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What is the Matrix Element Method (MEM) ?

‣ Event-by-event discriminator built upon matrix elements  

‣ First introduced at LEP; in hadron-hadron collisions, first application 
at the Tevatron to measure the mass of the top quark

‣ Applied subsequently to many other analyses: all tt channels, single 
top, WH, H to WW at the Tevatron, H to ZZ, H to WW at the LHC

‣ Still subject to developments to improve its formulation / extend 
the range of application  
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D0, 2006; CDF 2007.

single-lepton channel

Examples of Matrix Element analyses

top-quark mass determination from top-quark pair events

Results for the semi-leptonic channel (D0 collaboration)

0.4 fb−1

175 events

MadWeight – p. 8
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OUTLINE

• Part I: Introduction to the Matrix Element Method

• General idea

• Definition

• Current developments

• Part II: Examples of application

• mtop  reconstruction

• Characterization of a scalar resonance

• Search for ttH
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New physics searches at the LHC

Due to 

- the complexity of the signatures,
- small S/B expected ratios, 

this may be very complicated !

Experimental
events

Lagrangian
L(m1,g1,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

PROBLEM  STATEMENT:

from a sample of experimental 
events, how can we learn more 
about the structure and the 
parameters of the Lagrangian ?

➪ Need for a sophisticated procedure 
to discriminate between di f ferent 
theoretical assumptions (e.g. for m1,g1, ...) 
from a sample of experimental events
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the discriminator is built upon hard-scattering matrix 
elements (and also Monte Carlo events)

Two distinct approaches are used at hadron colliders:

1. Monte-Carlo-based approach

= subject of this lecture

Why is the MEM so special ? 

I1. Matrix-Element-based approach

the discriminator is built upon Monte Carlo events ONLY
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Lagrangian
L(p1,p2,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 
Experimental

events

In the last decade, sophisticated tools has 
been developed to simulate hard scattering 
events based on Monte Carlo techniques 
for any model  that can be defined in the 
form of a Lagrangian at leading/next-to-
leading order.

 Monte-Carlo-based approach
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Lagrangian
L(p1,p2,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 
Experimental

events

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Event file Event file

backgroundsignal
TH output:

 Monte-Carlo-based approach
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Lagrangian
L(p1,p2,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Detector 
Resolution

Experimental
events

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Selection 
procedure

TH
EXP

hadron-level
event files

Discr. variable based 
on MC events
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detector-level
selected events

 Monte-Carlo-based approach
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Lagrangian
L(p1,p2,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Detector 
Resolution

Experimental
events

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Selection 
procedure

TH
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hadron-level
event files

Discr. variable based 
on MC events
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discriminant

signal
background

detector-level
selected events

‣Theory information is passed 
through Monte Carlo events only

‣Samples of events serve as an input 
to a kinematic method to build  the 
discriminator 

 Monte-Carlo-based approach
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‣ Simple case: discriminator built on one reconstructed 
observable, e.g. the invariant mass of two leptons

‣ The discriminant power can be enhanced by using a 
sophisticated algorithm (NN, BDT) which analyses the 
distribution of MC events with respect to a large number of 
observables

1.  Reconstruct the distribution of events 
with respect to d=m(l+,l-) from MC 
events, under B-only and S+B hypotheses,

2.  Compare with the distribution of exp. 
events with respect to d

 Monte-Carlo-based approach
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Lagrangian
L(p1,p2,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Detector 
Resolution

Experimental
events
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‣Theory information is passed 
through Monte Carlo events only

‣Samples of events serve as an input 
to a kinematic method to build  the 
discriminator 

 Monte-Carlo-based approach
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Lagrangian
L(p1,p2,...)

hard sc. Matrix 
Elements 

Parton-level
 Events 

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Showering/
Hadronization

Detector 
Resolution

Experimental
events

‣Theory information is passed via    
a (partly) analytic probability 
density function (+ via MC events)

‣The discriminator is build upon 
this probability density function (e. 
g. using a likelihood procedure)

Probability Density 
Function (PDF)

Discr. variable built 
upon PDF +calibration

Selection 
procedure

detector-level
selected events

hadron-level
event files
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Matrix-Element-based approach

12

Tuesday 3 September 13



Lagrangian
L(p1,p2,...)

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Detector 
Resolution

Experimental
events

Probability Density 
Function (PDF)

Discr. variable built 
upon PDF +calibration

Selection 
procedure

detector-level
selected events

hadron-level
event files

Probability Density 
Function (PDF)

delicate task (accuracy ?)

“Matrix Element Method”:

‣Model to approximate the 
Probability Density Function 
in the case of hadron-hadron 
collisions

Matrix-Element-based approach
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‣ Construction of the PDF based on hard scattering matrix 
elements

‣ Definition of the discriminating variable: likelihood built upon this 
PDF

Matrix Element Method 

Define a Probability 
Density Function using 

matrix elements

Evaluate the probability  
at each event under the 
hypotheses α=h1,h2,...

Combine the weights 
into a likelihood

P (x|�) wi(�) = P (xi|�)

:  kinematics of the reconstructed event

:  theoretical assumption

x
�

L(�) �
�

i

P (xi|�)

MEM likelihood analysis

matrix element weight
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✓ all the final state objects

✓ at the scale Q= scale of the hard interaction

✓ with an infinite resolution

Reweighing events with matrix elements

‣ Imagine we live in an ideal world, with an ideal detector able to 
reconstruct 

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 
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  : matrix element 
under the signal hypothesis

‣ Assuming this ideal world/detector, consider the following search:

µ+

µ−

b

b̄

Z

h

q

q̄

signal

In this analysis, an event x corresponds to                                  

µ+

µ−

b

b̄

Z
q

q̄

background

pµ+ , pµ� , pb, pb̄

MS MB : matrix element under 
the background hypothesis

Reweighing events with matrix elements

Define a probability 
density function using 

matrix elements
P (x|S) / |MS(x)|2 P (x|B) / |MB(x)|2
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Evaluate the probability 
for each event under the 

hypotheses α=S or B
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background events
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D is a discriminator based on the phase-space distribution of the events

Reweighing events with matrix elements
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Defining the likelihood

Combine the weights 
into one likelihood

Given N experimental events, you can test the S+B 
hypothesis versus the B-only hypothesis 

If  s,b =expected numbers of signal and background events is known, 
you can also use this information to improve the discriminating power

Likelihood for the B-only hypothesis:

Likelihood for S+B hypothesis:

K. Cranmer, T. Plehn, Eur. Phys. J. C 51, 415-420

Pois(N |b)
N�

i=1

P (xi|B)

Pois(N |s+ b)
N�

i=1

[sP (xi|S) + bP (xi|B)]/(s+ b)
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Real experiment

In a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

1.   Missing energy 

Some particles escape from the detector 
without any interaction (neutrino, wimp, ...)

example: top-quark pair production, di-leptonic channel
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In a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

�(t1, t2) = exp
�
�

⇤ t1

t2

dt�

t�

⇤
dz

�s(t�)
2⇥

P (z)
⇥

2.   Showering/hadronization effects

A high energy collision is a multi-scale process, but a fixed-order matrix 
element provides a relevant description only for the hard scale Q 

hard scattering showering hadronization

matrix element at 
fixed order in αs

physics

description tool 

Q ~1 GeV

Sudakov form factors simulation model
tuned to the data

non-branching probability between scales t1 and t2

t3t2t1

Real experiment
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In a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

3.   Experimental resolution/reconstruction algorithm 

the final state objects (hadrons, leptons) are 
reconstructed with a finite resolution

Real experiment
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MEM prescription for the PDF

In a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

1.   Missing energy P(x,α) must be summed over the 
unobserved degrees of freedom

convolute with a transfer function W(x,y)
= probability that x is reconstructed given 
   that y has been produced

y

reconstructed
events

detector 
resolution

showering/
hadronization

parton-level 
event

xW

 0

 0.04

 0.08

-30 -15  0  15  30

ex: transfer function
 on jet energy

Ep-Ej (GeV)

2.   Showering/hadronization effets

3.   Experimental resolution/reconstruction algorithm 

selection 
procedure
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Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

“Assumed” factorization in MEM:

W (x, y)

|M(y)|2

The prescription to extract the transfer function relies on a 
one-to-one assignment between reconstructed jets and partons

‣ This prescription is ambiguous beyond LO 
‣ Current definition of the pdf in the MEM has LO accuracy only

(including resolution)
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‣ Real detector: need  marginalize over unconstrained information 
and to convolute with the resolution function W for the 
measured quantities

Definition of the PDF in the MEM

transfer function
extracted from 
MC simulation

tree-level 
matrix element 

integration on the 
parton-level phase-space 

the probability density P(x| α) is normalized to 1    

�
dxW (x, y) = 1normalization:

P (xi, �) =
1

⇥obs

1
N

�

jet perm.

⇥
d⇤y|M |2(y)W (xi,y)Acc(x)
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First MEM analyses at the Tevatron

Top-quark mass measurement from     production in hadron collisions
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D0, 2006; CDF 2007.

semi-leptonic channel

dileptonic channel

D0, 2007; CDF 2007.

Examples of Matrix Element analyses

top-quark mass determination from top-quark pair events

Results for the semi-leptonic channel (D0 collaboration)

0.4 fb−1

175 events

MadWeight – p. 8

[DO Phys. Rev. D75 092005, 2006]

tt̄

 Significant improvement for the measurement 
of the top-quark mass
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Recent developments in the MEM

I.  Maximum statistical significance / treatment of the systematics 

2. MEM beyond Leading order

3. Practical calculation of the MEM weights

4. Exploring new applications of the MEM

Research activities in several directions:
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I.  Maximum statistical significance / systematics

‣ Formal expected maximum significance  based on the Neyman-
Pearson Lemma T. Plehn, K. Cranmer, 2006

‣ Generalization:  profile likelihood with systematic uncertainties 
included as nuisance parameters in the likelihood  G. Cowan, 
K. Cranmer, E. Gross, O. Vitells, 2010

27

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

MEM, Louvain, 2013

MEM in pictures

2

Prediction via Monte Carlo Simulation

The enormous detectors are still being constructed, but we have detailed
simulations of the detectors response.

L(x|H0) =
W

W

H
µ+

µ−

⊕

The advancements in theoretical predictions, detector simulation, tracking,
calorimetry, triggering, and computing set the bar high for equivalent
advances in our statistical treatment of the data.

September 13, 2005

PhyStat2005, Oxford
Statistical Challenges of the LHC (page 6) Kyle Cranmer

Brookhaven National Laboratory

For a simple hypothesis test (H0, H1), 
the variable that maximizes power is 
the likelihood ratio

3

There are extensions to this number counting, assuming we know the distribution of a discriminating observable
x (which may be multi-dimensional). We assume that for the background–only hypothesis H0 this distribution is
fb(x), while for the signal–plus–background hypothesis H1 it is fs+b(x) = [sfs(x) + bfb(x)] /(s + b) assuming no
interference. Following the Neyman-Pearson lemma, the most powerful test statistic is the likelihood ratio for the
entire experiment’s data. The total likelihood for the full–experiment observable x = {xj} can be factorized into the
Poisson likelihood to observe n events, and the product of the individual event’s likelihood f(xj):

Q(x) =
L(x|H1)

L(x|H0)
=

Pois(n|s + b)
∏n

j=1
fs+b(xj)

Pois(n|b)
∏n

j=1
fb(xj)

= e−s

(

s + b

b

)n
∏n

j=1
fs+b(xj)

∏n
j=1

fb(xj)

q(x) ≡ lnQ(x) = −s +
n

∑

j=1

ln

(

1 +
sfs(xj)

bfb(xj)

)

(2)

We compute the normalized probability distributions f(x) from the parton–level matrix elements. This way we con-
struct a log–likelihood ratio map of all possible final–state phase space configurations using the normalized probability
distributions dσ("r)/σtot for the signal and background hypotheses:

q("r) = −σtot,s L + ln

(

1 +
dσs("r)

dσb("r)

)

(3)

L is the integrated luminosity. To construct the single–event probability distribution ρ1,b(q) we combine the back-
ground event weight with the log–likelihood ratio map q("r) from Eq.(3), which in general is not invertable:

ρ1,b(q0) =

∫

d"r
dσb("r)

σtot,b
δ (q("r) − q0) (4)

For multiple events, the distribution of the log–likelihood ratio ρn,b can be computed by repeated convolutions of
the single event distribution. This convolution we can either perform implicitly with approximate Monte Carlo
techniques [18], or analytically using a Fourier transform [19].

The expected log–likelihood ratio distribution for a background including Poisson fluctuations in the number of
events takes the form ρb(q) =

∑

n Pois(n|b) × ρn,b(q). To compute this ρb(q) from the single–event likelihood ρ1,b(q)
given by Eq.(4) we first Fourier transform all ρ functions into complex–valued functions of the Fourier conjugate of
likelihood ratio, e.g. ρ1,b(q). The Fourier–transformed n-event likelihood ratio is now given by ρn,b = (ρ1,b)n equivalent
to a convolution in q-space. The sum over n in the formula for ρb(q) now has a simple form in the Fourier domain:
ρb = exp[b (ρ1,b − 1)]. For the signal–plus–background hypothesis we expect s events from the ρ1,s distribution and
b events from the ρ1,b distribution. Similar to the above formula we have ρs+b = exp[b(ρ1,b − 1) + s(ρ1,s − 1)]. This
form we can transform back and obtain the log-likelihood ratio distributions ρb(q) and ρs+b(q).

Given a log-likelihood ratio q we can calculate the background-only confidence level, CLb:

CLb(q) =

∫ ∞

q

dq′ ρb(q
′) (5)

To estimate the discovery potential of a future experiment we assume the signal–plus–background hypothesis to be
true and compute CLb for the median of the signal–plus–background distribution q∗s+b. This expected background
confidence level can be converted into an equivalent number of Gaussian standard deviations and the significance
written as Z σ by implicitly solving CLb(q∗s+b) =

(

1 − erf(Z/
√

2
)

/2 for Z.

C. Higgs Decay to Muons

To determine the maximal significance in a strict sense we should not include detector effects which always decrease
the significance. However, in our example of weak–boson–fusion H → µµ the experimental resolution on the invariant
mass mµµ is much larger than the Higgs width: about 1.6 GeV for CMS and 2.0 GeV for Atlas [20]. To obtain
a semi–realistic result we introduce a Gaussian smearing for mµµ into Eq.(1). This Gaussian shape is just a simple
numerical choice and could be replaced with any other smearing prescription or fast detector simulation. We convolute
our momentum smearing with the Breit–Wigner–shaped Higgs propagator; in our case, the combination is completely
dominated by the much larger Gaussian width.

Fourier transformation to obtain the expected Likelihood profile 
of a sample of events (including Poisson fluctuations) from the single-event 
Likelihood profile               no need to generate pseudo-experiments 
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‣ Define an NLO weight for EW production processes in the 
unresolved region (veto on events with extra jets)

‣ Example of application: Higgs boson production in the 4-lepton 
channel

II.   MEM at NLO   
J. M. Campbell, W. T. Giele, C. Williams, 2012

Born 1-loop real-emission 
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‣ NLO correction may affect the kinematics of the Higgs boson 
in the lab frame (nonzero pT)

LAB frame MEM frame

Step 1:  Boost the exp. events in a frame where pT(h) = 0 (MEM frame) 

II.   MEM at NLO   
J. M. Campbell, W. T. Giele, C. Williams, 2012

one can readily associate a LO weight to the event• Given this phase space point one can define a weight in a straightforward 

fashion, 

• The total cross section is then obtained by integrating over all possible 

weights, (i.e. over all Born phase space points) 

1. Introduction

NLO plus shower.

2. Defining fully exclusive NLO predictions : Fixed order

In this section we present an derivation of the fully exclusive NLO event generator. We

begin by reviewing the formalism of ref. [? ], which was defined for final states which do

not contain any jets. Next we extend the formalism to include final states which include

jets in the LO topology.

2.1 Electroweak final states

We begin by considering the production of a final state which does not contain any final

state QCD partons. This approach was analyzed in regards to the Matrix Element Method

in ref. [? ]. In this reference the method required the momentum over all longitudinally

equivalent final states (i.e. one integrates over the parton fraction x1). Here we will extend

this method to be fully exclusive in a born phase space point, the method of ref. [? ] is

recovered by restoring the longitudinal integration.

The aim of this section is to define an event by event K-factor such that the NLO

calculation is rendered in the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB) (2.1)

Here P(ΦB) represents a weight defined at a given order for an input born phase space

point. We define a born phase space point as follows,

ΦB = (x1, x2, {Qn}). (2.2)

Here {Qn} is a set of four momenta which represent the n final state EW particles. The

two beams are defined in the lab frame by moving along the z-axis, and are fully specified

by xi the two fractions of the partonic momenta. Given this phase space point it is trivial

to define a weight defined by the LO matrix element.

PLO(ΦB) =
f(x1)f(x2)

2x1x2s
|M(0)(ΦB)|2 (2.3)

Upon integration over the full born phase space one reproduces the LO cross section, i.e.

σLO =

∫
dx1 dx2

n∏

i=1

d4pi δ(+)(p2
i − m2

i ) δ(4)(
∑

i

pi − p1 − p2) PLO(ΦB) (2.4)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB,

since they share a phase space, this is trivial to evaluate for the virtual corrections,

P̃V (ΦB) =
f(x1)f(x2)

2x1x2s

(
|M(0)(ΦB)|2 + 2Re

{
M(0)M(1)†(ΦB)

})
(2.5)

– 1 –
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– 1 –

Your universe sucks! 
What about higher order 

corrections?

$!@t
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II.   MEM at NLO   

Step2: Define an IR-safe weight at NLO accuracy in the 
unresolved region [pT(radiation)<smin] 

divergent  divergent

divergent (IR)

J. M. Campbell, W. T. Giele, C. Williams, 2012

Crucial idea: use the Forward-Branching Phase-Space factorization to integrate 
the real-emission amplitude over the unresolved degrees of freedom 

The Forward Branching phase space (Giele, Glover; 
Giele, Stavenga, Winter). 

• Mathematically we need to factorize the real phase space into the following, 

• Then Q is identified with the observed final state, from this we derive the form of the 

FBPS integration 

• We then explicitly integrate out these quantities for each event. 

C ont ents
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Xz (2)∫
(3)

– 1 –

use a forward branching phase space generator (FBPS) [38] to construct the real phase

space. Starting from the Born phase space point, p̂a+ p̂b → Q the FBPS generates the real

radiation by branching one of the initial state momenta to produce the real phase space

point pa+ pb → Q+ pr. In the following we will use the hatted notation to indicate a Born

phase space point, whilst the un-hatted momenta represent the real phase space point.

The phase space generator needs to integrate out all initial state radiation within the

constraints of fixed momenta of the identified final state particles (and, if required, the jet

veto). We show in Appendix A that this can be achieved using a FBPS generator defined

by,

dΦ(pa + pb → Q+ pr) = dΦ(p̂a + p̂b → Q)× dΦFBPS(pa, pb, pr)× θveto , (3.4)

where θveto (optionally) vetoes events that generate an additional jet. At NLO the jet veto

cut is simply,

θveto(pr) = θ
[
plabT (pr) < pmin

T (jet)
]
, (3.5)

where plabT (pr) is the laboratory frame transverse momentum (calculated using Eq. (2.16)).

Note the initial state brancher is necessarily an antenna brancher since it ensures that the

initial state partons remain massless. The form of the FBPS generator, in terms of the

kinematic variables pa, pb and pr, is,

dΦFBPS(pa, pb, pr) =
1

(2π)3

(
ŝab
sab

)
d tard trbdφ , (3.6)

where txy = (px − py)2 and dφ is a rotational degree of freedom about the z-axis. The

explicit construction of the momenta pa, pb and pr in terms of the integration variables

is detailed in Appendix A. The phase space weight corrects the flux factor due to the

resulting emission of an extra parton.

Finally, we observe that the forward brancher must by necessity change the initial state

momenta. This means that for bremsstrahlung events the values of plabT will depend on the

branching momentum pr. Thus although the four momenta of the final state particles are

fixed in the MEM frame the value of the plabT observable changes dynamically. In other

words a single event with fixed MEM frame four momenta corresponds to a range of plabT

values. Using the FBPS we can now explicitly define RΩ(x) as,

RΩ(x) =

∫
dΦFBPS(pa, pb, pr)

(
Lij(sab, xl, xu)Rij

Ω(pa, pb,x, pr)

−
∑

m

Lij(sab, x
m
l , xmu )Dm(pa, pb, pr)Bij

Ω (p̂a, p̂b,x)

)
. (3.7)

In the above we note that the boost integral is defined for a given branching, since each

branching generates a new sab. The quantity Rij
Ω(pa, pb,x, pr) = |M (0)

Ω (pa, pb,x, pr)|2 is the

Born level matrix element with one additional parton. Finally, D(pa, pb, pr)Bij
Ω (p̂a, p̂b,x)

represents the subtraction terms that cancel the soft and collinear divergences which occur

when pr is unresolved. A couple of observations are in order in regards to the dipole

pieces. We note that, since the dipoles must provide a pointwise cancellation, the boost

function inherits the same sab as in the real boost function. However the underlying Born
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1. fixed-order MEM weight (no resummation), in 
particular the scale Smin cannot be chosen to small

Remarks:

2. marginalization of the information of pT(H)
30
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III.   Effective treatment of extra QCD radiations 

X
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Figure 1: Schematic depiction of the event topology for pair production of heavy particles
X , together with initial-state radiation.

so that as a function of the tk the integrand becomes almost flat across the entire region
−π/2 ≤ tk ≤ π/2 and the integration can be performed numerically without difficulty. The
outputs of the two programs agree very well for all results shown in the following sections.

3 Initial-State Radiation at Parton Level

In this section we restrict ourselves to an analysis at the parton level. Simulated “data”
events have been generated with Pythia 6.4 [5] using CTEQ6L1 parton distribution func-
tions [12]. The momenta of the final-state particles in (5) or (6), as well as those of the
initial-state radiation, have been extracted from the Pythia event record for each event.
No cuts on the parton momenta have been implemented and therefore the acceptance term
in (4) is simply 1. This allows us to single out the effects of ISR without complications from
final-state radiation, hadronization, underlying event and detector efficiencies. For simplicity
and clarity of the discussion, we do not include backgrounds in the analysis.

The first technique that we propose here is based on the observation that the most
significant effect of ISR is on the kinematics of the events; without proper inclusion of ISR
the momentum balance of the decay products is violated. The proper kinematics of the
hard scattering matrix element can be restored by simply boosting the hard event by the
momenta of the ISR. Since the longitudinal incoming momenta are integrated over in the
computation of the likelihood, see eqs. (1) and (3), it is sufficient to perform the boost for
the transverse coordinates only. In practice, instead of boosting the measured final-state
momenta, we perform the boost on the incoming partons of the matrix element, which is
equivalent since the squared matrix element is a Lorentz scalar. With this technique we are
only performing a kinematical boost, which allows us to sum up the ISR momenta for each
incoming leg—the sequence of individual branchings does not play any rôle.

This boost correction is the simplest possible treatment of ISR, which only maintains
the proper momentum balance, while the effects of the particular QCD vertices and internal
propagators (labeled by numbers and pa,b,... in Fig. 1, respectively) are not taken into account.

5

J. Alwall,  A. Freitas, O. Mattelaer,  2011

Step 1:  boost correction (correct for the fact that ISR affects Born-
level kinematics)

Step 2:  sudakov reweighting for the ISR 

1. information on pT (H) is also folded in the definition of the weight 
(resummation of the logs in the Sudakov weight)

2. no information from the one-loop amplitude

Remarks:
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IV.   Shower deconstruction

Standard MEM: 

transfer function W(y,x)
= map between the parton-
level kinematics and the 
reconstructed jets

Shower deconstruction:

reconstruct the microjet config. 
(kt, R=0.15, pT > 5 GeV, )
and consider the probability 
density function of these objects

D. E. Soper, M. Spannowsky 2012

32
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reconstruct all possible branching histories leading to the 
observed micro-jet configuration 

relative weight for each branching history is a product of  
Sudakov form factors 

�(t1, t2) = exp
�
�

⇤ t1

t2

dt�

t�

⇤
dz

�s(t�)
2⇥

P (z)
⇥

t3t2t1

IV.   Shower deconstruction

How do you get the weight ? (large logs prevent the use of fixed-order 
matrix element)

step 1: 

step 2: 
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Practical Evaluation of the PDF

transfer functiontree-level 
matrix element 

integration on the 
parton-level phase-space 

P (xi, �) =
1

⇥obs

1
N

�

jet perm.

⇥
d⇤y|M |2(y)W (xi,y)Acc(x)

Let’s go back to the definition of the weights at leading order:

34
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transfer functiontree-level 
matrix element 

integration on the 
parton-level phase-space 

P (xi, �) =
1

⇥obs

1
N

�

jet perm.

⇥
d⇤y|M |2(y)W (xi,y)Acc(x)

✓available with the use 
of a matrix element 
generator (madgraph, 
sherpa, ..)

Practical Evaluation of the PDF

Let’s go back to the definition of the weights at leading order:

35
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transfer functiontree-level 
matrix element 

integration on the 
parton-level phase-space 

P (xi, �) =
1

⇥obs

1
N

�

jet perm.

⇥
d⇤y|M |2(y)W (xi,y)Acc(x)

Practical Evaluation of the PDF

Let’s go back to the definition of the weights at leading order:

✓available with the use 
of a matrix element 
generator (madgraph, 
sherpa, ..)

✓can be extracted 
from Monte Carlo 
similations
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transfer functiontree-level 
matrix element 

integration on the 
parton-level phase-space 

P (xi, �) =
1

⇥obs

1
N

�

jet perm.

⇥
d⇤y|M |2(y)W (xi,y)Acc(x)

✓can be extracted 
from Monte Carlo 
similations

‣ Monte Carlo 
integration ?

Practical Evaluation of the PDF

Let’s go back to the definition of the weights at leading order:

✓available with the use 
of a matrix element 
generator (madgraph, 
sherpa, ..)
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Monte Carlo integration

Std deviation: integration volume�I �
S⇥
N

0
0

1

1

S2 = var(f) =
1

N � 1

N�

n=1

[f(zn)� E]2

S large poor convergence
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 Basic idea:                          is estimated by sampling the volume V=[0,1]d 

with N uniformly distributed random points: E =
1
N

N�

n=1

f(zn)

I =
�

V
dz f(z)

Z1

Z2

if 
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Highly non-uniform, 
especially in the presence 

of resonances

Highly non-uniform, especially when 
the resolution associated with a 
reconstructed quantity xi is high:

yi-xi

σexp.

pi

pj

sij=(pi+pj)2

Breit-Wigner distr. in sij

When the dimension of the phase-space is large, this structure 
in “peaks” complicates the numerical evaluation of the weights

 0

 0.04

 0.08

-30 -15  0  15  30

Need for a procedure to speed up the convergence                
(large number of weights must be evaluated)

P (x, �) �
�

d⇥y |M |2(y) W (x,y)

Monte Carlo integration
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1

Adaptive MC integration: probe the phase-space volume according to a 

probability density function                                                        (grid)   

that is adapted iteration after iteration                  

integration volume

0
0 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

p(z) = p1(z1)p2(z2) . . . pd(zd)

The grid has a factorized dependence 
in the integration variables

Z2

Z1

Here: adapt the expected density 
of points along the direction Z1 

to resolve the “peak” 

Monte Carlo integration
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Adaptive Monte Carlo integration

z1

z2

Variables z1, z2:

The grid cannot be adjusted efficiently to the 
shape of the integrand because the strength of 
the “peak” in the integrand is not controlled by a 
single variable of integration

z1’z2’

The efficiency of the adaptive MC integration depends on the choice of 
variables of integration

Variables z1’, z2’:

The probability density along z1’ (= variable that 
controls the strength of the “peak”) can be 
adapted to probe the integration region where 
the integrand is the largest

z2

z1
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1 II

I. Phase space mapping: parametrize the phase-space in such a way that the 

strength of each peak is mapped onto a single variable of integration

I1. Adaptive MC integration: probe the phase-space volume according to a 

probability density function                                                        (grid)   

that is adapted iteration after iteration                  

p(z) = p1(z1)p2(z2) . . . pd(zd)

III. Practical Calculation of the weights

42
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MadWeight

43

Full automation of the calculation of the MEM weights (LO only) in the 
madgraph  framework P.A., F. Maltoni, V. Lemaitre, O. Mattelaer, 2011

MadWeight = generator of optimized phase-space mappings            for 
the evaluation of the weights in the Matrix Element Method

d�y

‣Multichannel integrator 

‣Narrow Width Approximation optional

‣Effective treatment for ISR radiation

‣Grouping of subprocesses

‣Pre-training of the grid

‣Monte Carlo over parton-jet assignements

The code is available on the launchpad:

bzr branch lp:~maddevelopers/madgraph5/madweight_mc_perm
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A. Event file

 0

 0.04

 0.08

-30 -15  0  15  30

µ+

µ−

b

b̄

Z

h

q

q̄

MadWeight: how does it works ?

process

�
matrix

element

|M |2(y)

transfer
function

W (x,y)

phase-space
generator

d�y

weights

{xi}

P (xi, �)
for all i

events

44

A.   Assumed process
B.  Transfer function
C.  Event file

Inputs:
A. Process

C. Transfer fct

Output:
List of the weights 
for each event
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matrix
element

|M |2(y)

transfer
function

phase-space
generator

d�y W (x,y)

weights

{xi}

P (xi, �)
for all i

events

process

��
process

import model sm

generate p p > Z H , Z > mu+ mu- , H > b b~

output madweight HZ_hypo

output :

code for the evaluation of the 
weights in directory HZ_hypo

proc_card_mg5.datinput :

Step 1: generate the matrix elements 
          type ./bin/mg5 to open the prompt

45

MadWeight: how does it works ?
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matrix
element

|M |2(y)

transfer
function

phase-space
generator

d�y W (x,y)

weights

{xi}

P (xi, �)
for all i

events

process

��
process

import model sm

generate p p > Z H , Z > mu+ mu- , H > b b~

output madweight HZ_hypo

output :

code for the evaluation of the 
weights in directory HZ_hypo

proc_card_mg5.datinput :

 type ‘launch’ for the evaluation of the weights 
and follow the instructions

46

Step 1: generate the matrix elements 
          type ./bin/mg5 to open the prompt

MadWeight: how does it works ?
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process

�
matrix

element

|M |2(y)

transfer
function

W (x,y)

phase-space
generator

d�y

exp.
events

weights

{xi}

P (xi, �)
for all i

events

{xi}

‘reconstructed’ events

event file (LHCO format) must be copied at

HZ_hypo/Events/input.lhco

(or use the command ‘check_events’)

framework for MEM that is reliable, user-friendly, reproducible, fast

47

Step 2: 

MadWeight: how does it works ?
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process

�
matrix

element

|M |2(y)

phase-space
generator

d�y

events

Step 3: define your own TF parametrization 

Source/MadWeight/transfer_function/data/TF_my_tf.dat

load TF: type ‘change_tf.py ’

transfer
function

W (x,y)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

-20 -10  0  10  20  30  40  50

W
(δ

)

δ=Ep-Ej (GeV)

Ep=60 GeV

Figure 1: Transfer function W (δ) for Ep = 60 GeV, using the parameters associated
with the CMS detector.

2.4 = etaj ! max rap for the jets

2.4 = etab ! max rap for the b

2.5 = etal ! max rap for the charged leptons

0.3 = drjj ! min distance between jets

0.3 = drbb ! min distance between b’s

0.3 = drll ! min distance between leptons

0.3 = drbj ! min distance between b and jet

0.3 = drjl ! min distance between jet and lepton

0.3 = drbl ! min distance between b and lepton

We estimate the b-tag efficiencies from ref. [1]

εb = 0.5, mistag c = 0.07, mistag j = 1.5E − 3. (4)

where j stands for a light jet: g, d, u, s. The parton-level cross sections before b-tagging
and the b-tagging efficiencies for the different background subprocesses are given in Ta-
ble 2. Since the cross section associated with the bbbc category is very small, it is
discarded in this analysis.

Then the energies of the quarks and gluons are then smeared according to one of the
transfer function described in Section 1. A cut E >20 GeV is applied on jet energies
(after smearing). The resulting cut efficiencies are also given in Table 2.

2

several predefined 
parametrizations

Please choose your transfer_function
 0 / all_delta
 1 / dbl_gauss_pt_jet
 2 / gauss_on_leptons
 3 / single_gaussian
 4 / uniform
 5 / user

48

MadWeight: how does it works ?
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the code  will load phase-space generator, evaluate the weights, collect the results

process

matrix
element

|M |2(y)

transfer
function

W (x,y)

phase-space
generator

d�y

weights

{xi}

P (xi, �)
for all i

events

Do you want to edit one card (press enter to bypass editing)?
  1 / param     : param_card.dat
  2 / run       : run_card.dat
  3 / madweight : madweight_card.dat
  4 / transfer  : transfer_card.dat

49

Step 4: edit the cards with the input parameters associated with (1) the model, 
(2) the collider, (3) the submission of the jobs and (4) the transfer function 

MadWeight: how does it works ?
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process

�
matrix

element

|M |2(y)

transfer
function

W (x,y)

phase-space
generator

d�y

weights

{xi}

P (xi, �)
for all i

events

3. TF_my_tf.dat,

4. transfer_card.dat

1. proc_card_mg5

4. param_card

5. run_card

2. lhco file

6. madweight_card

The output is reproducible if you keep track 
of the input cards and the event file.

50

MadWeight: how does it works ?

Tuesday 3 September 13



P (xi, �) =
1

⇥obs

1
N

�

jet perm.

⇥
d⇤y|M |2(y)W (xi,y)Acc(x)

Normalization of the weights

MadWeight returns the values of the weight without the              normalization1/�obs

 To estimate          :  �obs

‣Generate parton-level distributed according to                 
(parton-level cross section =    )  

‣Smear the energies/angles of the reconstructed particles 
according to the transfer function

‣Count the number of events (after smearing) falling inside 
the acceptance region and record the associated efficiency

|M |2(y)

W (x,y)

✏

�

�obs = � ⇥ ✏

51
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Part II

• Reconstruction of mt   (single-lepton tt samples)

• Characterization of a scalar resonance

•  Search for ttH

arXiv1306.6464

Phys. Rev. Lett. 111, 091802 (2013)

JHEP 1012 (2010) 068 

52

Tuesday 3 September 13



t

t̄

j

µ+

νµ

j

g

b

b̄

W+

W−
g

A. PROC: tt, single-lepton channel 
(LHC, 14 TeV)

C. MC sample: 20 
events, generated 

with mtop=170 GeV

 0

 0.04

 0.08

-30 -15  0  15  30

process

�
matrix

element

|M |2(y)

transfer
function

W (x,y)

phase-space
generator

d�y

weights

{xi}

for each event, 
mt=160, 162.5, ...

events

53

Reconstruction of mtop

B. TF: double Gaussian 
distribution on jet energies

P (xi,mt)

Tuesday 3 September 13



Reconstruction of mtop

54

‣ Top quark mass can be reconstructed by minimizing

� log[L(m

top

)] = �
P

20

i=1

P (xi|mtop

)

with respect to mtop

‣ The statistic error can be estimated by the half width of the 
distribution at 

log(L/L
max

) = 0.5

‣ Bias: the probability density function assumed in the MEM does not 
exactly describe the phase-space distributions of the Monte Carlo 
events               calibration procedure 
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Figure 7: (a) Logarithmic likelihood values for a sample of 20 events generated with mt, input = 170
GeV. The solid line is a parabolic fit to the points near the minimum. The statistic error is
estimated by the half width of the distribution at log(L/Lmax) = 0.5 and is extracted from the
fit. (b) Calibration of the matrix element mass fitting procedure. The errorbars correspond to the
the value of mass of the top quark and the associated statistic error reconstructed from tt̄ samples
generated with different input values of mt. The solid line is a linear fit to the four points and the
dotted line corresponds to mrec = minput.

performance of the method for the determination of the top-quark mass at the LHC, by

using a small statistics of tt̄ events in the single lepton final state:

pp → [t̄ → b̄(W− → µ−ν̄µ][t → b(W+ → jj)]. (4.1)

For the sake of simplicity, we assume that there is no background and 20 signal events

after selection. Pseudo-data have been simulated with an input top-quark mass at 170

GeV. The selection requires one muon with a reconstructed transverse momentum above

10 GeV and exactly four isolated jets with a reconstructed transverse momentum above 20

GeV.

The determination of the top-quark mass from our sample of pseudo-data is obtained

by the minimization of − log(L) with respect of mt where the likelihood L is defined -up

to a normalization factor- by the product of the weights calculated for each event

− log(L) = −
N
∑

i=1

log[P (xi;mt)] . (4.2)

The acceptance of the detector and the cuts imposed on the sample may depend on the

input mass of the top quark. Such a dependence might introduce a bias in the extraction

of mtop from the fit of the likelihood given in Eq. (4.2). We explicitly tested that in our

pseudo-data this bias is very small and we therefore ignored it in this example.

The values of − log[L(mt)] for different assumptions of mt are displayed in Figure 7(a).

A clear minimum is observed close to the input mass value. A parabolic fit gives the

value mt = 171.9± 2.0stat GeV. Using ten independent samples generated under the same
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Figure 7: (a) Logarithmic likelihood values for a sample of 20 events generated with mt, input = 170
GeV. The solid line is a parabolic fit to the points near the minimum. The statistic error is
estimated by the half width of the distribution at log(L/Lmax) = 0.5 and is extracted from the
fit. (b) Calibration of the matrix element mass fitting procedure. The errorbars correspond to the
the value of mass of the top quark and the associated statistic error reconstructed from tt̄ samples
generated with different input values of mt. The solid line is a linear fit to the four points and the
dotted line corresponds to mrec = minput.

performance of the method for the determination of the top-quark mass at the LHC, by

using a small statistics of tt̄ events in the single lepton final state:

pp → [t̄ → b̄(W− → µ−ν̄µ][t → b(W+ → jj)]. (4.1)

For the sake of simplicity, we assume that there is no background and 20 signal events

after selection. Pseudo-data have been simulated with an input top-quark mass at 170

GeV. The selection requires one muon with a reconstructed transverse momentum above

10 GeV and exactly four isolated jets with a reconstructed transverse momentum above 20

GeV.

The determination of the top-quark mass from our sample of pseudo-data is obtained

by the minimization of − log(L) with respect of mt where the likelihood L is defined -up

to a normalization factor- by the product of the weights calculated for each event

− log(L) = −
N
∑

i=1

log[P (xi;mt)] . (4.2)

The acceptance of the detector and the cuts imposed on the sample may depend on the

input mass of the top quark. Such a dependence might introduce a bias in the extraction

of mtop from the fit of the likelihood given in Eq. (4.2). We explicitly tested that in our

pseudo-data this bias is very small and we therefore ignored it in this example.

The values of − log[L(mt)] for different assumptions of mt are displayed in Figure 7(a).

A clear minimum is observed close to the input mass value. A parabolic fit gives the

value mt = 171.9± 2.0stat GeV. Using ten independent samples generated under the same
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Higgs Characterization in the 4l channel

‣ Only one new state X(JP) at the electroweak scale    
(all other new states are heavier than    )

‣ Includes all effects coming from the complete set of 
dimension 6 operators the for spin-0 case (above 
the EW symmetry breaking scale)

55

⇤

⇤
v

h ! ZZ⇤ ! 4l‣ MELA approach: study of                                 with the MEM for 
discovery and characterization of the new 125 GeV resonance

‣ Here we consider the characterization of a scalar boson using 
the framework of an Effective Field Theory valid up to a scale    

Y. Gao et al, 2010
S. Bolognesi et al, 2012
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Higgs Characterization with the use of EFT

56

Le↵ =
1

2
c↵SMgHZZZµZ

µX0

‣ Interaction of a spin 0 state with Z bosons

SM case 0+ state,

dimension-6 operators (above the EW scale)

parameter default value description

⇤ [GeV] 103 cuto↵ scale

c↵(⌘ cos↵) 1 mixing between 0+ and 0�

i 1 or 0 dimensionless coupling parameter

Table 1. Model parameters.

gX↵↵0(⇥v) ff V V �� Z� gg

H mf 2m2
V �47↵EM/18⇡ 2C/3⇡ ↵s/3⇡

A mf 0 4↵EM/3⇡ C/⇡ ↵s/⇡

Table 2. Dimensionful coupling parameters. (C =
q

↵EMGFm

2
Z

8
p
2⇡

(1� 8
3s

2
W

))

2.2 Spin 1

We now discuss how to build the most general interactions of a spin-1 resonances with

SM particles. One way to proceed would be to assign SU(2)L ⇥ U(1)Y quantum numbers

to the new vector, write all possible operators up to dimension-six with SM fields and

then rexpress them in terms of the physical states below the EW scale, following exactly

the same procedure used for the scalars above. To be fully general, however, one should

consider di↵erent gauge representations. A simpler approach is just write the most general

interactions at the weak scale and consider only those of lower dimension. For simplicity

we follow the latter approach.

The interaction Lagrangian for the spin-1 boson with fermions is written as

Lf
1 =

X

f

 ̄f�µ(faaf � fbbf�5) fX
µ
1 , (2.8)

where f are SM fermions. The af and bf are the SM vector and axial-vector couplings,

e.g.,

au =
g

2cW

⇣1
2
� 2Qfs

2
W

⌘
, bu =

g

2cW

1

2
, (2.9)

ad =
g

2cW

⇣
� 1

2
+ 2Qfs

2
W

⌘
, bd = � g

2cW

1

2
. (2.10)

The most general X1WW interaction at the lowest dimension can be written as [38]

LW
1 = iW1gWWZ(W

+
µ⌫W

�µ �W�
µ⌫W

+µ)X⌫
1 + iW2gWWZW

+
µ W�

⌫ Xµ⌫
1

� W3W
+
µ W�

⌫ (@µX⌫
1 + @⌫Xµ

1 )

+ iW4W
+
µ W�

⌫
eXµ⌫
1 � W5✏µ⌫⇢�[W

+µ
(@⇢W�⌫

)� (@⇢W+µ
)W�⌫

]X�
1 , (2.11)

where gWWZ = �e cot ✓W . Note, once again, that our e↵ective field theory description lives

at energy scales where EW symmetry SU(2)L⇥U(1)Y is broken to U(1)EM . This approach

does not require to specify the transformation properties of X1 with respect to the EW

symmetry. The parametrization above could also be used for describing �ZX1 interactions,

– 6 –

Adjustable parameters:

      in front of each parameter

angle     parametrizing the CP-
mixing between 0+ and 0- states 

↵

i

�1

4

1

⇤

h
c↵HZZZµ⌫Z

µ⌫ + s↵AZZZ̃µ⌫Z
µ⌫
i
X0
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Specific channel: X0 into 4 charged leptons

‣ Kinematics: 5 variables 

7

Figure 1: Illustration of the production and decay of a particle X ab ! X ! Z1Z2 ! 4` with
the two production angles q⇤ and F1 shown in the X rest frame and three decay angles q1, q2,
and F shown in the Zi and X rest frames, respectively [39].

MADGRAPH [67] implemented within the MEKD framework [88]. Different matrix elements
were found to provide nearly identical performance for the processes implemented in com-
mon. The machine trained techniques such as boosted decision trees or Bayesian neural net-
works were also investigated. They give similar results as the matrix element approaches. The
kinematic discriminants for the baseline analysis is built out of matrix element for the signal
hypotheses taken from JHUGEN and matrix elements for the qq ! ZZ background taken from
MCFM.

5 Background control and systematics

We rely on MC simulation to evaluate the local density (DN/Dm4`) of events expected as a
function of the mass m4` from the ZZ background. Following the prescription used in the pre-
vious analysis, the cross section for ZZ production at NLO is calculated with MCFM [85–87].
This includes the dominant process of qq annihilation, as well as gluon induced production.
The theoretical uncertainties are computed as a function of m4`, varying both the QCD renor-
malisation and factorization scales and the PDF set, following the PDF4LHC recommenda-
tions [89–93]. The uncertainties for the QCD and PDF scales for each final state are on average
8%. The number of predicted ZZ ! 4` events and their uncertainties after the signal selection
are given in Table 1.

To estimate the reducible (Zbb, tt) and instrumental (Z + light jets, WZ + jets) backgrounds, a
Z1+X background control region, well separated from the signal region, is defined. In addition,
a sample Z1 + `reco, with at least one reconstructed lepton object, is defined for the measure-
ment of the lepton misidentification probability — the probability for a reconstructed object to
pass the isolation and identification requirements. The contamination from WZ in these events
is suppressed by requiring the imbalance of the measured energy deposition in the transverse
plane to be below 25 GeV. The lepton misidentification probability is compared, and found
compatible, with the one derived from MC simulation.

(✓1, ✓2, ✓
⇤,m⇤

1,m
⇤
2)

‣ Confidence level to reject hypothesis HD if hypothesis SM is realized                                                                               
a) significance with 1-dimension distribution ?                                 
b) significance with the matrix element weights ?
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Figure 13. Left: distributions of pseudo-experiments with respect to q = lnLMEM for the case
c
↵

= 0.5. Right: expected p-value at which hypothesis HD
c↵ is rejected if hypothesis SM is realized,

as a function of c
↵

and for di↵erent choices of the likelihood function.

The resulting SM and HD(c↵) distributions of pseudo-experiments with respect to q =

ln (LMEM) are shown in Figure 13 (left) in the specific case of c↵ = 0.5. The significance

is estimated by calculating the median qSM,1/2 of the SM distribution and by counting the

fraction of pseudo-experiments in the HD(c↵) distribution with q < qSM,1/2. Such a fraction

of events provides us with an estimate of the p-value associated with the statistical test for

rejecting hypothesis HD(c↵) if the SM hypothesis is realized. The p-value as a function of

c↵ is shown in Figure 13 (right).

The power of the MEM can be illustrated by comparing the significance that is achieved

when using the MEM-based likelihood function LMEM with the significance resulting from

a likelihood function built upon the cross section di↵erential in the observable O:

LO =
NY

i

��1
HD(c↵)

d�HD(c↵)

dO (Oi)

��1
SM

d�SM
dO (Oi) .

(4.9)

In this specific example, the observableO is chosen in the set of variables {m2,��, cos ✓1, cos ✓2}
defined in Ref. [10]. The discriminant power of each of these four variables taken separately

can be assessed by using the same Monte Carlo procedure as before, with LMEM replaced

by LO. The resulting p-values as a function of c↵ are also shown in Figure 13 (right). Even

when the likelihood function is set to the product Lm2⇥L��⇥Lcos ✓1⇥Lcos ✓2 , one observes

that the significance is less than the one delivered by the MEM-based likelihood analysis,

presumably because all correlations among reconstructed variables are kept in the latter

case.

5 Summary

Assessing that the newly-discovered boson is the scalar boson predicted in the standard

model is an activity that, at di↵erent levels, will keep the HEP community busy for the

next years. The first level of fundamental questions to be addressed regards the nature of

the boson, and in particular its spin and parity. We have provided a consistent theoretical
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LMEM =
NY

i

|MHD(c↵)(i)|2

|MSM(i)|2

a) likelihood ratio based 
on 1-dim. distribution

b) likelihood ratio based 
on matrix elements
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Lagrangian
L(p1,p2,...)

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Detector 
Resolution

Selection 
procedure

detector-level
selected events

hadron-level
event filesME+matching approach 

(validated with aMC@NLO 
+ parton shower)

A B C

DE
input parameters:

A.   model+proc_card_mg5.dat

B.   run_card.dat, param_card.dat

C.  pythia_card.dat

feynrules/madgraph madevent pythia

delpheshandmade code

D.  delphes_card.dat, delphes_trigger.dat

E.  pT > 7 GeV, |y|<7 GeV (python code)

Step 1:  generation of events 
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Step 2:  distributions of events w.r.t. discriminant

a) 1-dimension distributions: 

MadAnalysis: reads the event files and build histograms with respect 
to each variable (✓1, ✓2, ✓⇤,m⇤

1,m
⇤
2)

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

-1 -0.5  0  0.5  1
cos e1

sm
HD, ca=0

HD, ca=0.5
HD, ca=0.7
HD, ca=1.0

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7

-1 -0.5  0  0.5  1
cos e2

sm
HD, ca=0

HD, ca=0.5
HD, ca=0.7
HD, ca=1.0

m⇤
1

�

cos ✓1

cos ✓259

Tuesday 3 September 13



Step 2:  distributions of events w.r.t. discriminant

b) MEM-based distributions: 

MEM weights: set                                                                        
(infinite resolution on lepton kinematics)

W (x, y) = �(x� y)

P (x|SM) / |MSM(x)|2

P (x|HD) / |MHD(x)|2

the calculation of the MEM 
weights is straightforward 
(madgraph standalone)

distribution of events w.r.t the 
ratio of the weights

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

no
rm

al
iz

ed
 fr

ac
tio

n 
of

 e
ve

nt
s

D

DHD(c_=0)
DSM 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

no
rm

al
iz

ed
 fr

ac
tio

n 
of

 e
ve

nt
s

D

DHD(c_=0.3)
DSM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

no
rm

al
iz

ed
 fr

ac
tio

n 
of

 e
ve

nt
s

D

DHD(c_=0.7)
DSM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

no
rm

al
iz

ed
 fr

ac
tio

n 
of

 e
ve

nt
s

D

DHD(c_=1)
DSM

Figure 12. Normalised distributions per event with respect to the MEM-based discriminant D,
for specific values of the mixing parameter of c

↵

: 0, 0.3, 0.7 and 1.0.

In order to assess the significance that can be achieved at the LHC to reject the

hypothesis HD(c↵) if the SM hypothesis is realised, we consider a large number of pseudo-

experiments, each with a given number N of X0 ! µ+µ�e+e� events. We set N = 10,

which is close to the number of events (in the SM hypothesis) expected to be reconstructed

in the ATLAS [103] and CMS [104] detectors at
p
s = 8 TeV, in this specific decay chan-

nel and with an integrated luminosity of 20 fb�1. For each event, the corresponding Di

value is generated according to the probability law DSM (in the case of a SM pseudo-

experiment) or DHD(c↵) (in the case of a HD(c↵) pseudo-experiment) which are shown in

fig. 12. This procedure is used to generate 106 pseudo-experiments under each hypothesis,

SM or HD(c↵).

For each pseudo-experiment the likelihood ratio L is calculated as follows:

LMEM =
N
Y

i

P [xi|HD(c↵)]

P [xi|SM]
=

N
Y

i

Di

1�Di
. (4.6)

The resulting SM and HD(c↵) distributions of pseudo-experiments in q = ln (LMEM) are

shown in fig. 13 (left) for the specific case of c↵ = 0.5. The significance is estimated

by calculating the median qSM,1/2 of the SM distribution and by counting the fraction of

pseudo-experiments in the HD(c↵) distribution with q < qSM,1/2. Such a fraction of events

provides us with an estimate of the p-value associated with the statistical test for rejecting

hypothesis HD(c↵) if the SM hypothesis is realised. The p-value as a function of c↵ is

shown in fig. 13 (right).
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Figure 12. Normalised distributions per event with respect to the MEM-based discriminant D,
for specific values of the mixing parameter of c

↵

: 0, 0.3, 0.7 and 1.0.

In order to assess the significance that can be achieved at the LHC to reject the

hypothesis HD(c↵) if the SM hypothesis is realised, we consider a large number of pseudo-

experiments, each with a given number N of X0 ! µ+µ�e+e� events. We set N = 10,

which is close to the number of events (in the SM hypothesis) expected to be reconstructed

in the ATLAS [103] and CMS [104] detectors at
p
s = 8 TeV, in this specific decay chan-

nel and with an integrated luminosity of 20 fb�1. For each event, the corresponding Di

value is generated according to the probability law DSM (in the case of a SM pseudo-

experiment) or DHD(c↵) (in the case of a HD(c↵) pseudo-experiment) which are shown in

fig. 12. This procedure is used to generate 106 pseudo-experiments under each hypothesis,

SM or HD(c↵).

For each pseudo-experiment the likelihood ratio L is calculated as follows:

LMEM =
N
Y

i

P [xi|HD(c↵)]

P [xi|SM]
=

N
Y

i

Di

1�Di
. (4.6)

The resulting SM and HD(c↵) distributions of pseudo-experiments in q = ln (LMEM) are

shown in fig. 13 (left) for the specific case of c↵ = 0.5. The significance is estimated

by calculating the median qSM,1/2 of the SM distribution and by counting the fraction of

pseudo-experiments in the HD(c↵) distribution with q < qSM,1/2. Such a fraction of events

provides us with an estimate of the p-value associated with the statistical test for rejecting

hypothesis HD(c↵) if the SM hypothesis is realised. The p-value as a function of c↵ is

shown in fig. 13 (right).
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D(x) =


1 +

|MHD|2(x)
|MSM|2(x)

��1
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Step 3:  generate pseudo-experiments

‣ 1M pseudo-experiments with N=10 events under each 
assumptions (SM of HD)

Two options:  (1) generate a 107 MC events for each assumptions 

                    

For each pseudo-experiment, the likelihood functions can be evaluated: 
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Figure 13. Left: distributions of pseudo-experiments with respect to q = lnLMEM for the case
c
↵

= 0.5. Right: expected p-value at which hypothesis HD
c↵ is rejected if hypothesis SM is realized,

as a function of c
↵

and for di↵erent choices of the likelihood function.

The resulting SM and HD(c↵) distributions of pseudo-experiments with respect to q =

ln (LMEM) are shown in Figure 13 (left) in the specific case of c↵ = 0.5. The significance

is estimated by calculating the median qSM,1/2 of the SM distribution and by counting the

fraction of pseudo-experiments in the HD(c↵) distribution with q < qSM,1/2. Such a fraction

of events provides us with an estimate of the p-value associated with the statistical test for

rejecting hypothesis HD(c↵) if the SM hypothesis is realized. The p-value as a function of

c↵ is shown in Figure 13 (right).

The power of the MEM can be illustrated by comparing the significance that is achieved

when using the MEM-based likelihood function LMEM with the significance resulting from

a likelihood function built upon the cross section di↵erential in the observable O:

LO =
NY

i

��1
HD(c↵)

d�HD(c↵)

dO (Oi)

��1
SM

d�SM
dO (Oi) .

(4.9)

In this specific example, the observableO is chosen in the set of variables {m2,��, cos ✓1, cos ✓2}
defined in Ref. [10]. The discriminant power of each of these four variables taken separately

can be assessed by using the same Monte Carlo procedure as before, with LMEM replaced

by LO. The resulting p-values as a function of c↵ are also shown in Figure 13 (right). Even

when the likelihood function is set to the product Lm2⇥L��⇥Lcos ✓1⇥Lcos ✓2 , one observes

that the significance is less than the one delivered by the MEM-based likelihood analysis,

presumably because all correlations among reconstructed variables are kept in the latter

case.

5 Summary

Assessing that the newly-discovered boson is the scalar boson predicted in the standard

model is an activity that, at di↵erent levels, will keep the HEP community busy for the

next years. The first level of fundamental questions to be addressed regards the nature of

the boson, and in particular its spin and parity. We have provided a consistent theoretical
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LMEM =
NY

i

|MHD(c↵)(i)|2

|MSM(i)|2

(2) generate the kinematic variables of interest         
     according to the previous distributions 

SLOW

FAST

61

Tuesday 3 September 13



Step 4:  estimate the significance
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Figure 13. Left: distributions of pseudo-experiments with respect to q = lnLMEM for the case
c
↵

= 0.5. Right: expected p-value at which hypothesis HD
c↵ is rejected if hypothesis SM is realized,

as a function of c
↵

and for di↵erent choices of the likelihood function.

The resulting SM and HD(c↵) distributions of pseudo-experiments with respect to q =

ln (LMEM) are shown in Figure 13 (left) in the specific case of c↵ = 0.5. The significance

is estimated by calculating the median qSM,1/2 of the SM distribution and by counting the

fraction of pseudo-experiments in the HD(c↵) distribution with q < qSM,1/2. Such a fraction

of events provides us with an estimate of the p-value associated with the statistical test for

rejecting hypothesis HD(c↵) if the SM hypothesis is realized. The p-value as a function of

c↵ is shown in Figure 13 (right).

The power of the MEM can be illustrated by comparing the significance that is achieved

when using the MEM-based likelihood function LMEM with the significance resulting from

a likelihood function built upon the cross section di↵erential in the observable O:

LO =
NY

i

��1
HD(c↵)

d�HD(c↵)

dO (Oi)

��1
SM

d�SM
dO (Oi) .

(4.9)

In this specific example, the observableO is chosen in the set of variables {m2,��, cos ✓1, cos ✓2}
defined in Ref. [10]. The discriminant power of each of these four variables taken separately

can be assessed by using the same Monte Carlo procedure as before, with LMEM replaced

by LO. The resulting p-values as a function of c↵ are also shown in Figure 13 (right). Even

when the likelihood function is set to the product Lm2⇥L��⇥Lcos ✓1⇥Lcos ✓2 , one observes

that the significance is less than the one delivered by the MEM-based likelihood analysis,

presumably because all correlations among reconstructed variables are kept in the latter

case.

5 Summary

Assessing that the newly-discovered boson is the scalar boson predicted in the standard

model is an activity that, at di↵erent levels, will keep the HEP community busy for the

next years. The first level of fundamental questions to be addressed regards the nature of

the boson, and in particular its spin and parity. We have provided a consistent theoretical

– 22 –

q = lnL

Significance estimated by calculating the median               of the SM distribution and 
by counting the fraction of pseudo-experiments in the HD distribution with 

qSM,1/2

q < qSM,1/2

This fraction = expected p-value associated with the test  of rejecting 
hypothesis HD if the SM hypothesis is realized.
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Step 4:  estimate the significance
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Figure 13. Left: distributions of pseudo-experiments with respect to q = lnLMEM for the case
c
↵

= 0.5. Right: expected p-value at which hypothesis HD
c↵ is rejected if hypothesis SM is realized,

as a function of c
↵

and for di↵erent choices of the likelihood function.

The resulting SM and HD(c↵) distributions of pseudo-experiments with respect to q =

ln (LMEM) are shown in Figure 13 (left) in the specific case of c↵ = 0.5. The significance

is estimated by calculating the median qSM,1/2 of the SM distribution and by counting the

fraction of pseudo-experiments in the HD(c↵) distribution with q < qSM,1/2. Such a fraction

of events provides us with an estimate of the p-value associated with the statistical test for

rejecting hypothesis HD(c↵) if the SM hypothesis is realized. The p-value as a function of

c↵ is shown in Figure 13 (right).

The power of the MEM can be illustrated by comparing the significance that is achieved

when using the MEM-based likelihood function LMEM with the significance resulting from

a likelihood function built upon the cross section di↵erential in the observable O:

LO =
NY

i

��1
HD(c↵)

d�HD(c↵)

dO (Oi)

��1
SM

d�SM
dO (Oi) .

(4.9)

In this specific example, the observableO is chosen in the set of variables {m2,��, cos ✓1, cos ✓2}
defined in Ref. [10]. The discriminant power of each of these four variables taken separately

can be assessed by using the same Monte Carlo procedure as before, with LMEM replaced

by LO. The resulting p-values as a function of c↵ are also shown in Figure 13 (right). Even

when the likelihood function is set to the product Lm2⇥L��⇥Lcos ✓1⇥Lcos ✓2 , one observes

that the significance is less than the one delivered by the MEM-based likelihood analysis,

presumably because all correlations among reconstructed variables are kept in the latter

case.

5 Summary

Assessing that the newly-discovered boson is the scalar boson predicted in the standard

model is an activity that, at di↵erent levels, will keep the HEP community busy for the

next years. The first level of fundamental questions to be addressed regards the nature of

the boson, and in particular its spin and parity. We have provided a consistent theoretical

– 22 –

The optimal significance is reached with the 
MEM-based likelihood approach

PA et al, 2013
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2) Challenging backgrounds: 
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tt + scalar boson at the LHC with the MEM
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di-lepton final statesingle-lepton final state

Q: is the discriminating power in the di-lepton channel 
higher or less than the one in the semi-lepton channel ?

Decay channels
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‣ Leptons: PT > 20 GeV and |η| < 2.4

‣ Jets: anti-kT with R=0.5 , PT > 30 GeV 
and |η| < 2.5

‣ At least 4 b-jets required

Step 1:  event generation

Lagrangian
L(p1,p2,...)

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Detector 
Resolution

Selection 
procedure

detector-level
selected events

hadron-level
event filesME+matching approach 

(aMC@NLO also available)

feynrules/madgraph madevent pythia

delphesC++ code
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‣ Leptons: PT > 20 GeV and |η| < 2.4

‣ Jets: anti-kT with R=0.5 , PT > 30 GeV 
and |η| < 2.5

‣ At least 4 b-jets required

Step 1:  event generation

Lagrangian
L(p1,p2,...)

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Detector 
Resolution

Selection 
procedure

detector-level
selected events

hadron-level
event filesME+matching approach 

(aMC@NLO also available)

feynrules/madgraph madevent pythia

delphesC++ code

single-lepton:  S/B ~ 1/22

di-lepton:       S/B ~ 1/11
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Step I1:  event distributions w.r.t. MEM discriminant
3
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FIG. 1: Left: Normalized distributions of events with respect
to the MEM-based observable D for the di-lepton (top) and
single-lepton (bottom) channels. Right: Efficiency of selecting
signal vs. background using a D > Dmin cut.

IV. RESULTS

For a generic event i with kinematics xi the MEM-
based observable Di is defined as follows:

Di =
P (xi|S)

P (xi|S) + P (xi|B)
. (2)

Expected (normalized) distributions of signal and back-
ground events with respect to this observable are named
DS and DB, and are shown in Fig. 1 (left). The plots
show that for the same number of signal events the MEM-
based observable delivers a higher discriminating power
in the case of the di-lepton channel. This is manifest in
the right-hand plot of the same figure where the εs ver-
sus εb efficiencies resulting from a cut on the observable
D > Dmin are shown. This may seem surprising at first
sight, given that the di-lepton channel is characterized
by two missing particles in the final state, against only
one in the single-lepton channel. However, the di-lepton
channel is much cleaner, with only b-jets required in the
final state, a lower probability of erroneously including
extra QCD radiation and, eventually, a more manage-
able combinatorial background.
In order to assess the significance that can be achieved

at the LHC
√
s = 14 TeV for a given luminosity L,

we consider a large number of pseudo-experiments, each
with a number of events set to N = σrec

bg L (with σrec
bg the

reconstructed cross section, see Table I, last column). In
the B-only hypothesis, the number of signal and back-
ground events are set to s = 0 and b = N . In the S +B
hypothesis, s and b are generated under the constraint
s+ b = N according to the product of Poisson distribu-
tions with mean values Ns0/(s0+ b0) and Nb0/(s0+ b0),
respectively. Here s0 and b0 are the expected number of
reconstructed events after rescaling the signal cross sec-
tion by a parameter µ, i.e. b0 = σrec

bg L and s0 = µσrec
sig L.

For each event, the corresponding Di value is generated
according to the probability law DS (in the case of a sig-
nal event) or DB (in the case of a background event)
shown in Fig. 1. This procedure is used to generate
104 pseudo-experiments under each hypothesis (B-only
or S+B) at a given luminosity L.
For each pseudo-experiment the likelihood ratio LR is
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FIG. 2: Left: Log likelihood profiles in the case of the di-
lepton channel, assuming a luminosity of 32 fb−1 at 14 TeV
and setting µ = 1 (SM cross section). Right: Expected upper
bound on the tt̄h cross section (in units of SM cross section)
at 95 % C.L.

calculated as follows:

LR =
N
∏

i

r0P (xi|S) + (1− r0)P (xi|B)

P (xi|B)

=
N
∏

i

r0Di + (1− r0)(1−Di)

(1 −Di)
, (3)

with r0 = s0/(s0 + b0). The resulting B-only and
S + B distributions of pseudo-experiments with respect
to ln

(

LR
)

are shown in Fig. 2 (left) in the case of the
di-lepton channel, with L =32 fb−1 and µ = 1. The
two distributions are shifted towards positive values of
ln
(

LR
)

, which indicates that the MEM weights do not
exactly describe the phase-space distributions of back-
ground and signal events. This bias originates from the
approximations inherent to the calculation of the weights,
e.g., the assumed parametrization of the transfer function
and the effective treatment of beyond-leading-order QCD
radiations.
By smearing the value of b0 according to a log-normal

distribution (mean=b0, std=0.2b0) before generating s
and b in each pseudo-experiment, we also verified that
systematic uncertainties on the background normaliza-
tion have a negligible impact on the distributions of
pseudo-experiments with respect to ln

(

LR
)

. On the
other hand, already a 20% uncertainty on b0 hampers
a counting analysis based on the number of events to be
available at LHC, unless s/b # 0.2.
We repeat this exercise with different values of µ until

the median of the B-only distribution cuts 5% of the left-
hand tail of the S + B distribution. Such a value of µ
provides us with the estimate µ× σ(tt̄h) of the expected
upper bound on the signal cross section at 95 % C.L. in
the absence of signal. Fig. 2 (right) shows our estimate
of the parameter µ as a function of the luminosity L,
separately for the di-lepton and single-lepton channels.
We observe that the sensitivity achieved in the di-lepton
channel is slightly better than the one in the single-lepton
channel at large luminosities.

Left-hand plot: distributions of events with respect to D(x) =


1 +

P (x|B)

P (x|S)

��1

Right-hand plot: signal vs. background efficiencies resulting from a cut on D>Dmin

dilepton-channel is cleaner, more manageable combinatorial background
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Step IV: significance  
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Test: confidence level in rejecting S+B hypothesis if B-only hypothesis is realized 

‣compute               = median of the B-only distribution

‣estimate the p-value as the faction of events in the S+B distribution 
satisfying 

‣C.L. = 1-p

qB,1/2

q < qB,1/2
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Step IV: significance  3
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FIG. 1: Left: Normalized distributions of events with respect
to the MEM-based observable D for the di-lepton (top) and
single-lepton (bottom) channels. Right: Efficiency of selecting
signal vs. background using a D > Dmin cut.

for the jet energy is between 5 and 12 GeV, with tails
parametrized by Gaussians of width as large as 30 GeV.

IV. RESULTS

For a generic event i with kinematics xi the MEM-
based observable Di is defined as follows:

Di =
P (xi|S)

P (xi|S) + P (xi|B)
. (2)

Expected (normalized) distributions of signal and back-
ground events with respect to this observable are named
DS and DB , and are shown in Fig. 1 (left). The plots
show that for the same number of signal events the MEM-
based observable delivers a higher discriminating power
in the case of the di-lepton channel. This is manifest in
the right-hand plot of the same figure where the εs ver-
sus εb efficiencies resulting from a cut on the observable
D > Dmin are shown. This may seem surprising at first
sight, given that the di-lepton channel is characterized
by two missing particles in the final state, against only
one in the single-lepton channel. However, the di-lepton
channel is much cleaner, with only b-jets required in the
final state, a lower probability of erroneously including
extra QCD radiation and, eventually, a more manage-
able combinatorial background.

In order to assess the significance that can be achieved
at the LHC

√
s = 14 TeV for a given luminosity L,

we consider a large number of pseudo-experiments, each
with a number of events set to N = σrec

bg L (with σrec
bg the

reconstructed cross section, see Table I, last column). In
the B-only hypothesis, the number of signal and back-
ground events are set to s = 0 and b = N . In the S +B
hypothesis, s and b are generated under the constraint
s + b = N according to the product of Poisson distribu-
tions with mean values Ns0/(s0+ b0) and Nb0/(s0+ b0),
respectively. Here s0 and b0 are the expected number of
reconstructed events after rescaling the signal cross sec-
tion by a parameter µ, i.e. b0 = σrec

bg L and s0 = µσrec
sig L.

For each event, the corresponding Di value is generated
according to the probability law DS (in the case of a sig-
nal event) or DB (in the case of a background event)
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FIG. 2: Left: Log likelihood profiles in the case of the di-
lepton channel, assuming a luminosity of 32 fb−1 at 14 TeV
and setting µ = 1 (SM cross section). Right: Expected upper
bound on the tt̄h cross section (in units of SM cross section)
at 95 % C.L.

shown in Fig. 1. This procedure is used to generate
104 pseudo-experiments under each hypothesis (B-only
or S+B) at a given luminosity L.

For each pseudo-experiment the likelihood ratio LR is
calculated as follows:

LR =
N
∏

i

r0P (xi|S) + (1− r0)P (xi|B)

P (xi|B)

=
N
∏

i

r0Di + (1− r0)(1−Di)

(1−Di)
, (3)

with r0 = s0/(s0 + b0). The resulting B-only and
S + B distributions of pseudo-experiments with respect
to ln

(

LR
)

are shown in Fig. 2 (left) in the case of the
di-lepton channel, with L =32 fb−1 and µ = 1. The
two distributions are shifted towards positive values of
ln

(

LR
)

, which indicates that the MEM weights do not
exactly describe the phase-space distributions of back-
ground and signal events. This bias originates from the
approximations inherent to the calculation of the weights,
e.g., the assumed parametrization of the transfer function
and the effective treatment of beyond-leading-order QCD
radiations.

By smearing the value of b0 according to a log-normal
distribution (mean=b0, std=0.2b0) before generating s
and b in each pseudo-experiment, we also verified that
systematic uncertainties on the background normaliza-
tion have a negligible impact on the distributions of
pseudo-experiments with respect to ln

(

LR
)

. On the
other hand, already a 20% uncertainty on b0 hampers
a counting analysis based on the number of events to be
available at LHC, unless s/b # 0.2.

We repeat this exercise with different values of µ until
the median of the B-only distribution cuts 5% of the left-
hand tail of the S + B distribution. Such a value of µ
provides us with the estimate µ× σ(tt̄h) of the expected
upper bound on the signal cross section at 95 % C.L. in
the absence of signal. Fig. 2 (right) shows our estimate
of the parameter µ as a function of the luminosity L,

‣Rescale the signal cross section by a factor      such that S+B is excluded at 95% C.Lµ
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MEM versus counting  

3
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FIG. 1: Distribution of events with respect to the discriminant
D. Left: dileptonic channel. Right: semileptonic channel.

around the direction of the muon, and the transverse en-
ergy associated with the calorimeter cells inside this cone
(excluding the contribution from the candidate) is com-
puted. A ratio of this energy to the transverse momen-
tum of the lepton candidate defined the relative isolation
discriminant Irel, and lepton candidates with Irel above
0.2 are rejected. In case more leptons than expected pass
the above selection creteria, the highest pT candidates are
retained.
Anti-kT jets are clustered with a cone radius R = 0.5.

Jet candidates are required to have pT > 30 GeV and
|η| < 2.5, and not to overlap with any selected leptons. In
this subset of jets, at least 4 b-tags are required. In case
there are more than 4 b-tags among the jet candidates,
the b-jets with the highest pT are retained.
Only transfer functions on jet energies are assumed to

have a finite resolution. We parametrize them through
a double-Gaussian shape function characterized by five
independent parameters: the means and the widths of
the two gaussian distributions, and their relative nor-
malization. For each parameter, an energy dependence
c1 + c2

√
E + c3E is used, and the coefficients ci are de-

termined from an independent tt̄ sample where well sep-
arated jets (including light and b jets) are matched to
the corresponding partons. The typical resolution for jet
energy is between 5 and 12 GeV, with tails parametrized
by Gaussian of variances as large as 30 GeV.

IV. RESULTS

The expected normalized-to-one distributions of signal
and background events with respect to the MEM-based
discriminant observable

D(x) =
P (x|S)

P (x|S) + P (x|B)
(2)

are shown in Figure 1 (top). For given numbers of sig-
nal and background events, the MEM-based observable
delivers a higher discriminating power in the case of the
dileptonic channel. This may seems surprising at first
sight, given that the dileptonic channel is characterized
by two missing particles in the final state, against only

co
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FIG. 2: Log likelihood profiles for the dileptonic case, assum-
ing a luminosity of 32 fb−1 and setting µ = 1 (SM cross sec-
tion). First row: LR = LR

counting. Second row: LR = LR
MEM.

Third row: LR = LR
counting × LR

MEM. First column: no syste-
natic uncertainties. Second column: 20% systematic uncer-
tainty on b0.

one in the semileptonic channel. However the combinato-
rial background is less severe in the case of the dileptonic
channel. This fact is also crucial when events are selected
for the evaluation of the MEM weights: before selection,
signal events have a large number of jets, and the risk of
selecting the wrong set of jets is lower in the dileptonic
case.
In order to assess the significance that can be achieved

at the LHC for a given luminosity, we generate a large
number of pseudo-experiments by (1) generating s and b
(the numbers of signal and background events) according
to poisson distributions with mean values s0 and b0 re-
spectively (which evaluate to the numbers in column 3 of
Table I multiplied by the luminosity expressed in fb−1)
(2) generating for each event its D value according to the
probability law DS (in the case of a signal event) or DB

(in the case of a background event) shown in Figure 1.
Then for each pseudo-experiment, the likelihood ratios
LR
counting and LR

MEM —which are respectively based on
the expected number of events and on the phase-space
distribution— are reconstructed as follows:

LR
counting =

pois(s+ b|s0 + b0)

pois(b|b0)
,

LR
MEM =

∏
x

rDS(x) + (1− r)DB(x)

DB(x)
(3)

with r = s0/(s0 + b0). For a given luminosity, we
generate 105 pseudo-experiments under the two follow-
ing hypotheses: signal + background (with the SM
cross section for the signal rescaled by a parameter µ)

‣ Redo the analysis with a likelihood that is based on the 
number of events

with s0, b0 the expected number of signal and background events

‣ Also consider the effect of 20% systematic uncertainties on b0 
(=the expected number of background events):

This can be done by smearing the value of b0 according to a log-
normal distribution (mean=b0, std=0.2b0) before drawing the number 
of background events  according to a Poisson distribution in each 
pseudo-experiment
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MEM versus counting  
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Already a 20% uncertainty on b0 hampers the counting analysis
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Other applications of the MEM

‣VBF scalar boson production J.R. Anderson, C. Englert, M. Spannowsky  ‘12

‣Characterization of a scalar boson S. Bolognesi et al  ’12

‣b-charge identification Gedalia, Isidori, Maltoni, Perez, Selvaggi, Soreq ‘12

‣Stops searches P.  Van Mulders et al.

‣Z’ searches S. Basegmez, G. Bruno

‣Differential weight A. Pin, O. Mattelaer 

‣ ...
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Conclusion

74

‣ I discussed several aspects of the Matrix Element method:

‣ The use of MEM to establish a formal maximum significance,

‣ The inclusion of beyond leading-order corrections in the definition of 
the weights,

‣ The practical evaluation of the MEM weights.

‣ I presented three examples of application:

‣ mtop reconstruction

‣ Higgs characterization

‣ Search for ttH
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