\right)$ creates a particle (antiparticle) of momentum \vec{k} and spin s. The spinors u and v obey the Dirac equations

$$
\begin{align*}
(\not k-m) u(k, s) & =0 \\
(\not k+m) v(k, s) & =0 \tag{2}
\end{align*}
$$

with the sums:

$$
\begin{equation*}
\sum_{s} u(k, s) \bar{u}(k, s)=\not k+m, \quad \sum_{s} v(k, s) \bar{v}(k, s)=\not k-m \tag{3}
\end{equation*}
$$

For a vector, we use:

$$
\begin{equation*}
V^{\mu}(x, t)=\sum_{\lambda} \int \frac{d^{3} k}{(2 \pi)^{3} \sqrt{2 E_{k}}}\left(a_{k, \lambda} \epsilon_{k, \lambda}^{\mu} e^{-i k x}+b_{k, s}^{\dagger} \epsilon_{k, \lambda}^{\mu *} e^{i k x}\right) \tag{4}
\end{equation*}
$$

where the sum runs over the polarizations λ and the $\epsilon_{k, \lambda}^{\mu}$ are the polarization vectors that satisfy:

$$
\begin{equation*}
\epsilon_{k, \lambda}^{\mu} \epsilon_{k, \lambda^{\prime} \mu}=-\delta_{\lambda \lambda^{\prime}} \quad \text { and } \quad k_{\mu} \epsilon_{k, \lambda}^{\mu}=0 \tag{5}
\end{equation*}
$$

Also, in order to calculate decay widths, you can make use of the following expression for the decay width [2]:

$$
\begin{equation*}
d \Gamma(X \rightarrow a b)=\frac{1}{32 \pi^{2}}|\mathcal{M}|^{2} \frac{\left|\vec{p}_{a}\right|^{2}}{m_{X}^{2}} d \Omega \tag{6}
\end{equation*}
$$

which is valid in the restframe of the particle $X .|\mathcal{M}|^{2}$ refers to the transition matrix squared summed (averaged) over final (initial) state polarization and spins and \vec{p}_{a} and $d \Omega=d \phi_{a} d \cos \theta_{a}$ are the momentum and the solid angle of particle a respectively.

1 Decay of a gauge boson and number of ν_{L} families

1. Compute the decay width for the process:

$$
\begin{equation*}
W^{-} \rightarrow e^{-} \bar{\nu}_{e} \tag{7}
\end{equation*}
$$

neglecting electron and the neutrino masses. For that purpose, use the lagrangian for gauge boson-lepton interactions that were obtained in the lectures. You can also use of the following tools:
(a) the sum over the polarization vectors of the on-shell W boson of 4-momentum k is given by $\sum_{\lambda} \epsilon_{k, \lambda}^{\mu} \epsilon_{k, \lambda}^{\nu *}=-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{m_{W}^{2}}$
(b) $\operatorname{tr}\left(\right.$ any odd nb . of $\left.\gamma^{\prime} \mathrm{s}\right)=0$
(c) $\operatorname{tr}\left(\gamma^{\alpha} \gamma^{\beta} \gamma^{\mu} \gamma^{\nu}\right)=4\left(g^{\mu \nu} g^{\alpha \beta}-g^{\mu \alpha} g^{\nu \beta}+g^{\alpha \nu} g^{\mu \beta}\right)$
(d) $\operatorname{tr}\left(\gamma^{\alpha} \gamma^{\beta} \gamma^{\mu} \gamma^{\nu} \gamma^{5}\right)=-4 i \epsilon^{\alpha \beta \mu \nu}$
(e) $\gamma_{\mu}^{\dagger}=\gamma_{0} \gamma_{\mu} \gamma_{0}$ in Dirac and Weyl representations.
2. Compute the decay width for the process:

$$
\begin{equation*}
Z \rightarrow \bar{\nu} \nu \tag{8}
\end{equation*}
$$

You can use the similitudes between the Lagrangians driving (7) and (8) for a rapid evaluation.
This is of interest because the total decay width of the Z boson can be obtained analyzing the total cross-section for $e^{+} e^{-}$annihilation at the Z pole obtained at LEPI and SLAC. Compare the obtained decay width with the invisible decay width of Z obtained experimentally (see e.g. PDG [2]) and deduce the number of families of active neutrinos in Nature.
3. Check 1a using the properties of the polarization vectors (5) and assuming $\sum_{\lambda} \epsilon_{k, \lambda}^{\mu} \epsilon_{k, \lambda}^{\nu *}=$ $A g^{\mu \nu}+B k^{\mu} k^{\nu}$. Also check 1c without making use of a particular choice of representations of the γ matrices and check 1e in the Weyl representation.

2 Decay of the top quark and Goldstone bosons

1. Compute the decay width for the process:

$$
\begin{equation*}
t \rightarrow W^{+} b \tag{9}
\end{equation*}
$$

using the lagrangian for gauge boson-quarks interactions that were obtained in the lectures and assuming that the CKM matrix element $\left|V_{t b}\right| \simeq 1$ and neglecting the mass of the bottom quark.
2. Compute the decay width for the process:

$$
\begin{equation*}
t \rightarrow \phi^{+} b \tag{10}
\end{equation*}
$$

where ϕ^{+}is the charged Goldstone boson appearing in the decomposition of the Standard Model (SM) scalar doublet (use the top-SM scalar yukawa interactions). Compare to the result obtained in the previous exercise and discuss.

References

[1] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field theory. 1995.
[2] Beringer et al. (Particle Data Group). Review of particle physics. Phys. Rev. D, 86:010001, Jul 2012.

