

Trigger and Data Acquisition at colliders

G. De Lentdecker Université Libre de Bruxelles

EVENT BUILDING

Network technologies

Seamples:

- The telephone network
- Ethernet (IEEE 802.3)
- ATM (the backbone for GSM cell-phones,
- small fixed sized packets)
- Infiniband (point-to-point bidirectional serial links)
- Myrinet (high-speed LAN designed by Myricom)
- many, many more
- Note: some of these have "bus"-features as well (Ethernet, Infiniband)
- Network technologies are sometimes functionally grouped
 - Cluster interconnect (Myrinet, Infiniband) 15 m
 - Local area network (Ethernet), 100 m to 10 km
 - Wide area network (ATM, SONET) > 50 km

Network switch: crossbar

- Each input port can potentially be connected to each output port
- At any given time, only one input port can be connected to a given output port
- Different output ports can be reached concurrently by different input ports
- → Ideal situation:
 - All inputs send data to different outputs
 - No interference (congestion)
 - All input ports send data concurrently

Problematic:

11

Input Fifios can absorb data fluctuations until they are full. All fine if:

Fifos capacity > event size

In practice: sizes of FIFOs are much smaller!

EVB traffic: switch will partially block

Avoid Congestion

 $\Theta \rightarrow$ oversize the system or do traffic shaping...

Traffic shaping

- Random traffic: needs switch with factor 2 more bandwidth than throughput needed

2 stages CMS EVB

Two stages CMS EVB

In 3D

CMS VS. ATLAS DAQ

The Filter Farm

- The final stage of the filtering process: almost an offline quality reconstruction & selection
 - Very cost effective
 - Linux is free
 - Interconnect : Ethernet (inexpensive & performant)
 - Despite recent growth it is mature:
 - The basic elements are mature: PC, Linux, Network

Algorithms & operation

- Strategy/design guidelines
 - Use offline software as much as possible
 - Ease of maintenance, but also understanding of the detector
- Boundary conditions:
 - Code runs in a single processor, which analyzes one event at a time
 - HLT (or Level-3) has access to full event data (full granularity and resolution)
 - Only limitations:
 - CPU time
 - Output selection rate (~10² Hz)
 - Precision of calibration constants
- Main requirements:
 - Satisfy physics program (see later): high efficiency
 - Selection must be inclusive (to discover the unpredicted as well)
 - Must not require precise knowledge of calibration/run conditions
 - Efficiency must be measurable from data alone
 - All algorithms/processors must be monitored closely

LHCb & ALICE DAQ

- Optimized to study B-hadron in p-p collisions
- Level-0 output rate: 1MHz (L=10³²cm²s⁻¹)
- Event size = 40 kB
- - Optimized for heavy-ion collisions (Pb-Pb)
 - Low collision rate (<10 kHz @ L=10²⁷cm²s⁻¹)
 - But very high multiplicity (dN/deta ~ 8000)
 - Event size ~25 MB

LHC experiments DAQ

On to tape... and the GRID

Conclusions

- We have seen an overview of each step (from the detector to the filter farm) making the trigger/data acquisition system of an HEP experiment.
- Each topics would need a lecture for itself
- ♀ I had no time to discuss:
 - Bus architectures (VME)
 - Control & Monitoring
 - DAQ software
 - LHC DAQ upgrades, future HEP exp. DAQ & new technologies

• • • •

Biblio

- Lectures of W. Vandelli, CERN Summer Student progr. 2013
- Lectures of N. Neufeld, CERN Summer Student progr. 2010
- Lectures of J. Christiansen, CERN Summer Student progr. 2009
 - And their predecessors
- The Technical Design Reports of CMS, ATLAS, LHCb & ALICE
- Electronics lecture from Ch. de La Taille
- See also program of International School of Trigger and Data Acquisition

http://indico.cern.ch/conferenceDisplay.py?confld=209985

Event Building

Form full event data buffers from fragments in the readout
=> must interconnect data sources to destinations

Data fragments are stored In separated physical memory systems

Full event data are stored Into one physical memory system Associated to one processor unit

ATLAS DAQ

- After L1, L2 looks for Region of Interest (RoI)
- If L2 Accepts then all the event is sent to the next step

