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Chapter 0

Prolegomena

0.1 Preface

In what follows, whatever is correct I owe to many other people ; that which
is wrong I managed on my own. I am perpetually in need of, and grateful to,
those pointing out typing or thinking errors in these notes1.

Writing about relativistic quantum field theory and its consequences for
particle phenomenology is not an especially easy task. On the one hand the
literature abounds with textbooks – often admirable ones – with titles contain-
ing the words ‘Introduction’, ‘Quantum’, and ‘Field Theory’, and it might be
wondered what yet another such a one could contribute to that which has al-
ready been expanded upon into excruciating detail. Indeed, the serious student
can graze and ruminate to heart’s content in the meadows of existing litera-
ture. On the other hand, almost everyone who has taught courses containing
the words ‘Introduction’, ‘Quantum’, or ‘Field Theory’ will have felt, upon oc-
casion, that some or several subjects have not, in the available corpus, been
presented with exactly the right emphasis on points especially dear, or along
the precisely favourite line of thought on this or that crucial argument. I there-
fore add my mite : a small one, but mine own ; I shall present the content of
relativistic quantum field theory, and the way in which it purports to describe
the world of elementary particles and their interactions, in the manner most
pleasing to myself. The æsthetics of such a story are sometimes undervalued
but ultimately as important as its other aspects.

The content matter of these notes is nothing but what the existing litera-
ture discusses, with an emphasis on the acquisition of calculating skills which
should enable the diligent to actually compute scattering cross sections and

1I cordially invite all and sundry to do so. The P 4 Hall of Fame collects the names of
friends who have helped me in learning about, formulating, contemplating, or execrating one
or several issues.

11
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the like. The mode of presentation may be found to be, if not contrarious, at
least orthogonal to most introductions to the subject. As an example, many
approaches make use of quantization as a way to go from classical2 physics to
quantum physics. It ought to be the other way around ! Classical physics is a
limiting case of quantum physics and therefore should be derived from it3. In a
similar vein, the famous ‘founding formulæ’ of quantum field theory, such as the
Dirac equation, will be derived from the more fundamental theory in this text
as simplified cases, and fairly unimportant ones at that. Clearly, thus we run
against the historical line of development of the field, and this is a good thing.
We may be dwarfs standing on the shoulders of giants : but we can see further
for all that.

0.2 Layout

It is apposite to sketch the way in which quantum field theory is developed in
the following chapters. The underlying idea is to go from simple systems to
complicated ones. Hence, in Chapter 1 the basics of the theory are described
for the simplest possible quantum field in the simplest of all possible universes
— that is, a universe consisting of only a single point. I stress the fact that
the quantum field is essentially a stochastic variable, and that therefore that
which we can compute about it must be expectation values, that is, the Green’s
functions of the theory. The probability density of the field is determined by
the action ; the problem of how to go from action to Green’s function leads
naturally to the notion of perturbation theory and Feynman diagrams. Many
aspects of diagrammatic technology, such as sources, symmetry factors, the
Schwinger-Dyson equations, one-particle irreducibility, the loop expansion, and
the ‘classical limit’4 are already present in this simple universe in the same
manner as in more realistic and complicated cases ; and that is why it is in my
view better to introduce them here. Other issues, notably loop divergences, are
absent5, but renormalization already has its rightful place as a consequence, not
of divergences, but of perturbation theory itself.

In Chapter 2 we take the first step towards more realistic theories. It is
fairly easy to generalize the zero-dimensional theory of a single field to the case

2In these notes, ‘classical’ stands for ‘non-quantum’.
3This is not necessarily to say that freshmen’s physics courses must start with relativistic

quantum field theory and develop, in later years in the curriculum, into studies of limiting cases
such as classical mechanics, classical electrodynamics, or nonrelativistic quantum mechanics.
Obviously, it is important that one understands the language of these fields in order to appre-

ciate the more fundamental but also more complicated deeper theories ; but it is, to my mind,
a mistake to posit that one should go from classical to quantum as if that were the logical
road. Indeed, first mastering the bicycle and afterwards mounting the sidecar-motorbike has
often proved its worth (except when taking right turns (in the UK : left turns)).

4Which is, in fact, not classical at all.
5Nonetheless, a zero-dimensional toy model for such divergences is discussed in Chapter 1

to good effect.
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of more fields, and ultimately to that of an infinity of fields. We find that the
nature of the two-point interactions between different fields can, under suit-
able circumstances, be reinterpreted , or visualised, so that we are suddenly not
talking about infinitely many fields at a single point, but a chain of fields po-
sitioned along an infinite line : this is the invention of space. To this end we
need to introduce a ‘length scale’, but we shall take care to arrange matters in
such a way that the length scale can be taken to be infinitesimal : this is the
continuum limit. We take the Feynman rules through this sequence of steps,
and find the rules for a one-dimensional continuum theory. Similar arguments
apply to derive higher-dimensional theories. We do the same for the action as
well, without however insisting that the Feynman rules must necessarily come
from that action. We shall also see that the classical field equations can be
derived from the action by a number of formal manipulations, called functional
differentiation, that lead to Euler-Lagrange equations. Throughout, however,
the Feynman rules have the primacy.

The next step, which in Chapter 3 takes us into our familiar Minkowski
space, is to assign a special rôle, that of time, to one of the dimensions. Do-
ing this requires a rather drastic assumption of admissibility : it goes under
the name of the Euclidean postulate. This is the point at which quantum field
theory and statistical physics part to go their separate ways. Having taken
this hurdle we can find the form, both of the Feynman rules, and of the ac-
tion in Minkowski space, and then we are ready to confront our theory with
a number of basic facts about our own world. It is seen that the so-called iǫ-
prescription, that we have to introduce to keep the Minkowski formulation of
our theory at least moderately well-defined, is closely related to the possibility
of encountering unstable particles, and in a deeper sense tells us the direction of
time. We also see that the collection of connected Green’s functions is related
to the wave function that determines the probability density to find particles
at a given space-time point. A simple example is a quick derivation of the
Yukawa potential, a Coulomb-type law for static sources. A more demanding
but also more rewarding calculation provides us with Newton’s first law since we
see that a localized source can emit particles that move with constant velocity
along straight lines, as long as there are no interactions : in fact, it is this that
justifies our statement that our fields describe particles in the first place ! A
closer investigation, and some elementary bookkeeping, shows that the fields
describe in fact not only particles, but antiparticles as well. We thus find the
prediction of antimatter as well as the CPT transformation that relates free
matter and antimatter6. As a by-product we obtain a natural prescription for
the density of states of free particles, that is, a rule for counting quantum states.

In Chapter 4 we take yet another step towards phenomenology, by discussing
how the knowledge gathered so far can be used to obtain cross sections and de-

6This is not to be confused with the deeper property of CPT invariance of interacting
theories.
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cay widths. The special – and favourite – rôle of connected Green’s functions in
these calculations is discussed7. We resolve the seeming conundrum between,
on the one hand, the fact that free particles must be on their mass shell to move
over macroscopic distances, and on the other hand the fact that for on-shell par-
ticles the Green’s functions diverge ; we do this with the help of the truncation
bootstrap, a line of reasoning that at once solves the conundrum, determines
the Feynman rules for external lines, and provides the correct normalization
factors for cross sections and decay widths. This puts us in a position where
we can compute actual predictions for actual processes. The assumption that
this is indeed what we compute puts its own constraints on the outcome of such
calculations, since such outcomes are limited by unitarity. We discuss this, and
discover the so-called cutting rules which implement the constraints of unitarity
in the form of explicit relations between diagrams. The chapter finishes with a
few toy-model calculations.

By now, our spacetime has become realistic and interesting, but the parti-
cles living in it are rather dull, having no other properties than momentum. In
Chapter 5 we start to repair this defect by prettifying the Feynman rules for par-
ticle propagators ; this of course also requires some reinterpretation, especially
of the truncation bootstrap. The first attempt, adding a linear8 object onto the
propagator, immediately leads to the mathematical structures of Dirac/Clifford
algebras. In physics, these are not widely used outside the particle community,
and we therefore need to spend some time getting acquainted with the neces-
sary mathematics. On the physical side, we shall obtain the Feynman rules for
free Dirac particles, and hit upon the so-called Fermi minus sign. This crops
up in loop diagrams and in the interchange of particles, indicating that these
particles are fermions. In a completely independent way we also establish that
Dirac particles have an intrisic spin of h̄/2. Along the way, we also recover the
Dirac equation as a mildly interesting classical equation ; however, as usual the
Feynman rules come first. The chapter finishes with our first realistic calcula-
tion of an actual physical process, namely the width for the decay µ− → e−νµν̄e
in the Fermi model.

In Chapter 6 we study yet another modification of the original propagator,
this time adding a quadratic structure. This is seen to lead to particles with unit
spin, for which we determine the propagator and the external-particle Feynman
rules. At the same time, we note the absence of any Fermi minus sign, so these
particles are bosons : and we pause briefly to prove the spin-statistics theorem.
We then turn to the case of massless spin-1 particles, and immediately hit upon
potential problems with the unitarity of the theory. We postulate that such
problems must be avoided, not by the free theory itself, but by virtue of the
interactions in the theory. Unitarity is thus seen to put stringent restrictions on
the form of possible interactions. Diagrammatically, we embody this in the use

7This is precisely one of those issues of which a correct treatment is not easily found in
standard texts — in fact, it only relies on conservation of energy.

8In terms of the particle momentum.
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of so-called handlebars : physically, we recognize it as the property of current
conservation (or almost-conservation, in the case of massive spin-1 particles).

Chapter 7 witnesses the introduction of the first realistic model, the the-
ory of charged fermions interacting with photons : quantum electrodynamics
(QED). Actually, we obtain it by simply positing the interaction vertex. Since
the photon is massless9 the various currents must be strictly conserved. We can
prove this diagrammatically for all possible processes, thanks to the fact that
QED is a fairly simple theory. We also derive the Dirac equation in the presence
of an external photon field, and so are able to relate the coupling constant in the
Feynman rule to the charge of the electron. We then proceed to compute a few
basic QED cross sections. The chapter finishes with a short discussion of scalar
electrodynamics (sQED), for which we establish the two necessary interaction
vertices. By itself this theory is not very realistic, but it comes in handy in the
next chapter as a template for the interaction between W bosons and photons.
As an encore, the well-known Landau-Yang theorem is discussed.

A somewhat more challenging model is met in Chapter 8 : this is the theory
of ‘QED’ with more than one type of charge ; it is more commonly known as
Quantum Chromodynamics (QCD). The main difference with QED is the fact
that the ‘photons’ (gluons) of this theory exhibit self-interactions, with drastic
consequences. We employ the notion of handlebars in order to determine the
nature of these gluonic self-interactions.

Chapter 9 deals with the other important branch of particle physics theory :
this is the theory of electroweak interactions (EW), which subsumes QED as an
ingredient. Throughout this chapter we employ unitarity constraints again and
again. We start by re-investigating muon decay. The interaction vertex pro-
posed at the end of Chapter 5 is seen to fail to observe unitarity in high-energy
scattering, and we remedy this by introducing the W bosons. The W bosons
are electrically charged, and we must determine the vertices of their interactions
with photons. We do this using ideas from sQED. Next, we require unitarity in
W+W− production, and this leads us to introduce the Z boson and its interac-
tions both with fermions and withW bosons. We recover exactly the interaction
vertices that also follow from more standard treatments, parametrized by the
so-called weak mixing angle ; but we do not find any relation between the masses
ofW and Z. By investigating 2→ 2 bosonic processes, the additional four-point
interactions between W s, Zs and photons are obtained. We then turn to an ex-
treme limiting case of bosonic scattering : imposing unitarity there forces us to
propose at least one, neutral Higgs particle. It is at this point that the relation
between W and Z mass, in terms of the weak mixing angle, becomes fixed. We
are thus able to establish a relative logical priority between the mixing angle
as fixed by the couplings, and that fixed by the masses. Assuming the minimal

9Since we are doing physics rather than mathematics, we should rather say that all obser-
vations are consistent with a massless photon. The experimental upper limit on the photon
mass is about 10−18 eV/c2, a tiny value indeed !



16 July 24, 2013

scenario of a single neutral Higgs boson, we can then also infer the Higgs self-
interaction vertices. At the end of the day we have then the complete content
of the (minimal) electroweak Standard Model.

Finally, several Appendices deal with issues that are by themselves interest-
ing enough but the inclusion of which inside the main text would hold up the
course of the argument too long to my taste.

0.3 Basic tools

0.3.1 Units

The fundamental constants10 of relativistic quantum field theory are the speed
of light in vacuo :

c = 299792458
m

sec
,

and Planck’s (or rather Dirac’s) constant

h̄ = 1.054571628(53) × 10−34 Joule sec .

Compared to the scales of our everyday experiences, h̄ is miniscule and c is
huge : in the world of elementary particles, they are just about right. We can
see this as follows. It is customary to replace our human-scale meters, kilograms
and seconds by what may be called fundamental units of mass, length and time :

Mf = 1.7826618 10−27 kg ,

Lf = 1.9732696 10−16 m ,

Tf = 6.5821190 10−25 sec .

In terms of these units, we have precisely

h̄ =
Mf Lf

2

Tf
, c =

Lf

Tf
,

so that both h̄ and c have the numerical value one ; and the unit of energy turns
out to be

Mf Lf
2

Tf
2 = 1.6021765 10−10 Joule = 1 GeV .

The mass and size of the proton are of the same order as Mf and Lf , re-
spectively, and Tf is roughly the time scale of strong interactions. The use of
fundamental units is attractive since you won’t have to write factors of c and h̄,
and one then expresses both length and time in inverse GeV, and mass in GeV.

10The values quoted here are taken from the 2008 Review of Particle Physics, C. Amsler
et al. (Particle Data Group), Physics Letters B667(2008)1. The numbers in brackets denote
the experimental error in the last digits. The speed of light is known exactly since it is, in
fact, simply our definition of the meter.
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Since, however, this usage obscures the dimensionality of the various objects, I
have decided to retain the h̄’s and c’s where they belong ; after all, it is much
easier to erase them from formulæ than to put them back in.

A side remark is in order here. Along with h̄ and c there exists a third
fundamental constant of nature, namely Newton’s (or rather Cavendish’s) grav-
itational constant:

GN = 6.67428(67) 10−11
m3

kg sec2
.

The truly, ultimately fundamental units of mass, length and time that can be
recovered from c, h̄ and GN are then the Planck units

MP =

√

h̄

GNc
= 2.17644 10−8 kg ,

LP =

√

h̄GN

c3
= 1.61625 10−35 m ,

TP =

√

h̄GN

c5
= 5.39124 10−44 sec .

These values are outrageously far removed from the typical scales of particle
phenomenology. We may interpret this as an indication that in what follows
the gravitational interaction will not play any part. In fact, in any case we do
not (yet) have a satisfactory quantum theory of gravity leading to specific and
falsifiable predictions for particle phenomenology11.

Finally, a word about charges. The electrostatic charge is adopted to the
Gaussian system, so as to have no truck with the ‘permeability of the vacuum’
and suchlike : that is, two charges e1 and e2 separated by a distance r feel a
mutual Coulomb force ~F characterized by

| ~F | = 1

4π

| e1e2 |
r2

.

This implies that the charge has the dimensionality of
√
h̄c. It follows that, if

we choose the proton charge as the unit charge e, the combination

αe =
e2

4π h̄ c

is a dimensionless number12. Experimentally,

αe =
1

137.035999679(94)
,

11To bring the Planck units close to the fundamental units we need to increase the strength
of gravity by a factor of about 1038.

12Meaning that it has the same value in all possible systems of units ! Aliens from outer
space will find the same value.
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which yields the result

e = 5.3843836 10−14
kg1/2 m3/2

sec
.

0.3.2 Conventions

By convention, the Minkowski metric has the form13

gµν = gµν = diag(1,−1,−1,−1)

and the totally antisymmetric Levi-Civita symbol is defined by

ǫ0123 = + 1 hence ǫ0123 = − 1 .

This implies the following identities :

ǫµ1µ2µ3µ4ǫ
ν1ν2ν3ν4 = −

∑

(α1, α2, α3, α4) =
P(µ1, µ2, µ3, µ4)

δν1α1 δ
ν2

α2 δ
ν3

α3 δ
ν4

α4 ,

ǫµ1µ2µ3µ4ǫ
µ1ν2ν3ν4 = −

∑

(α2, α3, α4) =
P(µ2, µ3, µ4)

δν2α2 δ
ν3

α3 δ
ν4

α4 ,

ǫµ1µ2µ3µ4ǫ
µ1µ2ν3ν4 = −2

∑

(α3, α4) =
P(µ3, µ4)

δν3α3 δ
ν4

α4 ,

ǫµ1µ2µ3µ4ǫ
µ1µ2µ3ν4 = −6 δν4α4 ,

ǫµ1µ2µ3µ4ǫ
µ1µ2µ3µ4 = −24 ,

where P stands for all signed permutations14 of the arguments, and where the
Kronecker symbol is defined by

δαµ =

{

1 if α = µ
0 if α 6= µ

.

A subtlety : the contravariant partial derivative contains a somewhat surprising
minus sign :

∂µ =
∂

∂xµ
=

(

1

c

∂

∂t
, −~∇

)

. (1)

This explains why in nonrelativistic quantum mechanics the momentum opera-
tor is ~p = −ih̄ ~∇ whereas in the relativistic theory we use pµ = ih̄ ∂µ.

13In many textbooks the metric tensor is introduced as a diagonal matrix. This is of course
misleading since the covariant metric tensor has only lower indices, whereas a matrix has one
upper and one lower index. Unfortunately, the ‘correct’ matrix form of the metric, which
would be gµν , equals the identity matrix whatever the metric !

14Even permutations occur with a +, and odd permutations with a – sign.
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Chapter 1

QFT in zero dimensions

1.1 Introduction

For the description of elementary particles, a theory including both relativity
and quantum mechanics is necessary ; we shall introduce relativity further on,
and concentrate in this chapter on the quantum-mechanical nature of nature.
The fundamental object used for describing the particles is a quantum field.
In many treatments quantum fields are considered to be operator-valued en-
tities ; we shall rather adhere to Feynman’s approach and use what is called
c-number fields. Such a field assigns one or more numbers to every point in
spacetime, and is hence a pretty complicated subject, the behaviour of which
is not to be characterized trivially, especially when it also undergoes quantum
fluctuations. It is therefore useful to first build up expertise in the various nec-
essary techniques in a more controllable situation. To this end, we shall first
simplify the whole four-dimensional spacetime arena of particle physics to a
lower-dimensional system ; in fact, we shall reduce spacetime to a single point,
hence a zero-dimensional arena. The quantum fields are then assignments of a
single number ; the simplest quantum field is, in this case, a single stochastic,
or random, number. Many of the techniques of quantum field theory do apply
to this case : in particular the notion of path integrals, Green’s functions, the
Schwinger-Dyson equation, and Feynman diagrams come up naturally.

1.2 Probabilistic considerations

1.2.1 Quantum field and action

We shall consider a quantum field ϕ that takes its values on the whole real axis
from −∞ to +∞. Since it is a random variable, the most we can specify about
it is its probability density P (ϕ), which we write, for now, as

P (ϕ) = N exp
(

− S(ϕ)
)

. (1.1)

21
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The function S(ϕ) is called the action of the particular quantum field theory :
in a sense, it is the theory. For the probability density to be acceptable, S(ϕ)
must go to infinity sufficiently fast as |ϕ| → ∞. The normalization factor N is
defined by1

N−1 =

∫

exp
(

− S(ϕ)
)

dϕ . (1.2)

It is of course also possible to have more than one field associated with the single
spacetime point. If there are K fields ϕ1, ϕ2, . . . , ϕK , they will have a combined
probability density

P (ϕ1, ϕ2, . . . , ϕK) = N exp
(

− S(ϕ1, ϕ2, . . . , ϕK)
)

, (1.3)

with2

N−1 =

∫

· · ·
∫

exp
(

− S(ϕ1, ϕ2, . . . , ϕK)
)

dϕ1 dϕ2 · · · dϕK . (1.4)

In the special case where the action is separable, that is,

S(ϕ1, ϕ2, . . . , ϕK) = S1(ϕ1) + S2(ϕ2) + · · ·+ SK(ϕK) ,

the fields are actually independent random variables.

1.2.2 Green’s functions, sources and the path integral

Since the quantum field is a random variable, the most that can be computed
about it3 is the collection of its moments, in the jargon calledGreen’s functions4 :

Gn ≡ 〈ϕn〉 ≡ N
∫

exp
(

− S(ϕ)
)

ϕn dϕ , n = 0, 1, 2, 3, . . . . (1.5)

We shall assume that Gn exists for all n. By construction, we must always have

G0 =
〈

ϕ0
〉

= 〈1〉 = 1 . (1.6)

1If not explicitly indicated otherwise, integrals run from −∞ to +∞.
2In the following, multiple integrals will be denoted by a single integral sign for simplicity.

This is usually clear from the context.
3You are here approaching a career decision. You may decide simply to measure the value

of ϕ : in that case you have decided to become an eperimentalist rather than a theorist.
4A clarifying remark must be made here. In this text, the Green’s functions are simply

defined to be expectation values. This may appear to contrast with the use of Green’s func-
tions in the solution of inhomogeneous linear differential equations such as are encountered in
classical elctrodynamics where one uses them to compute the electromagnetic field configura-
tions for given sources. The difference is only apparent since, as we shall recognize, the latter
type of Green’s functions are in our treatment simply the two-point Green’s functions ; and
for theories such as electrodynamics, where the electromagnetic fields do not undergo self-
interaction, the two-point functions are in fact the only nonzero connected Green’s functions.
Be not, therefore, misled into thinking that there are somehow two sorts of Green’s functions.
The Green’s function formulation of electrodynamics will in fact appear as the classical limit
of the Schwinger-Dyson equation discussed below.
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The most fruitful way of discussing the set of all Green’s functions is in terms
of their generating function :

Z(J) =
∑

n≥0

1

n!
Jn Gn . (1.7)

This is called the path integral, for reasons that will become clear later. It can
be written as

Z(J) = N

∫

exp
(

− S(ϕ) + Jϕ
)

dϕ . (1.8)

The number J , which here serves purely as a device to distinguish the various
Green’s functions, is called a source, again for reasons that will become apparent
later. Once Z(J) is known, an individual Green’s function is extracted by
differentiation :

Gn =

⌊

∂n

(∂J)
nZ(J)

⌋

J=0

. (1.9)

The case of more fields is again a straightforward extension of the one-field case ;
the Green’s function is denoted by

Gn1,n2,...,nK
≡ 〈ϕn1

1 ϕn2
2 · · ·ϕnK

K 〉

= N

∫

exp
(

− S(ϕ1, . . . , ϕK)
)

ϕn1
1 · · ·ϕnK

K dϕ1 · · · dϕK . (1.10)

The path integral is now

Z(J1, . . . , JK) =
∑

n1,...,K≥0

Jn1
1 · · · JnK

K

n1! · · ·nK !
Gn1,...,nK

= N

∫

exp



−S(ϕ1, . . . , ϕK) +

K
∑

j=1

Jjϕj



 dϕ1 · · · dϕK . (1.11)

Each field comes with its own source, and

Gn1,...,nK
=

⌊

∂n1

(∂J1)
n1
· · · ∂nK

(∂JK)
nK

Z(J1, . . . , JK)

⌋

J1=···=JK=0

. (1.12)

1.2.3 Connected Green’s functions

The path integral Z(J) contains all the information about the Green’s func-
tions, and hence about the probability density P (ϕ). The same information is,
therefore, also contained in its logarithm. We write

W (J) = logZ(J) ≡
∑

n≥1

1

n!
Jn Cn , (1.13)

where the sum starts at n = 1 since Z(0) = 1. The quantities Cn (with,
obviously C0 = 0 since G0 = 1) are called the connected Green’s functions of
the theory, and will play an important rôle in what follows.
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For a single-field theory, the connected Green’s functions can be recognized
to be the cumulants of the probability density:

C1 = 〈ϕ〉 : the mean,
C2 =

〈

(ϕ− 〈ϕ〉)2
〉

: the variance,
C3 =

〈

(ϕ− 〈ϕ〉)3
〉

: the skewness,
C4 =

〈

(ϕ− 〈ϕ〉)4
〉

− 3C2
2 : the kurtosis,

and so on. For a theory with, say, three fields, we have, for instance,

G1,0,0 = C1,0,0 ,

G1,1,0 = C1,0,0C0,1,0 + C1,1,0 ,

G1,1,1 = C1,0,0C0,1,0C0,0,1 + C1,1,0C0,0,1

+ C1,0,1C0,1,0 + C0,1,1C1,0,0 + C1,1,1 . (1.14)

Since W (0) = C0 = 0, the same information about the probability density is
also contained in the field function:

φ(J) ≡ ∂

∂J
W (J) =

∑

n≥0

1

n!
Jn Cn+1 . (1.15)

Since from its definition, we have

φ(J) =

[∫

exp
(

− S(ϕ) + Jϕ
)

ϕ dϕ

] [∫

exp
(

− S(ϕ) + Jϕ
)

dϕ

]−1

, (1.16)

we can say that φ(J) is the expectation value of the quantum field ϕ in the
presence of sources: to denote this, we might write

φ(J) = 〈ϕ〉J , (1.17)

which explains the similar typographies for the quantum field and the field func-
tion. We should not, however, forget the difference in status of these objects :
ϕ is the physical entity, an unknowable, fluctuating random field ; but φ(J) is
an eminently well-defined function that contains all the information about the
probability density of ϕ, and is5 computable once the action is given.

1.2.4 The free theory

The simplest probability density is probably6 the Gaussian one, given by the
action

S(ϕ) =
1

2
µϕ2 , (1.18)

5In principle, if not in practice completely.
6A uniform density may be thought even simpler, but then it cannot run from ϕ = −∞

to ϕ = +∞. As a matter of fact, ask any mathematician or physicist to name you a nice
proability density over the whole real line, and she will almost without fail quote the Gaussian.
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with µ a positive real number. For any action, we shall call the part quadratic in
the fields (or bilinear in the case of several fields) the kinetic part. This action,
called the free action, consists of only a kinetic part. The path integral is now
simply computed by

Z(J) = N

∫

exp

(

−1

2
µϕ2 + Jϕ

)

dϕ

= N

∫

exp

(

−1

2
µ

(

ϕ− J

µ

)2

+
J2

2µ

)

dϕ

= exp

(

J2

2µ

)

. (1.19)

It is not even necessary7 to actually calculate the value of N . By Taylor expan-
sion of the exponential, we immediately find that

G2n =
(2n)!

2nn!

1

µn
, G2n+1 = 0 , n = 0, 1, 2, . . . , . (1.20)

The connected Green’s functions follow from

W (J) = logZ(J) =
J2

2µ
, φ(J) =

J

µ
, (1.21)

so that the only nonvanishing connected Green’s function is

C2 =
1

µ
. (1.22)

The fact that here the two-point connected Green’s function is the nonzero none
is the reason for calling this model the free theory (again, things will become
clearer later on, in a more realistic spacetime).

1.2.5 The ϕ4 model and perturbation theory

An action S(ϕ) may contain other terms than just the quadratic one. Such
terms are called interaction terms : they may be linear, but more usually they
are of higher power in the field ϕ. The simplest acceptable interacting theory
is therefore given by the action

S(ϕ) =
1

2
µϕ2 +

1

4!
λ4ϕ

4 . (1.23)

The (nonnegative !) real number λ4 is called a coupling constant : this model
is called the ϕ4 theory8.

7Because we must always have Z(0) = 1.
8An action in which ϕ3 is the highest power does not lead to a convergent integral over

the real axis (see, however, Appendix 2). Of course, an action of the form S(ϕ) = µϕ2/2 +
λ3ϕ3/3! + λ4ϕ4/4! is perfectly acceptable, and we shall consider this ‘ϕ3/4 model’ later on.
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Computing the path integral is now a much less trivial matter. A possible
approach is to assume that, in some sense, the ϕ4 theory is close to a free theory,
that is, in the same some sense, λ4 is a small number. We can then expand the
probability density in powers of λ4 :

exp(−S(ϕ)) = exp

(

−1

2
µϕ2

)

∑

k≥0

1

k!

(

−λ4
24

)k

ϕ4k . (1.24)

This procedure is called perturbation theory. Having thus reduced the problem
to the previous case of the free theory, we cavalierly9 interchange the series
expansion in λ4 with the integration over ϕ and arrive at the following expression
for the Green’s functions :

G2n = H2n/H0 ,

H2n =
1

µn

∑

k≥0

(4k + 2n)!

22k+n(2k + n)!k!

(

− λ4
24µ2

)k

. (1.25)

For example, we have

H0 = 1− 1

8
u+

35

384
u2 − 385

3072
u3 + · · · ,

1/H0 = 1 +
1

8
u− 29

384
u2 +

107

1024
u3 + · · · , (1.26)

with u ≡ λ4/µ
2. Note that, in this theory, also the normalization N has to be

treated perturbatively, which explains the expression for 1/H0. For the first few
nonvanishing Green’s functions we find

G0 = 1 ,

G2 =
1

µ

(

1− 1

2
u+

2

3
u2 − 11

8
u3 + · · ·

)

,

G4 =
1

µ2

(

3− 4u+
33

4
u2 − 68

3
u3 + · · ·

)

,

G6 =
1

µ3

(

15− 75

2
u+

445

4
u2 − 1585

4
u3 + · · ·

)

. (1.27)

The corresponding connected Green’s functions are given by

C2 =
1

µ

(

1− 1

2
u+

2

3
u2 − 11

8
u3 + · · ·

)

,

C4 =
1

µ2

(

−u+ 7

2
u2 − 149

12
u3 + · · ·

)

,

C6 =
1

µ3

(

10u2 − 80u3 + · · ·
)

. (1.28)

9And not with impunity ! See Appendix 1.
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Note that, whereas the Green’s functions all have a perturbation expansion
starting with terms containing no λ4, the connected Green’s functions of in-
creasing order are also of increasingly high order in λ4 : the higher connected
Green’s functions need more interactions than the lower ones.

1.2.6 The Schwinger-Dyson equation for the path integral

Although the path integral is, generally, a very complicated function of J , it
is nevertheless easy to find an equation describing it completely. This is the
Schwinger-Dyson equation (SDe), which we construct as follows. Let the action
be given by the general expression10

S(ϕ) =
∑

k≥1

1

k!
λk ϕ

k , (1.29)

where λ2 = µ. Now, from the observation that

∂p

(∂J)
pZ(J) = N

∫

exp
(

− S(ϕ) + Jϕ
)

ϕp dϕ , p = 0, 1, 2, 3, . . . (1.30)

we immedately deduce that


−J +
∑

k≥0

λk+1

k!

∂k

(∂J)
k



Z(J) =

= N

∫

exp
(

− S(ϕ) + Jϕ
)



−J +
∑

k≥0

λk+1

k!
ϕk



 dϕ

= N

∫

exp
(

− S(ϕ) + Jϕ
)

[

S′(ϕ)− J
]

dϕ = 0 , (1.31)

where in the last lemma we have used partial integration, and the fact that the
integrand vanishes at the endpoints at infinity. Symbolically, we may write the
SDe as

⌊

∂

∂ϕ
S(ϕ)

⌋

ϕ=∂/∂J

Z(J) = S′
(

∂

∂J

)

Z(J) = JZ(J) . (1.32)

For a theory with K fields, we similarly have
⌊

∂

∂ϕn
S(ϕ1, ϕ2, . . . , ϕK)

⌋

ϕj=∂/∂Jj

Z(J1, J2, . . . , JK) = JnZ(J1, J2, . . . , JK) .

(1.33)
For our sample model, the ϕ4 theory, the SDe reads11

1

6
λ4Z

′′′(J) + µZ ′(J)− JZ(J) = 0 . (1.34)

10A constant, ϕ-independent term in the action is always immediately swallowed up by the
normalization factor N .

11The SD equation is, in general, of higher than the first order. It therefore has several
independent solutions, only one of which corresponds to the usual perturbative expansion.
The nature of the other solutions is discussed in Appendix 2.
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Using the series expansion of the path integral we can express this as a relation
between different Green’s functions :

λ4
6
Gn+3 + µGn+1 − nGn−1 = 0 , n ≥ 1 . (1.35)

This relation may usefully be rewritten as follows :

Gn =
1

µ

(

(n− 1)Gn−2 −
λ4
6
Gn+2

)

, n ≥ 2 . (1.36)

If we start by assigning to the Green’s functions the values

G0 = 1 , Gn = 0 , n 6= 0 , (1.37)

then repeated applications of Eq.(1.36) will precisely reproduce the Green’s
functions of Eq.(1.27).

1.2.7 The Schwinger-Dyson equation for the field function

From the definition of φ(J) as the logarithmic derivative of the path integral,
we can infer that

∂p

(∂J)
pZ(J) = Z(J)

(

φ(J) +
∂

∂J

)p

e(J) . (1.38)

Here, e(J) is the unit function: e(J) ≡ 1. We immediately arrive at the form of
the SDe for the field function:

S′
(

φ(J) +
∂

∂J

)

e(J) = J . (1.39)

For the ϕ4 theory, it reads

φ(J) =
J

µ
− λ4

6µ

(

φ(J)3 + 3φ(J)
∂

∂J
φ(J) +

∂2

(∂J)
2 φ(J)

)

. (1.40)

Although this leads to very nonlinear relations between the various connected
Green’s functions this form of the SD equation is actually even simpler to apply :
with φ(J) = 0 as a starting pont, iterating the assignment (1.40) then results12

in the correct form of φ(J), giving the connected Green’s functions of Eq.(1.28).
For the ϕ3/4 theory, the Schwinger-Dyson equation reads

φ(J) =
J

µ
− λ3

2µ

(

φ(J)2 +
∂

∂J
φ(J)

)

−λ4
6µ

(

φ(J)3 + 3φ(J)
∂

∂J
φ(J) +

∂2

(∂J)2
φ(J)

)

. (1.41)

12For this approach to work in practice, it turns out to be useful to truncate φ(J) as a
power series in J , the truncation order increasing by one with each iteration. If you don’t do
this, each iteration triples the highest power in J , leading to very unwieldy expressions with
only the first few terms being actually correct.
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1.3 Diagrammatic considerations

1.3.1 Feynman diagrams

An extremely useful tool for computing Green’s functions and connected Green’s
functions is at hand in the form of Feynman diagrams. In this section we shall
first introduce these diagrams and their concomitant Feynman rules. Only after
that shall we prove that these diagrams do, indeed, correctly describe Green’s
functions.

Feynman diagrams are constructs of lines and vertices. A vertex is a meeting
point for one or more lines. Diagrams are allowed in which one or more lines
do not end in a vertex but, in a sense wandern ins Blaue hinein : such lines are
called external lines. Lines that are not external lines, and end up at vertices
at both ends, are called internal lines. Diagrams may be connected, in which
case one can move between any two points in the diagram following lines of
that diagram ; or they may be disconnected, in which case it consists of two or
more disjoint pieces that are themselves connected. Any graph13 consists of a
finite number of connected subgraphs. The ‘empty’ graph, containing no lines
or vertices whatsoever, also exists ; it does not count as connected14. Diagrams
containing one or more closed loops are perfectly allowed. Diagrams with no
closed loops are called tree diagrams. Some examples of Feynman diagrams are

a connected graph a disconnected graph a connected tree graph

Note that the precise shape of the lines and the precise position of the vertices
are irrelevant. The important thing is the way in which the lines are connected
to the vertices15.

1.3.2 Feynman rules

The noteworthy thing about Feynman diagrams is that they have an algebraic
interpretation; that is, they correspond to numbers that may be added and

13The terms ‘diagram’ and ‘graph’ are interchangeable.
14Casuistically, it has no points between which one might wish to move.
15As you will discover, I have endeavoured in these notes to avoid drawing straight lines, or

to draw blobs or closed loops as circles. Many texts do employ only straight lines and circles.
This not only leads to awfully unæsthetic-looking pictures, but is also deeply misleading.
Readers will often look at Feynman diagrams with the idea that the lines represent ‘particles
moving freely through space’ so that the lines ‘ought’ to be straight according to Newton’s
first law. That this is completely wrong becomes immediately clear if we realize that, in the
zero-dimensional world we are dealing with for now, there cannot be any notion of movement
yet, let alone any Newton to pronounce on it. In fact, Newton’s first law ought to be derived

from our theory, and we shall do so in due course.
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multiplied. The assignment of a number to a Feynman diagram is governed by
the Feynman rules , which postulate a numerical object for every ingredient of a
Feynman graph. In the simple zero-dimensional theories that we consider here
the Feynman rules are just numbers. We may use, for instance, the following
rules :

↔ 1/µ

↔ −λ3

↔ −λ4

↔ +J

Feynman rules, version 1.1 (1.42)

A vertex at which a single line ends (and which carries a Feynman rule factor
+J) is called a source vertex.

A disconnected diagram evaluates to the product of the values of its disjunct
connected pieces. Because of this multiplicative rule, the value of the empty
diagram is taken to be unity.

In addition, we assign to every Feynman diagram a symmetry factor. The
symmetry factor is the single most nontrivial ingredient of the diagrammatic
approach. The rule is the following : for every set of k lines that may be
permuted without changing the diagram, there will be a factor 1/k! ;
for every set of m vertices that may be permuted without changing
the diagram, there will be a factor 1/m! ; for every set of p disjunct
connected pieces that maybe interchanged without changing the dia-
gram, there will be a factor 1/p!. External lines cannot be permuted without
changing the diagram. It is important to note that the symmetry factor cannot
be read off from the individual components of the diagram, but depends on the
topology of the whole diagram16. As our universe grows from zero to more di-
mensions, and as the particles considered acquire more properties, the Feynman
rules will grow in complication ; but the symmetry factors remain the same17.

A few examples of diagram values are presented here. First, consider the
diagram

=
λ3

2

µ5
.

16This is what makes the automated evaluation of diagrams a nontrivial task : component
factors of diagrams can be easily assigned, but working out the symmetry factor of a diagram
calls for for very complicated computer algorithms indeed.

17This is only modified if we include lines of different types, or oriented lines.
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In this case, the symmetry factor is 1, since for a tree diagram no internal lines
or vertices can be interchanged without impunity. The similar-looking diagram

=
1

6

λ3
2

µ5
.

has a symmetry factor 1/3! since the three one-point vertices are interchange-
able. Then, there is the graph

= −1

2

λ4
µ3

Here, there is a symmetry factor 1/2 because the ‘leaf’ can be flipped over
without changing the diagram18. The diagram

=
1

6

λ4
2

µ5

carries a symmetry factor of 1/3! because the three internal lines are inter-
changeable. The graph

= −1

4

λ4
3

µ7

carries a symmetry factor (1/2!)(1/2!) since there are now only two interchange-
able internal lines, and a single ‘leaf’. Finally, the diagram

=
1

48

λ4
2

µ4

has a symmetry factor (1/4!)(1/2!) since there are 4 equivalent internal lines,
and moreover the diagram can be ‘flipped over’ without changing it.

1.3.3 Vacuum bubbles

Feynman diagrams exist that contain neither external lines nor source vertices.
These are called vacuum bubbles. The empty graph (which we shall denote by
the symbol E) is, obviously, a vacuum bubble. We may consider the set of all

18This is due to the fact that the line in the loop is not oriented: for oriented lines it will
no longer hold. The discussion of symmetry factors of Feynman diagrams goes, in practice,
with a lot of remarks like ‘... so you flip over this leaf, you wriggle this set of internal lines,
you shove these vertices back and forth ... see ?’ Although the symmetry factor is totally
unambiguous, the arguments for a symmetry factor often come with a lot of prestidigitatorial
hand-waving and finger-wriggling in front of a blackboard.
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vacuum bubbles, which we denote by H0. Let us assume that only four-point
vertices occur. Then, H0, given by

H0 = E + + + + + · · · (1.43)

(where the ellipsis denotes diagrams with more four-vertices) evaluates to

H0 = 1− 1

8

λ4
µ2

+
1

2

(

1

8

λ4
µ2

)2

+
1

16

λ4
2

µ4
+

1

48

λ4
2

µ4
+ · · ·

= 1− 1

8

λ4
µ2

+
35

384

λ4
2

µ4
+ · · · , (1.44)

which, indeed, looks suspiciously like H0 for the ϕ4 theory.

1.3.4 An equation for connected graphs

We shall now construct an equation for a special set of diagrams. We do this for
the set of Feynman rules of section 1.3.2. First, let us denote by Cn the set of all
connected graphs with no source vertices and precisely n external lines. Clearly
this is a enumerably infinite set. Next, we define the object Ψ(J), denoted by
the symbol

Ψ(J) ≡
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

(1.45)

to be the set of all connected diagrams with precisely one external line, and any
number of source vertices19. The shading indicates that all the diagrams in the
blob must be connected . Clearly, then, we have

Ψ(J) =
∑

n≥0

1

n!
Jn Cn+1 , (1.46)

where the extra factor 1/n! is the additional symmetry factor for n source ver-
tices.

Let us now consider what can happen if we enter the blob of Eq.(1.45) along
the single external line. In the first place, we can simply encounter a source
vertex, so that the diagram is just

=
J

µ
. (1.47)

Alternatively, we may encounter a vertex. If this is a three-point vertex, the
line splits into two. Taking one of these branches, we may be able to come back
to the vertex via the other branch. In that case, the diagram has the form

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

19The choice of the symbol Ψ is not totally accidental, as will become clear later on. . .
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On the other hand, it may happen that the two branches end up in disjunct
connected pieces of the diagram, which then looks like

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

������
������
������
������
������
������

������
������
������
������
������
������

Note that these two alternative cases can be unambiguously distinguished be-
cause we have restricted ourselves to using only connected graphs. Another
important insight is that, in the above diagram, the two final blobs (with their
attached lines) are both exactly identical to the original Ψ(J) of Eq.(1.45), and
therefore also to each other : a situation that is of course only possible because
the blobs represent infinite sets of diagrams. In contrast, the closed-loop blob
of the first alternative is not equal to Ψ(J) since it has not one but two lines
sticking out ; but then again these two lines are completely equivalent.

If we encounter a four-point rather than a three-point vertex, the line splits
into three, with three alternatives : no branches meeting again further on, all
three meeting again, or only two out of the three. We find the diagrammatic
equation

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

= + �����
�����
�����
�����
�����
�����
�����
�����
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�����
�����
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�����
�����
�����
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������
������
������
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+
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�����
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�����
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+
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�����
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. (1.48)

Now, realize that

��������
��������
��������
��������
��������
��������
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��������
��������
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��������
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��������
��������
��������
��������
��������
��������
��������
��������

=
∑

n≥0

1

n!
Jn Cn+2 =

∂

∂J
Ψ(J) (1.49)

and

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

=
∑

n≥0

1

n!
Jn Cn+3 =

∂2

(∂J)
2Ψ(J) , (1.50)

so that we can translate the diagrammatic equation (1.48) into an algebraic
equation for Ψ(J) by carefully implementing the correct Feynman rules, includ-
ing nontrivial symmetry factors for equivalent blobs and lines:

Ψ(J) =
J

µ
− λ3

µ

(

1

2
Ψ(J)2 +

1

2

∂

∂J
Ψ(J)

)

−λ4
µ

(

1

6
Ψ(J)3 +

1

2
Ψ(J)

∂

∂J
Ψ(J) +

1

6

∂2

(∂J)2
Ψ(J)

)

. (1.51)
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Now Eq.(1.51), obtained from the Feynman diagrams via the Feynman rules,
has exactly the same form as Eq.(1.41), valid for the field function φ(J) – note
the importance of the symmetry factors ! Moreover, the iterative solution for
φ(J) starts with φ(J) = J/µ, also identical to the diagrammatic starting point

. We therefore conclude that

Ψ(J) = φ(J) , (1.52)

in other words
Cn = Cn , n ≥ 1 . (1.53)

This proves that connected Green’s functions can be obtained by the following
recipe: to obtain Cn (n ≥ 1), write out all connected Feynman diagrams
with no source vertices and precisely n external lines. Evaluate the
diagrams using the Feynman rules, and sum them.

1.3.5 Semi-connected graphs and the SDe

A useful notion, which allows us to write SDe’s more compactly, is that of
semi-connected graphs. We shall denote these with a lightly shaded blob, and
they are defined as follows : a semi-connected graph with n ≥ 1 lines at the
left is a general unconnected graph with n lines on the left (and any number
of other external lines), with the constraint that each connected piece of the
semi-connected graph is attached to at least one of the lines indicated on the
left. This may sound more intimidating that is actually is : an example is

1

2

3

=
1

3

2 +

3

1

2 + 3

1

2

+

1

3

2
+ 2

1

3

. (1.54)

A single semi-connected graph with n indicated lines stands for B(n) diagrams
with explicit connected graphs, where B(n) is the so-called Bell number : the
number of ways to divide n distinct objects into non-empty groups20. For ϕ3/4

theory, the SDe then becomes simply

= + + . (1.55)

We shall use semi-connected diagrams to good effect in later chapters.

20For small n we have B(0) = 1, B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15, and B(5) = 52 ;
more general values can be obtained from the identity

∑

n≥0

B(n)
xn

n!
= exp (ex − 1) .
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1.3.6 The path integral as a set of diagrams

By affixing a source vertex to the single external line of Ψ(J), we immediately
have the result that the generating function W (J) is the sum of all con-
nected Feynman diagrams without external lines and at least one
source vertex. If we explicitly indicate the source vertices, and recall that n
source vertices in a diagram imply a factor 1/n!, we can write

W (J) =
�����
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�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
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+ · · · ,
(1.56)

where the ellipsis contains connected contributions with more source vertices.
Vacuum bubbles do not contribute to W (J). By taking careful account of
the symmetry factor assigned to identical connected parts of a disconnected
diagram, we can see that
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+ (lots of other diagrams) . (1.57)

Similar arguments hold for higher powers of W (J). In addition, W (J)0 = 1
is represented by the empty diagram. From this it easy to see that the path
integral Z(J) consists of all Feynman diagrams without external lines,
and without vacuum bubbles, but including the empty diagram.

We might wonder why the vacuum bubbles are so conspicously absent. Sup-
pose that we would allow the inclusion of arbitrary numbers of vacuum bubbles
in Z(J). Then the Green’s function G0 = 1 would be represented not by the
single empty graph but by the whole set H0 discussed before: indeed, H0 is
proportional to H0. In fact, any Green’s function Gn would acquire exactly the
same additional factor H0. The normalization factor N , that must be chosen
such as to make G0 equal to unity, therefore extracts exactly the factor H0 from
any Green’s function. In the jargon, the vacuum bubbles ‘disappear into the
normalization of the path integral’. This is not to say that vacuum diagrams are
never important ; but in our approach to computing Green’s functions and con-
nected Green’s functions they are indeed irrelevant. Another way of seeing this
is very simple : if we take our diagrammatic prescription of Z(J) and then take
J = 0, all diagrams disappear except the empty one, and we find Z(0) = E = 1,
just as we must.
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1.3.7 Dyson summation

Why is the Feynman rule for lines, stemming from the quadratic part of the
action, so different from those for the vertices, that come from the nonquadratic
terms ? To see that our treatment is actually a consistent one, let us consider
an action is given by

S(ϕ) =
1

2
µϕ2 +

1

2
λ2ϕ

2 +
1

4!
λ4ϕ

4 . (1.58)

If we wish, we may treat the λ2 term as an interaction, described by a vertex
with two legs. the SDe is then seen to be
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corresponding to

φ(J) =
J

µ
− λ2

µ
φ(J)− λ4

6µ

(

φ(J)3 + 3φ(J)
∂

∂J
φ(J) +

∂2

(∂J)
2φ(J)

)

. (1.60)

Multiplying the equation by µ and transposing the λ2 term to the left, we obtain

φ(J) =
J

µ+ λ2
− λ4

6(µ+ λ2)

(

φ(J)3 + 3φ(J)
∂

∂J
φ(J) +

∂2

(∂J)
2φ(J)

)

, (1.61)

precisely what we woud have obtained by taking the combination (µ + λ2) as
the kinetic part from the start. This procedure, by which the effect of two-point
(effective) vertices is subsumed in a redefinition of the kinetic part, is called
Dyson summation. In the present example, the summation is of course trivial ;
but we shall see that two-point interactions can also arise from more complicated
Feynman diagrams corresponding to higher orders in perturbation theory. The
manner in which Dyson summation is usually treated is by explicitly writing
out the propagator, ‘dressed’ with two-point vertices in all possible ways :

+ + + + · · ·
=

1

µ
− 1

µ
λ2

1

µ
+

1

µ
λ2

1

µ
λ2

1

µ
− 1

µ
λ2

1

µ
λ2

1

µ
λ2

1

µ
+ · · ·

=
1

µ

∑

k≥0

(

− λ2
µ

)k

=
1

µ

1

1 + λ2/µ
=

1

µ+ λ2
, (1.62)

where it should come as no surprise that we cheerfully ignore all issues about
convergence, in the spirit of perturbation theory. Every propagator line can
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(and must !) be dressed in this way once any two-point vertex (elementary
of effective, that is, as the result of a collection of closed loops with two legs
sticking out) is at hand.

1.4 Planck’s constant

1.4.1 The loop expansion

As we have seen, Green’s functions can be computed in a perturbative expansion
in which the coupling constant λ4 is in some sense a small number. Now consider
doing perturbation theory in the ϕ3/4 theory. We then have to decide on the
relative order of magnitude of the two coupling constants λ3 and λ4 : are they
of the same order, or should we take, say, λ4 to be of the same order as λ3

2 ?
And what if even more coupling constants are involved ? We shall adopt the
approach that the order of magnitude of the various diagrams should depend not
on their coupling-constant content but, rather, on their complexity, in particular
on the number of closed loops. That is, the more closed loops a diagram contains,
the smaller it is considered to be ; and perturbation theory then prescribes the
perturbation expansion to be truncated at a given number of closed loops.

To quantify these ideas we shall assign to every closed loop a factor h̄, where
h̄ is a (small) number21. That is, we define the following ratios :
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etcetera. This implies, of course, a modification of the Schwinger-Dyson equa-
tion from the form (1.41) into

φ(J) =
J

µ
− λ3

2µ

(

φ(J)2 + h̄φ(J)
∂

∂J
φ(J)

)

−λ4
6µ

(

φ(J)3 + 3h̄φ(J)
∂

∂J
φ(J) + h̄2

∂2

(∂J)
2φ(J)

)

. (1.63)

In turn, we shall have to modify everything else as well : we must re-define

φ(J) = h̄
∂

∂J
logZ(J) , (1.64)

so that the SDe for the path integral must read

S′
(

h̄
∂

∂J

)

Z(J) = JZ(J) . (1.65)

21As the notation suggests, it will develop into Planck’s (or Dirac’s) constant as our universe
increases in complexity.
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The path integral must therefore be re-defined with inclusion of h̄ :

Z(J) = N

∫

exp

(

− 1

h̄

(

S(ϕ)− Jϕ
)

)

dϕ , (1.66)

and for the Green’s functions we have

Gn =

⌊

h̄n
∂n

(∂J)
nZ(J)

⌋

J=0

, Cn =

⌊

h̄n
∂n

(∂J)
n logZ(J)

⌋

J=0

. (1.67)

The Feynman rules must, therefore, take the form

↔ h̄

µ

↔ −λ3
h̄

↔ −λ4
h̄

↔ +
J

h̄

Feynman rules, version 1.2 (1.68)

The introduction of h̄ as the perturbation expansion parameter allows us to
determine the relative orders of magnitude of coupling constants. Since with
our definition all tree diagrams are of the same order, the two graphs

and

tell us that λ4 is of the same order as λ3
2. Similarly, a k-point coupling constant

λk is of the same order as λ3
k−2. As a last point, you may note that the including

h̄ does not influence the Dyson summation of sec.1.3.7, since every extra two-
point vertex (with 1/h̄) also gives an axtra propagator (with h̄).

1.4.2 Diagrammatic sum rules

Since in the Feynman rules h̄ appears all over the place, it is advisable to
check that the h̄-behaviour of the Feynman graphs is indeed as desired. To this
end, we shall first determine diagrammatic sum rules , valid for all nontrivial
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Feynman diagrams. For an arbitrary given unconnected diagram let us define
the characteristics

E = number of external lines,
I = number of internal lines,
Vq = number of vertices of q-point type,
L = number of closed loops,
P = number of disjunct connected pieces.

An example is

E = 2 , I = 6 , V1 = 1 , V3 = 3 ,

V4 = 1 , P = 1 , L = 2 .

We now look for linear combinations T of these numbers that are the same
for all diagrams. That is, whatever we do to a diagram, the value of T must
remain unchanged. It is easy to see that any diagram can be transformed into
any other diagram by application of the following four basic transformations,
or their inverse :

(i) coalescing k three-vertices into one k + 2 vertex :

↔

(ii) adding an external line onto any other line :
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(iii) cutting through a line such that the graph falls apart :
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(iv) cutting through a line which is part of a loop :
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These four operations modify the characteristics as follows :

(i) : V3 → V3 − k , Vk+2 → Vk+2 + 1 , I → I − k + 1 ;

(ii) : E → E + 1 , I → I + 1 , V3 → V3 + 1 ;

(iii) : I → I − 1 , E → E + 2 , P → P + 1 ;

(iv) : I → I − 1 , E → E + 2 , L → L− 1 .
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The number k can in principle take any positive integer value22. If the combi-
nation

T = αEE + αII +
∑

q

αqVq + αLL+ αPP (1.69)

is to be invariant under the four basic transformations, then the coefficients α
must obey

(i) : kα3 − αk+2 + (k − 1)αI = 0 (k ≥ 1) ,

(ii) : αE + αI + α3 = 0 ,

(iii) : αI − 2αE − αP = 0 ,

(iv) : αI − 2αE + αL = 0 . (1.70)

From (iii) and (iv) we find immediately that αL = −αP . Now, let us assume
that all the αq are equal for q = 1, 2, 3, . . .. Then, (i) becomes (k−1)(α3+αI) =
0, so that αI = −α3, (ii) gives αE = 0, and (iii) tells us that αP = −α3. The
invariant then becomes

T1 =
∑

q

Vq − I − P + L . (1.71)

Since this reasoning leads to a nonzero value of αP , the only alternative case is
to assume αP = αL = 0. Then we have from (iii) that αI = 2αE, upon which
(ii) gives us α3 = −3αE and (i) tells us that αq = −qαE. The second invariant
is, therefore,

T2 =
∑

q

qVq − 2I − E . (1.72)

By inspection of an arbitrary diagram23, we see that T1 = T2 = 0, so that we
arrive at the two diagrammatic sum rules

∑

q

Vq = I + P − L ,
∑

q

qVq = 2I + E . (1.73)

The above treatment proves, moreover, that these two diagrammatic sum rules
are the only ones. We are now able to read off the power of h̄ associated with
an arbitrary connected diagram (with P = 1). From the Feynman rules, we
infer that every line contributes a factor h̄ and every vertex a factor 1/h̄. The
total power of h̄ is, therefore

E + I −
∑

q

Vq = E + L− 1 .

Independently of its precise form, the power of h̄ of any connected diagram
depends only on the number of its external lines and the number of loops, and
indeed each extra loop leads to an additional factor h̄, as advertised.

22Note that even k = 1 is treated consistently.
23There are two special cases which we exclude. The first is the diagram consisting of only

a closed loop which has Vq = E = 0, and L = P = I = 1 and hence T1 = −1 and T2 = −2 ;
the other is the single propagator with Vq = L = 0, E = 2 and P = 1, and where it is dubious
whether I should be taken 0 or 1. Any diagram containing at least one vertex does conform
to the sum rules.
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1.4.3 The classical limit

Since in perturbation theory h̄ is taken to be an infinitesimally small quantity,
the limit h̄ → 0 is of automatic interest. This limit has to be taken with some
care since h̄ = 0 strictly would imply that only Green’s functions with E+L = 1
would survive24. Instead, the classical limit h̄→ 0 is meant to be the result of
leaving out diagrams containing closed loops. The diagrammatic SDe will, for
the ϕ3/4 theory, then take the form
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. (1.74)

The corresponding solution will be denoted by φc(J) (with c for ‘classical’), and
the classical SDe is written as

φc(J) =
J

µ
− λ3

2µ
φc(J)

2 − λ4
6µ
φc(J)

3 . (1.75)

The classical field function is exclusively built up from tree diagrams : this is
called the tree approximation. Note that it obeys an algebraic, rather than a
differential, equation, that can be written as

S′(φc(J)) = J . (1.76)

This is called the classical field equation. This is not to be confused with equa-
tions from classical, nonquantum physics. In fact, the classical field equations
will turn out to be the Klein-Gordon, Dirac, Proca and Maxwell equations. Of
these, only the Maxwell equations can be considered classical, since they do not
contain a particle mass.. Note that such equations have, in general, more than
a single solution. Here, however, we are interested in that solution that vanishes
as J → 0, which may be written out using Lagrange expansion :

φc(J) =
J

µ
+
∑

n≥1

1

n!
µn−1 ∂n−1

(∂J)
n−1

[(

S′
(

J

µ

))n]

. (1.77)

Let us now look at the path-integral picture of the classical limit. When h̄
becomes small, the fluctuations in the path integrand

exp

(

− 1

h̄

(

S(ϕ)− Jϕ
))

become extremely exaggerated. The main contribution to 〈ϕ〉 therefore comes
from that value where the probability distribution attains its maximum, that
is,

〈ϕ〉J ≈ ϕc , where S′(ϕc) = J , S′′(ϕc) > 0 . (1.78)

Also in the classical limit, we therefore have φc(J) = ϕc.

24Later on, the discussion about truncation will clarify how this is not inconsistent.
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1.4.4 On second quantisation

The ‘classical’ approximations of our quantum field theory are25 quantum equa-
tions. In fact, this is not so very surprising. In ordinary quantum mechanics, the
classical variables such as position, momentum, etcetera are identified with the
expectation values of their quantum-mechanical counterparts, and considered a
useful approximation of reality as long as they are reasonably well-defined26.
So it is here again : the field generating function φ(J) is considered as the
expectation value of the quantum field ϕ, and it is identified with the quantum-
mechanical wave function of whatever object it is we are studying. In this
sense, to go from ϕ to a classical observable we have to ‘classicify’ two times.
The transition from ordinary quantum mechanics to what we are doing here is
therefore dubbed ‘second quantization’. Of course, from the point of view we
have taken here, this is simply a matter of taking limits (expectation value upon
expectation value), but if one comes in from the classical side it may look quite
mysterious. This is another reminder that one should not try to build a more
fundamental theory from a limiting case. Limiting cases are only hints.

1.4.5 Instanton contributions

As mentioned, for a non-free action S(ϕ), the equation (1.76) has, of couse, more
than a single solution27. Suppose that we have several such solutions, denoted

by ϕ
(0)
c , ϕ

(1)
c , ϕ

(2)
c ,. . ., and that the minimal value of S(ϕ) − Jϕ is attained for

ϕ
(0)
c . Then, the other classical solutions will give contributions that, relative to

the dominant one, are suppressed by exponential factors of order

exp

(

− 1

h̄

(

S(ϕ(k)
c )− S(ϕ(0)

c )− Jϕ(k)
c + Jϕ(0)

c

))

, k = 1, 2, . . . .

Here we plot the (normalized) form of
exp(−S(φ)/h̄) for the ϕ3/4 model with
µ = λ4 = 1 and λ3 = 1.8, for h̄ = 1
and h̄− = 0.15. It is seen how the low-
est minimum of S(ϕ) starts to dominate
the integral as h̄ becomes small ; the
contribution from the subleading maxi-
mum decreases nonperturbatively fast.

25Will be found to be ; see the later chapters of these notes.
26With small uncertainty , that is, the variance of their statistical distribution around the

expectation value.
27Since the action is at least of order ϕ3, the classical field equation is at least quadratic.
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Such subdominant solutions to the classical field equations are called instantons.
Their contribution to Green’s functions do, as we see, not have a series expansion
around h̄ = 0. Such nonpertubative effects are therefore not accessible using
Feynman diagrams. This is not to say that they are irrelevant. Indeed, we
usually have a finite value for h̄ ; more dramatically, if we let J vary as a

parameter, ϕ
(1)
c , say, may for some value of J take over from ϕ

(0)
c as the true

maximum position of the probability density, causing a sudden shift in the value

of φc(J) from ϕ
(0)
c to ϕ

(1)
c .

1.5 The effective action

1.5.1 The effective action as a Legendre transform

Since perturbation theory presumes that higher orders in the loop expansion
are small compared to lower orders, the following question suggests itself : is
it possible to find, for a given action S(ϕ), another action, called the effective
action, with the property that its tree approximation reproduces the full field
function of the original action S ? If such an effective action, denoted by Γ(φ),
exists, we must have

Γ′(φ) = J , (1.79)

where φ(J) is the full solution to the SDe belonging with S(ϕ). We can use
partial integration to find

Γ(φ) =

∫

J dφ = J φ−
∫

φ dJ = J φ− h̄W , (1.80)

where J is now to be interpreted as a function of φ. The transition from W (J)
to Γ(φ) is called the Legrendre transform. In classical mechanics, we have the
same situation : there, h̄W would be the Lagrangian with J as the velocity and
φ as the momentum, and then the effective action would turn out to be the
Hamiltonian.

An important fact to be noted about the effective action can be inferred as
follows. Let us consider the derivative of φ(J). If we denote the probability
density (including the sources) of the quantum field ϕ by PJ(ϕ), that is,

PJ (ϕ) =
A(ϕ)

∫

dϕA(ϕ)
, A(ϕ) = exp

(

− 1

h̄
(S(ϕ)− Jϕ)

)

, (1.81)

we can write this derivative as

1

h̄
φ′(J) =

1

h̄

d

dJ

(
∫

PJ (ϕ) ϕ dϕ
∫

PJ (ϕ) dϕ

)

=

∫

PJ (ϕ) ϕ
2 dϕ

∫

PJ(ϕ) dϕ
−
(∫

PJ (ϕ) ϕ dϕ
)2

(∫

PJ(ϕ) dϕ
)2

=

∫

PJ (ϕ1)PJ (ϕ2) (ϕ1
2 − ϕ1ϕ2) dϕ1 dϕ2

(∫

PJ (ϕ) dϕ
)2 . (1.82)
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By symmetry, we can replace the factor (ϕ1
2 − ϕ1ϕ2) by (ϕ1 −ϕ2)

2/2, so as to
see that dφ(J)/dJ is positive. This implies that

∂2

(∂φ)
2Γ(φ) =

dJ

dφ
> 0 . (1.83)

In other words, the effective action is concave everywhere28. Whereas one would
assume that the effective action Γ would differ only slightly from the original
action S, this can obviously no longer hold in situations where the action S is
not concave.

1.5.2 Diagrams for the effective action

A tree approximation consists of tree diagrams only. To see how the loop effects
of the action S end up in Γ, we define a new concept, that of a one-particle
irreducible (1PI) diagram. A connected Feynman graph is 1PI if it contains no
internal line such that cutting that line makes the diagram disconnected.

1PI diagrams a non-1PI diagram

External lines, of course, do not enter in the 1PI criterion29. Note that a diagram
consisting in only external lines and a single vertex also counts as 1PI, since it
does not have any internal lines to be cut whatsoever. A typical one-loop 1PI
diagram looks like this :

(1.84)

Let us denote the set of all 1PI graphs with precisely n external lines by −γn/h̄,
where the convention is that the Feynman factors for the external lines are not
included. Consider, now, what happens if we enter the field function by way of
its single external leg, as in the SDe. If we encounter a vertex, that vertex is part
of a 1PI subdiagram (possibly consisting of only the vertex itself). Indicating the
1PI property with cross-hatches, we therefore obtain the diagrammatic equation
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= +
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������
������
������
������

28This concavity persists in case there are more than just a single field involved. By exten-
sion, it also holds for Euclidean theories in more dimensions ; see also Appendix 3.

29Including them would be silly, since any diagram falls apart if we chop through an external
line.
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· · · .(1.85)

Algebraically, it reads

φ(J) =
J

µ
− 1

µ

(

γ1 + γ2φ(J) +
1

2!
γ3φ(J)

2 +
1

3!
γ4φ(J)

3 + · · ·
)

, (1.86)

in other words
Γ′(φ) = J , (1.87)

where

Γ(ϕ) = γ1ϕ+
1

2!
(γ2 + µ)ϕ2 +

1

3!
γ3ϕ

3 +
1

4!
γ4ϕ

4 + · · · . (1.88)

We conclude that the vertices of the effective action are determined
by the 1PI diagrams. It must be noted that, in general, the effective action
contains vertices with arbitrarily large numbers of legs, even if the original action
S goes up only to ϕ3 or ϕ4, say.

1.5.3 Computing the effective action

We shall now describe a computation of the effective action

Γ(φ) = Γ0(φ) + h̄Γ1(φ) + h̄2Γ2(φ) + · · · , (1.89)

from its Feynman diagrams, for a theory with arbitrary couplings :

S(ϕ) =
1

2
µϕ2 +

∑

k≥3

λk
k!
ϕk . (1.90)

We start by considering a general one-loop 1PI diagram such as that of Eq.(1.84),
and cutting through the loop at some arbitrary place. We then have a propaga-
tor ‘dressed’ with zero or more vertices where external lines are ‘radiated off’.
If there are precisely n external lines we can denote this by

n

Such an object has, of course, its own SDe. Taking careful account of all possi-
bilities to attach external lines, we can write it as

n

= θ(n = 0)

+

(

n
1

)

n−1

+

(

n
2

)

n−2

+

(

n
3

)

n−3

+ · · · (1.91)
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We define the generating function for such dressed propagators as

P (z) = =
∑

n≥0

zn

n!

n

, (1.92)

and see that the SDe reads

P (z) =
h̄

µ
− z λ3

µ
P (z)− z2

2!

λ4
µ
P (z)− z3

3!

λ5
µ
P (z)− · · · , (1.93)

in other words,

P (z) =
h̄

S′′(z)
. (1.94)

We now close the loop again with an arbitrary vertex, at which vertex at least
one other external line is included. By the same combinatorial arguments as
above we can find the generating function L(z) for such loops :

L(z) = + + + · · ·

=
1

2

{

−λ3
h̄
P (z)− z λ4

h̄
P (z)− z2

2!

λ5
h̄
P (z)− · · ·

}

= − S
′′′(z)

2S′′(z)
. (1.95)

The symmetry factor 1/2 arises from the fact that the propagator is not oriented
and thus we have to avoid double-counting. Considering that a propagator with
n external legs leads to a closed loop with at least n + 1 external legs, we see
that the one-loop effective action is given by

Γ1(φ) = −h̄
∫

dφ L(φ) =
h̄

2
log(S′′(φ)) . (1.96)

A few remarks are in order here. In the first place, we see that the effective
action obtained in this way is only well-defined where the action itself is concave,
in agreement with the discussion in 1.5. In the second place, the trick of closing
the loop with an extra vertex, rather than just trying to ‘glue’ the endpoints of
P (z) together, is technically useful since it avoids enormous problems with the
symmetry factors. To see this, consider the three possibilities for n = 2 :

1 2 2 1
1 2

If we glue the endpoints of the propagator, the first two diagrams result in the
same loop graph, so that these three propagator diagrams end up as two loop
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diagrams. With more external legs attached, this becomes ever so much more
complicated : assigning a special rôle to one external line avoids this. In the last
place, the above calculation is possible since all external lines are, so to speak,
identical. In more dimensions, where external lines can carry momentum, this
is no longer true. However, the effective potential, that is the effective action at
zero momentum, does lend itself to such a calculation in higher dimensions30.

We can extend this treatment to higher loop orders as well. Let us denote a
vertex where at least n+ 1 lines come together by

n = n+ n+1 + n+2 + · · · (1.97)

and assign to this dressed vertex the Feynman rule

n = − 1

h̄
S(n+1)(z) . (1.98)

Now, we introduce the notion of a tadpole diagram : this is a connected diagram
with precisely one external line and no source vertices. The effective action as
given above then follows from writing out the 1PI tadpole diagrams, replacing
propagators by dressed propagators and vertices by dressed vertices ; we can
then simply read off the result.

→
����
����
����
����
����

����
����
����
����
����

= − S(3)(z)

2S(2)(z)
⇒ Γ′1(φ) =

S(3)(φ)

2S(2)(φ)
, (1.99)

as before. In two loops, the 1PI tadpole is given by the diagrams

+ + +

Dressing these tadpole diagrams gives us
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= h̄

{

S(3)(z)S(4)(z)

6 S(2)(z)3
− S(3)(z)3

4 S(2)(z)4
+
S(3)(z)S(4)(z)

4 S(2)(z)3
− S(5)(z)

8 S(2)(z)2

}

(1.100)

The two-loop contribution to the effective action is therefore

d

dφ
Γ2(φ) =

S(5)(φ)

8 S(2)(φ)2
− 5 S(3)(φ)S(4)(φ)

12 S(2)(φ)4
+

S(3)(φ)3

4 S(2)(φ)4
. (1.101)

30For simple scalar theories. Of course external lines may carry more than just momen-
tum information, that is, they can also carry spin/charge/colour· · · information. Then the
calculation is again more difficult.
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The effective action itself, the integral over the above experession, has no nice
simple form as in Eq.(1.96), but is of course calculable as soon as S(φ) is ex-
plicitly given ; moreover, we see that it will becomes undefined where S′′(φ)
vanishes. From our diagrammatic approach we see that this will persist in all
loop orders31.

1.5.4 More fields

So far, our main attention has been on theories of a single field. Suppose, for
the sake of argument, that we have a theory of two fields instead:

S(ϕ1, ϕ2) =
1

2
µ1ϕ1

2 +
1

2
µ2ϕ2

2 +
λ

4
ϕ1

2ϕ2
2 . (1.102)

This time, the coupling constant λ carries a factor 1/(2!)/(2!) since there are
not four identical fields ‘meeting’ at the vertex, but rather two pairs of identical
fields. We now need to distinguish between the two different fields, so we indicate
the field type with either ‘1’ or ‘2’. The Feynman rules for this case are

1 ↔ h̄

µ1
, 2 ↔ h̄

µ2
,

1

1 2

2
↔ −λ

h̄
,

1 ↔ J1
h̄

,
2 ↔ J2

h̄
. (1.103)

There are two coupled Schwinger-Dyson equations, one for each field :
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(1.104)

31Because in all 1PI diagrams we have to dress the propagators, which implies lots of S′′(φ)
in the denominators.



July 24, 2013 49

with the following analytical representation for the field functions φj = φj(J1, J2)
(j = 1, 2) :

φ1 =
J1
µ1
− λ

2µ1

(

φ1φ
2
2 + h̄φ1

∂

∂J2
φ2 + 2h̄φ2

∂

∂J2
φ1 + h̄2

∂2

(∂J2)
2φ1

)

,

φ2 =
J2
µ2
− λ

2µ2

(

φ2φ
2
1 + h̄φ2

∂

∂J1
φ1 + 2h̄φ1

∂

∂J1
φ2 + h̄2

∂2

(∂J1)
2φ2

)

.

(1.105)

Note that, since

φj = h̄
∂

∂Jj
W (J1, J2) , (1.106)

we must have
∂

∂J1
φ2 =

∂

∂J2
φ1 . (1.107)

The effective action must of course be a two-variable function Γ(φ1, φ2) such
that

∂

∂φj
Γ(φ1, φ2) = Jj , j = 1, 2 . (1.108)

This effective action is also concave. The two-field case can, obviously, be ex-
tended to the case of arbitrarily many fields, provided the couplings are unam-
biguously defined.

1.5.5 A zero-dimensional model for QED

We consider the following action for three fields, including sources :

S(ϕ, ϕ̄, B) =
1

2
µB2 +mϕϕ̄+ eϕ̄Bϕ− J̄ϕ− ϕ̄J −HB . (1.109)

Note the absence of symmetry factors since all the fields in the three-point vertex
are distinct. Also the two-point interaction term mϕ̄ϕ carries no factor of 1/2.
Such an action can stand for an extremely primitive model for QED, the theory
of electrons and photons. The action has three partial derivatives :

∂

∂ϕ
S(ϕ, ϕ̄, B) = mϕ̄+ eϕ̄B − J̄ ,

∂

∂ϕ̄
S(ϕ, ϕ̄, B) = mϕ+ eBϕ− J ,

∂

∂B
S(ϕ, ϕ̄, B) = µB + eϕ̄ϕ−H . (1.110)

The SDe’s for the path integral are therefore

(

h̄m
∂

∂J
+ eh̄2

∂2

∂J∂H
− J̄

)

Z(J̄ , J,H) = 0 ,
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(

h̄m
∂

∂J̄
+ eh̄2

∂2

∂J̄∂H
− J

)

Z(J̄ , J,H) = 0 ,

(

h̄µ
∂

∂H
+ e

∂2

∂J̄∂J
−H

)

Z(J̄ , J,H) = 0 . (1.111)

The field-generating functions (the ‘field functions’) are, of course, each a func-
tion of J , J̄ and H , and are given by

ψ = h̄
∂

∂J̄
logZ , ψ̄ = h̄

∂

∂J
logZ , A = h̄

∂

∂H
logZ , (1.112)

so that

h̄
∂

∂J̄
Z = ψ Z , h̄

∂

∂J
Z = ψ̄ Z , h̄

∂

∂H
Z = AZ , (1.113)

and Eq.(1.110) can be written as

ψ =
1

m
J − e

m

(

Aψ + h̄
∂

∂H
ψ

)

,

ψ̄ =
1

m
J̄ − e

m

(

ψ̄ A+ h̄
∂

∂H
ψ̄

)

,

A =
1

µ
H − e

µ

(

ψ̄ ψ + h̄
∂

∂J
ψ

)

. (1.114)

Incidentally, note that we could rewrite these SDe’s since

∂

∂H
ψ =

∂

∂J̄
A ,

∂

∂H
ψ̄ =

∂

∂J
H ,

∂

∂J
ψ =

∂

∂J̄
ψ̄ . (1.115)

The Feynman rules are, for this action, as follows :

ψ ψ ↔
h̄

m
,

↔ h̄

µ
,

↔ − e
h̄
. (1.116)

A few things are of interest here. In the first place, all diagrams have a symmetry
factor of unity. In the second place, the ϕ propagator links two different fields
(ϕ to ϕ̄) and must therefore carry an orientation (an arrow on the line is usually
employed). In the third place, in the action we find the two terms J̄ϕ and ϕ̄J ,
which would suggest that J is the source in the SDe of ψ̄, and J̄ is the source in
the SDe for ψ ; but it is actually the other way around ! What is the source for a
given field function is seen by taking the derivative of the action, and inspecting
which field then occurs as a linear term, and which source term is left by itself
after the differentiation.
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1.6 Renormalization

1.6.1 Physics vs. Mathematics

If we were mathematicians, the subject matter in this chapter might be formu-
lated as the following task : given the parameters µ, λ3 and λ4 of the action,
to compute the connected Green’s functions. This may be depicted by the
following scheme :

µ , λ3 , λ4 −→ C1 , C2 , C3 , C4 , C5 , C6 , C7 , . . .

In this set-up, the parameters are supplied from outside the computational and
experimental context. Since, however, we are physicists32 the situation is some-
what different : we first have to measure the values of the parameters from
inside the experimental context, using some of the connected Green’s functions
as measurement processes, and then predict some other connected Green’s func-
tions, which we shall call prediction processes. That, rather different, situation
may be depicted by the scheme

Ek = Ck , k = 1 . . . 4 −→ µ , λ3 , λ4 −→ C5 , C6 , C7 , . . .

Here, the quantities E1,2,3,... stand for the experimentally observed values of
the connected Green’s functions : barring experimental errors, these numerical
values do not change under any improvement of the theory. Now consider the
fact that we are doing perturbation theory. That is, both the measurement
and the prediction processes are known only as truncated series in h̄. Let us
suppose that by stolidity and perseverance a next higher order in perturbation
theory for the prediction processes has become available. Is this any good ?
Obviously not, unless a similar increased level of precision has been attained
for the measurement processes. Only in that case a new ‘fit’ of the parameters
of the action can be made, and improved values of the ‘prediction’ connected
Green’s functions can usuefully be obtained. This order-by-order improvement
is called renormalization. Let us denote by a superscript the order to which
the connected Green’s functions have been computed. The ‘physicist’s scheme’
above can then be envisaged as follows :

Ek = C
(0)
k , k = 1 . . . 4 −→ µ(0) , λ

(0)
3 , λ

(0)
4 −→ C

(0)
5 , C

(0)
6 , . . .

Ek = C
(1)
k , k = 1 . . . 4 −→ µ(1) , λ

(1)
3 , λ

(1)
4 −→ C

(1)
5 , C

(1)
6 , . . .

Ek = C
(2)
k , k = 1 . . . 4 −→ µ(2) , λ

(2)
3 , λ

(2)
4 −→ C

(2)
5 , C

(2)
6 , . . .

Ek = C
(3)
k , k = 1 . . . 4 −→ µ(3) , λ

(3)
3 , λ

(3)
4 −→ C

(3)
5 , C

(3)
6 , . . .

...
...

...

32I hope.
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Order by order, the parameters keep getting updated, but in the overall picture
they are just bookkeeping devices that allow one to go from measurements to
predictions of the more physically interesting connected Green’s functions. It
should not come as a surprise that in the measurement-parameter-prediction
protocol, a higher-order correction in the parameters due to an improved mea-
surement expression is cancelled again, to some extent, in the prediction. In
fact, for certain classes of theories, which are called renormalizable, these can-
cellations may be quite extreme.

1.6.2 The renormalization program : an example

As an example of the renormalization program, we shall investigate ϕ3/4 theory.
To order O (h̄) in perturbation theory, the first few connected Green’s functions
are given by

C1 = h̄

(

− λ3
2µ3

)

+O
(

h̄2
)

,

C2 = h̄

(

1

µ

)

+ h̄2
(

− λ4
2µ3

+
λ3

2

µ4

)

+O
(

h̄3
)

,

C3 = h̄2
(

−λ3
µ3

)

+ h̄3
(

−4λ3
2

µ6
+

7λ3λ4
µ5

)

+O
(

h̄4
)

,

C4 = h̄3
(

−λ4
µ4

+
3λ3

2

µ5

)

+ h̄4
(

24λ3
4

µ8
+

7λ4
2

2µ6
− 59λ3

2λ4
2µ7

)

+O
(

h̄5
)

,

C5 = h̄4
(

10λ3λ4
µ6

− 15λ3
3

µ7

)

+ h̄5
(

605λ4λ3
3

2µ9
− 192λ3

5

µ10
− 80λ4

2λ3
µ8

)

+O
(

h̄6
)

, (1.117)

and of course the next-order corrections and connected Green’s functions are
easily computable. Let us assume that the experimental values of the connected
Green’s functions C2,3,4 have been measured, with negligible experimental error
for simplicity. We shall denote these values by E2,3,4, respectively. For purposes
of illustration, we shall assume that these values are

E2 = h̄ , E3 = −h̄2 , E4 = 2h̄3 . (1.118)

In lowest order of perturbation theory, we can then find the action’s parameters
to be

µ = 1 , λ3 = 1 , λ4 = 1 . (1.119)

If this were all, we could then compute the connected Green’s functions. This
‘naive’ treatment would give the following results up to two loops :

C1
naive = −1

2
h̄+

1

24
h̄2 +O

(

h̄3
)

,
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C2
naive = h̄+

1

2
h̄2 − 3

4
h̄3 +O

(

h̄4
)

,

C3
naive = −h̄2 − 1

2
h̄3 − 131

24
h̄4 +O

(

h̄5
)

,

C4
naive = 2h̄3 − 2h̄4 − 147

4
h̄5 +O

(

h̄6
)

,

C5
naive = −5h̄4 + 61

2
h̄5 +

5665

24
h̄6 +O

(

h̄7
)

,

C6
naive = 10h̄5 − 295h̄6 − 5105

4
h̄7 +O

(

h̄8
)

,

C7
naive = 35h̄6 − 5195

2
h̄7 − 47075

24
h̄8 +O

(

h̄9
)

,

(1.120)

However, we see that now C2,3,4 = E2,3,4 no longer hold, and therefore we must
re-tune the parameters order by order in perturbation theory. In the present
case, we find up to two-loop accuracy :

µ = 1 +
1

2
h̄+ h̄2 +O

(

h̄3
)

,

λ3 = 1 + h̄− 49

24
h̄2 +O

(

h̄3
)

,

λ4 = 1− 3

2
h̄+

5

4
h̄2 +O

(

h̄3
)

, (1.121)

and the renormalized connected Green’s functions, suitably truncated to the
correct order in h̄, read

C1 = −1

2
h̄+

1

24
h̄2 +O

(

h̄3
)

,

C2 = h̄ ,

C3 = −h̄2 ,

C4 = 2h̄3 ,

C5 = −5h̄4 + 3h̄5 − 5

2
h̄6 +O

(

h̄7
)

,

C6 = 10h̄5 − 45h̄6 + 90h̄7 +O
(

h̄8
)

,

C9 = 35h̄6 + 480h̄7 − 2065h̄8 +O
(

h̄9
)

. (1.122)

The difference between the ‘naive’ and the renormalized connected Green’s func-
tions is quite evident. In particular C2,3,4 are completely free of higher-order
corrections. For the other connected Green’s functions the coefficients in the
perturbation expansion tend to be smaller in absolute value than in the ‘naive’
expressions.

The above discussion is obviously only a drastically simplified example of a
phenomenological situation that is usually much more complicated. For in-
stance, one does not, usually, renormalize connected Green’s functions but
rather quantities extracted from scattering matrix elements, that are themselves
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not identical to, but extracted from connected Green’s functions. The exper-
imental observables E therefore do not take the simple form given here. The
higher-order corrections themselves are usually much more complicated, and not
completely free from ambiguities, nor necessarily finite. Nevertheless, the opera-
tional scheme outlined above is essentially the same as those that are employed
in real-life physics. In particular, it cannot be stressed often enough that the
renormalization procedure is necessary simply because one does perturbation
theory, not because loop corrections may contain infinities33.

1.6.3 Loop divergences : a toy model

Notwithstanding the above remarks on the per se necessity of renormalization,
the fact that, in nontrivial theories, loop diagrams often contain infinities makes
the need to do something about them all the more urgent. Loop divergences
arise from summation over internal degrees of freedom of Feynman diagrams. In
zero dimensions there are no such internal degrees of freedom, and all diagrams
are finite. We can, however, introduce the following toy model. Consider, as
before, our working-horse ϕ3/4 theory. Let us assume that we introduce yet
another Feynman rule : we shall apply a factor 1 + c1 to every closed loop
that contains precisely one vertex, and a factor 1+ c2 to every closed loop that
contains precisely two vertices. Loops with more vertices remain unaffected34.
The numbers c1 and c2 may depend on the parameters of the theory, or on other
parameters. In the spirit of ‘loop divergences’ we shall envisage that c1,2 →∞
at some stage. In terms of Feynman diagrams, this rule amounts to duplicating
each one- or two-vertex loop with a ‘dotted’ loop :

= + , ≡ c1 × ,

= + , ≡ c2 × .(1.123)

For example, under this rule the following two-loop diagrams are modified ac-
cordingly :

→ + + +

= (1 + c1)(1 + c2) ,

→ +

= (1 + c2) . (1.124)

33This insight is, even at present, not as endemic as one might wish.
34This rule accords with ‘naive power counting’ for four-dimensional scalar theories with-

out derivative couplings, the most direct four-dimensional extension of the zero-dimensional
theories we are discussing in this chapter.
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The Feynman diagrams are governed by the Schwinger-Dyson equation. Our
new rule must therefore be implemented, somehow, into a modified SDe. Some
reflection tells us that the necessary new ingredients are made up out of those
Feynman diagrams that contain only dotted loops. Fortunately, these form
a manageable set, where we differentiate between 1PI diagrams with up to 4
legs35 :

≡ + + + · · ·

≡ + + + · · ·

+ + + + · · ·

+

≡ + + + · · ·

≡ + + + · · · (1.125)

The only diagram that does not carry a ‘tower’ of loops on its back is the
last diagram in the two-point dotted series. Using these artefacts, we can now
rewrite the appropriate SDe for our ϕ3/4 theory with the added dotting rule :
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35With 5 or more legs our rule does not allow for diagrams with only dotted loops.
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We can readily translate this SDe into algebraic form. If we take out the external
propagators from the ‘black box’ graphs, we can write

= B1 , = B2 , = B3 , = B4 . (1.127)

We shall leave the actual evaluation of these sets of graphs for later: at this point,
we shall simply treat them as effective vertices. The ‘dotted-loop’-modified SDe
then reads, when we work out the graphs one after the other, in the order in
which they are displayed above :

φ =
J

µ
− B1

µ
− B2

µ
φ− λ3

2µ
φ2 − h̄λ3

2µ
φ′

−B3

2µ
φ2 − B3

µ
φ2 − h̄B3

2µ
φ′ − h̄B3

µ
φ′

−λ4
6µ
φ3 − h̄λ4

2µ
φφ′ − h̄2λ4

6µ
φ′′

−B4

2µ
φ3 − h̄B4

2µ
φφ′ − h̄B4

µ
φφ′ − h̄2B4

2µ
φ′′ . (1.128)

We can simply rewrite this SDe as

(µ+B2)φ = (J −B1)− (λ3 + 3B3)(φ
2 + h̄φ′)

−(λ4 + 3B4)(φ
3 + 3h̄φφ′ + h̄2φ′′) (1.129)

But, this is exactly the SDe equation belonging to the action

S(ϕ) = B1ϕ+
1

2
(µ+B2)ϕ

2 +
1

6
(λ3 + 3B3)ϕ

3 +
1

24
(λ4 + 3B4)ϕ

4 . (1.130)

Therefore, the spirit of renormalization tells us that in every application the bare
parameters µ, λ3 and λ4 will never occur on their own, but always only in the
combinations µ+B2, λ3 +3B3, and λ4+3B4 ; and that therefore, whatever the
values of B2,3,4, the combination will automatically be finite if the experimental
quantities in which they enter are finite. We can therefore choose the action’s
parameters such that all Green’s functions come out finite ; and the remaining
B1 can always be completely absorbed into a linear term in the bare action.
Indeed, this is the way in which the notorious ‘loop divergences’ are absorbed
into the bare action : infinite loop corrections are compensated for by infinite
bare parameters.

1.6.4 Nonrenormalizeable theories

The significant point in the discussion above is the fact that all dotted-loop
contributions can be absorbed into a finite number of terms of the bare action.
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We may formulate the requirement of a renormalizeable theory as that which
states that a finite number of measured quantities36 suffice to make
all other predictions of the theory well-defined. If an infinite number
of measured quantities would be necessary, the theory would be called non-
renormalizeable : but, worse, from the operational point of view it would be
worthless37.

As an example of a non-renormalizeable situation, let us consider a Feynman
rule in which a loop with three vertices acquires a dotted counterpart : that is,
we would have a (potentially infinite) contribution of the form

This can, of course, be repaired by introducing into the bare action a ϕ6 term ;
but in that case there would arise dotted loops with eight external legs :

which would necessitate a ϕ8 term in the bare action — and so on. A theory
would arise in which an infinite number of measured quantities would be needed
before any consistent38 prediction could be made : non-renormalizeable ! The
same problem occurs in a theory with a bare ϕ6 interaction. It is seen that the
requirement of renormalizeability puts constraints on the bare action39.

1.6.5 Scale dependence

As mentioned above, the parameters of the action have to be determined by
comparison to experimentally measured quantities. Such measurement experi-
ments do not take place in some abstract realm, but rather in a concrete physical
situation. This experimental context partially determines the measurement re-
sult. A very concrete example is the measurement of the coupling constant
using a scattering process : in that case, one of the determining factors is the
energy at which the scattering takes place. Also choices made in the theoretical
computation of the measured quantities play their rôle : for example, in dimen-
sional regularization40 an energy scale must be introduced, and this scale can

36Think of E2,3,4,.
37In modern thought, this train of thought tends to be relaxed. If the necessary additional

experimental values are only relevant at some very high energy scale, the theory would be
effectively renormalizeable. It is a matter of taste whether you feel comfortable with this, or
not.

38i.e. finite in high orders of perturbation theory.
39It must come as no surprise that the Higgs potential of the Standard Model has no

interaction terms for the Higgs field (which is scalar) more complicated than the four-point
coupling.

40To be discussed later on.
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to a large extent be chosen arbitrarily. We shall lump all these effects together
into a quantity s, which we shall call the scale. It must be stressed that the
scale also contains the (regularized) loop divergences, and may be expected to
become infinite at some stage.

Let us consider a theory with only one parameter : an example of such
a theory is massless QCD, that is the theory of massless quarks and gluons
and their interactions. The single parameter is then the coupling constant.
Let the bare parameter, as it occurs in the action, be denoted by v. The
renormalized parameter, extracted from experiment, will be denoted by w. The
renormalized coupling is then given by the bare coupling and the experimental
context, embodied by the scale s :

w = F (s; v) . (1.131)

This relation ought to be invertible, so that we can find v given w :

v = G(s;w) . (1.132)

Obviously we have

w = F (s;G(s;w)) , v = G(s;F (s; v)) . (1.133)

By differentiation we find the following relations between the derivatives of F
and G :

F1G1 = 1 , F0 + F1G0 = 0 , (1.134)

where the subscript 0 denotes partial derivatives with respect to s, and the
subscript 1 stands for a partial derivative with respect to the other argument.
Furthermore, we can always define the scale such that the bare and renormalized
couplings coincide at vanishing scale41 :

F (0; v) = v . (1.135)

Since the bare (and infinite) parameter v must be independent of the scale42,
the renormalized parameters measured at different scales must be related to each
other : we shall now investigate this in some detail. Under a finite (infinitesimal)
change of scale, the renormalized coupling w must change as

d

ds
w = F0(s; v) = F0(s;G(s;w)) , (1.136)

where in the last form all reference to the infinite v has disappeared. The scale
s itself, however, is also infinite. The scale-dependence of w is therefore only
sensible if the last lemma of Eq.(1.136) is actually independent of s, that is,

∂

∂s

(

d

ds
w

)

= F01G0 + F00 = 0 . (1.137)

41In the definition of F , it is of course a matter of choice which ingredients we want to
subsume into the scale, and which ones are fixed parameters of the function F itself. It is
therefore always possible to shift some contributions back and forth between the scale choice
and the function F .

42After all, the action doesn’t know which experiment is going to be used to measure the
parameter.
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Using Eq.(1.134) we can formulate this as a requirement for the function F
alone :

F00 −
F0F01

F1
= 0 . (1.138)

Dividing by F1 we can see that the requirement becomes

∂

∂s

(

F0(s; v)

F1(s; v)

)

= 0 . (1.139)

There must therefore be a function β(v) of v only, such that

∂

∂s
F (s; v) = β(v)

∂

∂v
F (s; v) . (1.140)

By separation of variables we can solve this equation, to find

F (s; v) = F
(

s+ h(v)
)

, h(v) =

∫

dv

β(v)
. (1.141)

We must have w = v if s = 0, and therefore F and h must be each other’s
inverse : F (v, 0) = F(h(v)) = v. This in its turn implies that

h(w) = s+ h(v) . (1.142)

Now we can take the derivative with respect to s :

d

ds
w =

∂

∂s
F (s; v) = F ′

(

s+ h(v)
)

= F ′(h(w)) = 1

h′(w)
, (1.143)

so that we finally arrive at the scale-dependence of w :

d

ds
w(s) = β(w) . (1.144)

All reference to the bare coupling has been removed : we see that the renor-
malized coupling has a definite, predictable dependence on the energy scale of
the measuring experiment43. The equation (1.144) is called the renormalization
group equation, the group operation in this case being the shift in scale. The
function β(w) is called, unsurprisingly, the beta function. It governs the running
of the parameter, that is, its behaviour under changes in energy scale.

43A remark is in order here. What, in these notes, is called the scale is usually understood
to be the logarithm of the actual energy scale : indeed, whereas the energy scale has the
dimension of energy (obviously), the number s is, strictly speaking, dimensionless. If we
denote the scale by the conventional symbol µ, the derivative dw/ds should then be rewritten
as

d

ds
w → µ

d

dµ
w

.
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1.6.6 Low-order approximation to the renormalized cou-

pling

Let us examine the possible shape of the function F (v, s) in some more detail.
In the spirit of perturbation theory, it will be given by a series expansion like

F (v, s) = v + v2α1(s) + v3α2(s) + v4α3(s) + · · · , (1.145)

where the functions αj(s) vanish at s = 0. The beta function is then given by

β(v) =
F2(v, s)

F1(v, s)
=
v2α′1(s) + v3α′2(s) + v4α′3(s) + · · ·

1 + 2vα1(s) + 3v2α2(s) + · · ·
, (1.146)

so that we see that it must start with v2 :

β(v) = β0v
2 + β1v

3 + β2v
4 + · · · (1.147)

The requirement that the beta function depend not on s governs the form of
the functions αj(s) : to low order in v we have from Eq.(1.146)

β(v) = v2α′1(s) + v3
(

α′2(s)− 2α1(s)α
′
1(s)

)

+ · · · , (1.148)

so that we can derive

α1(s) = β0s , α2(s) = (β0s)
2 + β1s , . . . (1.149)

It is easily derived that the leading term in αn(s) is (β0s)
n.

Let us assume that the beta function is dominated by its lowest-order term,
that is, β(v) = β0v

2. In that case, h(v) = −1/(β0v), and we find

1

w(s)
=

1

v
− β0s . (1.150)

We can exchange the bare parameter v for the measured value of w at some
fixed scale s0, and then the running is given by

1

w(s)
=

1

w(s0)
− β0(s− s0) , (1.151)

or

w(s) =
w(s0)

1− β0w(s0)(s− s0)
. (1.152)

At this point we may start to distinguish between different theories. The renor-
malized, physical parameter w is a priori unknown, and has to be determined
by experiment ; but the number β0 is perfectly computable from inside the
theory44. The running of the coupling is therefore determined as soon as the

44The number β0 is a combinatorial factor with the addition of some powers of π, and simple
numbers depending on the ingredients and quantum numbers of the particles pertaining to
the theory.
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action has been sufficiently specified. Now, it may happen that β0 is positive :
in that case, the effective coupling w(s) increases with increasing s, and will
eventually become infinite at some high scale. On the other hand, when β0 is
negative, the effective coupling decreases with increasing energy scale. This is
called asymptotic freedom. It is the phenomenon that has saved the theory of
strong interactions : in the 1960’s when the typical energy scales of experiments
where low, the effective coupling was so high (of order 10) as to cast doubts on
the usefulness of perturbation theory, whereas at the high energies current from
around 197545 the effective coupling has becomes small enough (of the order of
0.1) to warrant the use of perturbation techniques.

1.6.7 Scheme dependence

We must recognize that not only the scale of a given measurement process is
important, but of course also the nature of the measurement process. That is,
we may define the measured coupling constant w in two different ways, on the
basis of two different measurement processes46 : let us denote the two results by
w and w̃. We say that such different values have been obtained using different
renormalization schemes. In all cases I have encountered, two such schemes
agree at the tree level47, and the results are therefore perturbatively related :

w̃ = w + t1w
2 + t2w

3 + t3w
4 + · · · , (1.153)

with t1,2,3,... computable numbers ; and conversely

w = w̃ − t1w̃2 +
(

2t1
2 − t2

)

w̃3 −
(

5t1
3 − 5t1t2 + t3

)

w̃4 + · · · (1.154)

Having computed the beta function for w, we can now simply obtain it for w̃ :

β(w̃) =
dw̃

ds
=

dw̃

w

dw

ds

=

(

1 + 2t1w + 3t2w
2 + 4t3w

3 + · · ·
)(

β0w
2 + β1w

3 + β2w
4 + · · ·

)

= β0w
2 + (β1 − 2t1β0)w

3 +
(

β2 − 2t1β1 + 6t1
2β0 − 3t2β0

)

w4 + · · ·
= β0w̃

2 + β1w̃
2 +

(

β0t1
2 − β0t2 + t1β1 + β2

)

w̃2 + · · · (1.155)

The two beta functions can be transformed from one scheme to another ; for
any scheme dependence for which Eq.(1.153) holds, the first two coefficients, β0
and β1, are seen to be independent of the actual scheme.

45I take the commissioning of the PETRA (Hamburg, BRD) and PEP (Stanford, USA)
colliders as the definitive starting point of the relevance of perturbative QCD.

46In practice, this difference can be quite small, as between the so-called MS and MS
schemes. With ‘different measurement processes’, we here mean two different, complete oper-
ational schemes that both lead to a well-defined value for coupling constants.

47This rules out possible but, for a practicing physicist useless and/or irrelevant, differences
such as for instance obtained by defining w̃ = 2w. Get a life !
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Chapter 2

QFT in Euclidean spaces

2.1 Introduction

The main characteristic of a space(-time) of more than zero dimensions is the
fact that the quantum field is defined at more than one point ; in fact, at an
infinity of points. The possibility of sending signals from one point to another
one requires the existence of correlations between the field values at different
points. The nature of this correlation, and its reflection in the appropriate
Feynman rules, is our subject now.

2.2 One-dimensional discrete theory

2.2.1 An infinite number of fields

We shall consider a theory of a countably infinite set of fields in zero dimensions.
We denote by {ϕ} the set of all these fields :

{ϕ} = . . . , ϕ−3 , ϕ−2 , ϕ−1 , ϕ0 , ϕ1 , ϕ2 , ϕ3 , . . .

where the field labels run from −∞ to +∞. Similarly, there is the collection of
all the corresponding sources, denoted by {J}. We shall, as a working example,
consider a theory where the interaction consists of four fields with the same
label meeting at one point. Moreover, we shall assume the kinetic terms to be
uniform in the field labels. Thus, the action will be1 :

S({ϕ}, {J}) =
∑

n

[

1

2
µϕn

2 − γϕnϕn+1 +
λ4
4!
ϕn

4 − Jnϕn

]

, (2.1)

where we include the sources in the action2. If γ were zero, the action would be
separable and the theory would be a rather uninteresting series of replicas of the

1If not indicated explicitly otherwise, sums will run from −∞ to +∞.
2Take care to note that both µ and γ are independent of n simply because we choose them

so.
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zero-dimensional action for a single field. We shall consider positive values of γ ;
in that case, the action tends to minimize if ϕn and ϕn+1 carry the same sign :
a positive correlation between neighbouring fields is the result. Note, moreover,
that the action has be chosen such as to be invariant under the relabelling of n
by n +K with any fixed K : this is called translation invariance, in this case
translation by a fixed increment in labelling3. The model is also invariant under
the relabelling of n by −n : this is called parity invariance.

The Feynman rules are easily derived from the action of Eq.(2.1) :

n ↔ h̄

µ

mn ↔ +
γ

h̄

(

δm,n+1 + δm,n−1

)

n

n n

n
↔ −λ4

h̄

n ↔ +
Jn
h̄

Feynman rules, version 2.1 (2.2)

The identity of the field is indicated by its label. Alternatively, the four-vertex
and the source vertex may be labelled. The SDe now takes the following form,
for any n :
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n ,(2.3)

or, in terms of the field functions φn({J}), that depend on all sources :

φn =
Jn
µ

+
γ

µ
(φn−1 + φn+1)

−λ4
6µ

(

φ3n + 3h̄φn
∂

∂Jn
φn + h̄2

∂2

(∂Jn)
2φn

)

. (2.4)

3This will lead to momentum conservation later on. Note however that, as indicated
above, momentum conservation is a consequence of our choice, or in practice of our belief in
the translation invariance of our physical laws. Other models are possible and not a priori

wrong : they are simply much more complicated.
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2.2.2 Introducing the propagator

The Schwinger-Dyson equation (2.3) can be cast in another form, that will turn
out to be more useful. Consider the fact that, upon entering the field function
via its external leg, one must encounter either zero or more two-point functions
before encountering a source vertex or a four-vertex. Let us denote by

Πm,n ≡
mn 

(2.5)

the total set of diagrams that contain only two-point vertices (or no vertices),
and have fields n and m at its external legs4. The SDe can then be rewritten
as follows :
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n , (2.6)

where a summation over the label of the field exiting the Π is implied. Therefore,
we have

φn =
∑

m

Πn,m ×
[

Jm
µ
− λ

6µ

(

φm
3 + 3h̄φm

∂

∂Jm
φm + h̄2

∂2

(∂Jm)
2φm

)]

. (2.7)

The object Πm,n, which describes to what extent the field ϕn influences ϕm,
will be called the propagator from now on.

2.2.3 Computing the propagator

From the translation and parity invariance of the model we have discussed, we
can infer that Πm,n can actually only depend on |m−n|, so that we can restrict
ourselves to Π0,n ; we denote this by Π(n). For Π(n), we have a very simple
Schwinger-Dyson equation :

0 n = 0 n +
0 1

n + 0 
n

−1
, (2.8)

or

Π(n) =
h̄

µ
δ0,n +

γ

µ

(

Π(n+ 1) + Π(n− 1)

)

. (2.9)

4To go from ϕn to ϕm one needs, of course, at least |n−m| vertices, but more vertices are
also possible.
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The easiest way to solve this set of equations is by Fourier transform. We define

R(z) =
∑

n

Π(n) e−inz , (2.10)

from which5 the propagator may be recovered using

Π(n) =
1

2π

+π
∫

−π

e+inz R(z) dz . (2.11)

Multiplying both sides of Eq.(2.9) by exp(−inz) and summing over n leads to

R(z) =
h̄

µ
+
γ

µ
R(z)

(

eiz + e−iz
)

=
h̄

µ− γ (eiz + e−iz)
=

h̄ u

µu− γ(u2 + 1)
(2.12)

where we have introduced u = eiz . This allows us to write the integral (2.11) as

Πn = − h̄

2iπγ

∮

|u|=1

du
un

(u− u+)(u− u−)
, (2.13)

where u± are the two roots of the quadratic form µu− γ(u2 + 1) :

u± =
1

2

(

µ

γ
±
(

µ2

γ2
− 4

)1/2
)

. (2.14)

Provided that µ exceeds 2γ, the two poles of the integrand are real, and 0 <
u− < 1 < u+. We can then contract the contour around the point u = u−,
upon which we find

Π(n) = h̄
u−

n

γ(u+ − u−)
, n ≥ 0 . (2.15)

The general solution for the propagator is therefore6

Π(n) =
h̄

√

µ2 − 4γ2
u−
|n| . (2.16)

Unsurprisingly, the propagator falls off exponentially with |n|. Some points are
to be noted. In the first place, if γ were negative, then u− would also be negative,

5We choose e−inz rather than e+inz in Eq.(2.10) by convention. Although this may not
be glaringly obvious at this point, our convention is ultimately related to the fact that,
in nonrelativistic quantum mechanics, the Schrödinger equation has been chosen to read
ih̄∂|ψ〉/∂t = Ĥ|ψ〉 rather than −ih̄∂|ψ〉/∂t = Ĥ|ψ〉.

6This derivation is valid for n ≥ 0. For negative n, Cauchy’s theorem on which it is based
does not hold immediately : but in that case we can perform the varaiable transform from u
to 1/u and obtain the result.
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and the propagator would oscillate between positive and negative correlations.
In the second place, if µ were 2γ or smaller, the poles of the integrand would lie
on the unit circle |u| = 1, making the integral ill-defined.

Having at hand the explicit form of the propagator, we can now switch to a
new set of Feynman rules :

n m ↔ Π(m− n)

n

n n

n
↔ −λ4

h̄

n ↔ +
Jn
h̄

Feynman rules, version 2.2 (2.17)

The difference with the previous set of rules is that now the line denotes a
propagator running between n and m. The SDe is now very similar to that of
the zero-dimensional ϕ4 theory :
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, (2.18)

with the summation over m implied.

2.2.4 A figment of the imagination, and a sermon

The concept of an infinite number of fields all huddling together at a single point
simply cries out for a better visualization. The most useful picture is that of
each field occupying its own point. Indicating by a line those fields that have a
direct coupling, we arrive at a picture like the following :

ϕ ϕ ϕ ϕϕ
0−1 1 2 3

We now introduce a new notion, that of distance. In our sensorial experience,
distances are, in their essence, measured by the sending and receiving of signals,
and the weaker the signal from one point to another, the further those points
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are deemed to be apart ; in the language of these notes, the smaller Π(m− n),
the larger the ‘distance’ between n and m. We can therefore dress up our
picture by introducing a fundamental distance ∆, subsequent field locations
being separated by this distance :

ϕ ϕ ϕ ϕϕ
0−1 1 2 3

}}} } }} ∆ ∆∆∆∆∆

The distances between the points are all equal since the couplings γ are all equal.
We have, as it were, constructed a one-dimensional universe. It may come as
a surprise that the concept of space is here presented as a visualization device.
If we reflect, however, on how someone who (like a new-born infant) has no a
priori concept of spacelike separations would have to envisage the workings of
the physical world, we shall conclude that that person had better invent space
in order not to go insane pretty quickly. In its essence, space, like so much else
in the world around us, is simply a mental construction that allows us to come
to grips with, and control, our environment7.

After all this has been said, we must acknowledge the emprical fact that to
our knowledge space seems not to be made up from single points8. Therefore
we have to assume that ∆ must be much smaller than the smallest distances
that can, at present, be resolved9. We therefore introduce the continuum limit :
we assume that the theories we consider are such that the limit ∆ → 0 can
be taken in a sensible manner, yielding sensible results. This sidesteps the
interesting question of whether ∆ is really zero or not. Indeed, we do not know.
Any theoretical result that depends sensitively on whether ∆ = 0 or ∆ 6= 0
would be extremely important since experimental information about it would
allow us a look at the fundamental structure of space ; but for us it is safer to
construct theories the predictions of which do not hinge on this unknown. As
we shall see, this can be made to work. As an added bonus, we can feel free
from misgivings about the mathematical rigour of taking the continuum limit :
after all, we may not be at the limit after all.

2.3 One-dimensional continuum theory

2.3.1 The continuum limit for the propagator

Having identified the positions occupied by the various fields with points in
space (or time), we define the distance between points m and n by

x = (n−m)∆ . (2.19)

7See also Peter L. Berger and Thomas Luckmann, The Social Construction of Reality : A

Treatise in the Sociology of Knowledge (Garden City, New York: Anchor Books, 1966).
8Nor does it appear to be one-dimensional – but that is easily repaired, as we shall see.
9About 10−18 meter.
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The dimension of x is that of ∆, that is, a length L. The continuum limit
is, then, that where ∆ → 0 and |n − m| → ∞ while x remains fixed. The
propagator is now a function of x, so we redefine it as

Π(x)← Π(x/∆) .

This means that

Π(x) =
h̄

2π

+π
∫

−π

dz
exp(ixz/∆)

µ− 2γ cos(z)
. (2.20)

A corresponding change in the integration variable z is now in order : we write

z = k∆ , (2.21)

The dimension of k is therefore L−1. The propagator becomes

Π(x) =
h̄∆

2π

+π/∆
∫

−π/∆

dk
exp(ixk)

µ− 2γ cos(k∆)

≈ h̄∆

2π

∫

dk
exp(ixk)

(µ− 2γ) + γ∆2k2
. (2.22)

In the last line, we have taken ∆ to be very small indeed. Note that the
approximation cos(z) ≈ 1 − k2∆2/2 is, of course only justified as long as k is
finite; but for very large k the integrand is extremely oscillatory and contributes
essentially nothing10. Now, in order to avoid a propagator that either blows up
or vanishes, we must define the ∆-dependence of µ and γ such that γ ∼ 1/∆
and µ− 2γ ∼ ∆. We shall take

γ → 1

∆

(

1− m2∆2

4

)

, µ→ 2

∆

(

1 +
m2∆2

4

)

, (2.23)

with m2 a positive number (remember that we need µ > 2γ). We shall also take
m itself to be positive. We then find the exact results

µ− 2γ = m2∆ ,
√

µ2 − 4γ2 = 2m , u− =
1−m∆/2

1 +m∆/2
. (2.24)

The propagator takes the form11

Π(x) =
h̄

2π

∫

dk
eixk

k2 +m2
=

h̄

2m
exp(−m|x|) . (2.25)

10This handwaving argument is justified by the fact that we get the right propagator in the
continuum limit.

11To obtain the last lemma of this expression, we can use the fact that the integrand has
simple poles at k = im and k = −im. For x > 0, the integral contour in the complex k-plane
can be closed over the positive imaginary parts, and for x < 0 over the negative imaginary
parts : the result then follows immediately by Cauchy integration.
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To check that this result is indeed the correct one, we can consider the continuum
limit directly for the propagator result (2.16) :

Π(n)→ h̄

2m

(

1−m∆/2

1 +m∆/2

)|x/∆|

→ h̄

2m
exp(−m|x|) , (2.26)

as desired.

2.3.2 The continuum limit for the action

In the action (2.1), we shall want to replace the sum over n by an integral over
x :

∑

n

∆ →
∫

dx .

It is therefore necessary that every term in the action acquires a factor ∆. Now,
the action depends on the quantum fields ϕn. As we let the distance between
the points shrink to zero, the collection of values {ϕ} turns into a function ϕ(x).
The precise correspondence between {ϕ} and ϕ(x) is something that, in the end,
we have to decide for ourselves. Out of the several possibilities we shall adopt
the following :

ϕ(x) =
1

2

(

ϕn+1 + ϕn

)

, ϕ′(x) =
1

∆

(

ϕn+1 − ϕn

)

. (2.27)

This assignment is called the Weyl ordering. Its converse reads, of course,

ϕn = ϕ(x) − ∆

2
ϕ′(x) , ϕn+1 = ϕ(x) +

∆

2
ϕ′(x) . (2.28)

In a sense, the field value ϕ(x) is sitting ‘in between’ the points ϕn and ϕn+1.
Other assignments can be proposed, for instance ϕn = ϕ(x). However, these are
less attractive12. Upon careful application of Weyl ordering and the assumed
continuum limits for µ and γ, the kinetic part of the action (2.1) has the following
continuum limit :

∑

n

[µ

2
ϕn

2 − γϕnϕn+1

]

=

=
∑

n

[

1

2
(µ− 2γ)ϕ(x)2 +

∆2

8
(µ+ 2γ)ϕ′(x)2

]

12For example, consider a function ϕ(x) that vanishes for x → ±∞. The integral
∫

2ϕ(x)ϕ′(x) dx then vanishes upon partial integration. Weyl ordering tells us that

2ϕ(x)ϕ′(x) = (ϕn+1
2 − ϕn

2)/∆, leading to the correspondence
∫

2ϕ(x)ϕ′(x) dx ↔
∑

n

∆ (ϕn+1
2 − ϕn

2) ,

where the sum also vanishes explicitly after relabelling. For the alternative assignment ϕn =
ϕ(x) the vanishing cannot be proven.
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=
∑

n

[

1

2
m2ϕ(x)2 +

1

2
ϕ′(x)2

]

∆

=

∫ [

1

2
m2ϕ(x)2 +

1

2
ϕ′(x)2

]

dx . (2.29)

The interaction and source terms in the path integral do not have a factor
∆ coming out naturally, but we may simply define the continuum limits by
redefining the objects in the action :

λ4 → ∆λ4 , Jn → ∆J(x) , (2.30)

so that the continuum limit of the full action, including this time also the sources,
becomes13

S[ϕ, J ] =

∫ [

1

2
m2ϕ(x)2 +

1

2
ϕ′(x)2 +

λ4
4!
ϕ(x)4 − J(x)ϕ(x)

]

dx . (2.31)

Note the notation with square brackets: the action is now no longer a number
depending on (a countably infinite set of) numbers, but rather on the functions
ϕ(x) and J(x) ; this is called a functional.

2.3.3 The continuum limit of the classical equation

For the discrete action, there is an obvious classical equation :

∂

∂ϕn
S({ϕ}) = 0 ∀n , (2.32)

where, again, the source terms have been subsumed into the action. For the ϕ4

model of Eq.(2.1), the classical equation is therefore

µϕn − γ(ϕn+1 + ϕn−1) +
∆λ4
3!

ϕ3
n = ∆Jn (2.33)

for all n, and the extra factor ∆ in the coupling constant and the sources have
been taken into account. The Weyl prescription leads us to write

µϕn − γ(ϕn+1 + ϕn−1) ≈ m2∆ϕ(x) −∆ϕ′′(x) , (2.34)

so that the continuum limit of the classical field equation takes the form

m2ϕ(x) − ϕ′′(x) + λ4
3!
ϕ(x)3 = J(x) . (2.35)

This is precisely the Euler-Lagrange equation, that can also be obtained imme-
diately from the continuum form of the action by taking functional derivatives.
To see this, let us assume that the action of a theory can be written as

S[ϕ] =

∫

F

(

ϕ(x);ϕ′(x)

)

dx . (2.36)

13Strictly speaking, the Weyl ordering requires the replacement of Jn not by ∆J(x) but by
∆J(x)+∆2J ′(x)/2. The additional term, however, vanishes in the continuum limit as ∆ → 0,
as do the higher powers of ∆ involved in the ϕn

4 term.
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Upon ‘discretization’ using the Weyl ordering, this becomes

S =
∑

k

∆ F

(

1

2
(ϕk+1 + ϕk);

1

∆
(ϕk+1 − ϕk)

)

= ∆ F

(

1

2
(ϕn+1 + ϕn);

1

∆
(ϕn+1 − ϕn)

)

+ ∆ F

(

1

2
(ϕn + ϕn−1);

1

∆
(ϕn − ϕn−1)

)

+ terms not containing ϕn . (2.37)

The classical equation then reads

0 =
1

∆

∂

∂ϕn
S =

1

2
F1

(

1

2
(ϕn+1 + ϕn);

1

∆
(ϕn+1 − ϕn)

)

+
1

2
F1

(

1

2
(ϕn + ϕn−1);

1

∆
(ϕn − ϕn−1)

)

− 1

∆
F2

(

1

2
(ϕn+1 + ϕn);

1

∆
(ϕn+1 − ϕn)

)

+
1

∆
F2

(

1

2
(ϕn + ϕn−1);

1

∆
(ϕn − ϕn−1)

)

, (2.38)

where Fj denotes the partial derivative of F with respect to its j-th argument.
Re-inserting the Weyl ordering, we can write this equation as

0 =
1

2
F1

(

ϕ(x);ϕ′(x)

)

+
1

2
F1

(

ϕ(x−∆);ϕ′(x −∆)

)

− 1

∆
F2

(

ϕ(x);ϕ′(x)

)

+
1

∆
F2

(

ϕ(x −∆);ϕ′(x−∆)

)

. (2.39)

By Taylor expansion we get, for arbitrary f :

f

(

ϕ(x−∆);ϕ′(x−∆)

)

≈

≈ f

(

ϕ(x) −∆ϕ′(x);ϕ′(x) −∆ϕ′′(x)

)

≈ f

(

ϕ(x);ϕ′(x)

)

−∆
{

ϕ′(x)f1

(

ϕ(x);ϕ′(x)

)

+ ϕ′′(x)f2

(

ϕ(x);ϕ′(x)

)}

= f

(

ϕ(x);ϕ′(x)

)

−∆
d

dx
f

(

ϕ(x);ϕ′(x)

)

. (2.40)

The classical equation thus takes the form

F1

(

ϕ(x);ϕ′(x)

)

− d

dx
F2

(

ϕ(x);ϕ′(x)

)

= 0 . (2.41)
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we can cast this in the formal language of functional derivatives : we define,
using the Dirac delta function,

δϕ(y)

δϕ(x)
= δ(x− y) ,

δϕ′(y)

δϕ(x)
= 0 ,

δϕ′(y)

δϕ′(x)
= δ(x− y) ,

δϕ(y)

δϕ′(x)
= 0 , (2.42)

where, as we see, ϕ(x) and ϕ′(x) are treated as independent variables. Applying
these rules to the continuum form of the action, we find that the formal form
of the classical field equation is therefore that of the Euler-Lagrange equation.
The language of functional derivatives is, in these notes, treated as an effective
method, valid in the continuum limit, of writing the more fundamental dis-
crete classical field equation. In the functional formalism, the Euler-Lagrange
equation reads

δ

δϕ(x)
S[ϕ, J ]− d

dx

(

δ

δϕ′(x)
S[ϕ, J ]

)

= 0 . (2.43)

For ϕ4 theory, the Euler-Lagrange equation takes precisely the form of Eq.(2.35).

2.3.4 The continuum Feynman rules and SDe

Let us have a look again at the SDe for the discrete model, for simplicity taking
the ϕ4 model again :

φn =
∑

m

Π(n−m)

×
{

Jm −
λ

6

(

φ3m + 3h̄φm
∂

∂Jm
φm + h̄2

∂2

(∂Jm)
2φm

)}

. (2.44)

Going over to the continuum limit etails, as we have seen, the following substi-
tutions :

φn, φm → φ(x), φ(y) ,

Π(n−m) → Π(x − y) ,

Jm → ∆J(y) ,

λ4 → ∆λ4 ,
∑

m

→ 1

∆

∫

dy ,

∂

∂Jm
→ δ

δJ(y)
. (2.45)

With this, the SDe becomes

φ(x) =

∫

dy Π(x− y) ×
{

J(y)
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−λ4
6

(

φ(y)3 + 3h̄φ(y)
δ

δJ(y)
φ(y) + h̄2

δ2

(δJ(y))2
φ(y)

)}

. (2.46)

On this basis, we can now formulate Feynman rules for the continuum limit :

x y ↔ Π(x− y)

↔ −λ4
h̄

x
↔ +

J(x)

h̄

Feynman rules, version 2.3 (2.47)

This comes with the understanding that the positions of all vertices are to be
integrated over, and that the field function φ is now a functional of the source
J . For a free theory there are no interactions, and we find

φ(x) =

∫

dy Π(x− y) J(y) . (2.48)

We see that the free field is the sum of its responses to the source, weighted
by the correlation between the position where the field is measured and that
of the strength of the source at all points. It is this property that establishes
the propagator as the ‘differential-equation’ Green’s function; but note that this
correspondence is only valid for non-interacting theories.

2.3.5 Field configurations in one dimension

Before entering spaces of more dimensions, we may have a look at the field
variables. The zero-dimensional variable ϕ, with its integration element, is in
the discrete one-dimensional formulation replaced by the whole set ϕ, for which
the path integration element reads, of course,

Dϕ =
∏

n

dϕn

The continuum limit of this object is defined to be the continuum-formulation
path integration element, however badly defined this may be. The assigning a
functional value S[ϕ] to a given field ϕ(x) is not problematic ; rather it is the
prescription of how all field configurations are to be summed over that makes
it so hard to define path integrals rigorously14. It is instructive to consider the

14In fact, the mathematical definition of continuum path integrals relies on the discrete
formulation !
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nature of the dominant contributions. Consider the part of the path integrand
that governs the point-to-point variation of the paths: it is

exp

(

− 1

2h̄∆
(ϕn+1 − ϕn)

2

)

.

It is clear that the majority of values (ϕn+1 − ϕn)
2 will be of order O (h̄∆),

as usual for Gaussian distributions. This means that ϕn+1 and ϕn must ap-
proach each other as ∆ → 0, so the contributing fields are continuous. On the
other hand, the approach is not too fast, since by ϕn+1 − ϕn ≈ ∆ϕ′(x) we
see that the derivative ϕ′(x) diverges as ∆−1/2, hence the contributing func-
tions are nowhere differentiable. This is not to say that differentiable fields are
not allowed : rather, the nondifferentiable ones are the overwhelming majority.
Two conclusions follow. In the first place, the use of continuum-formulation
objects like ϕ′(x) or ϕ′′(x) in the action are to be treated as highly symbolic,
almost purely mnemonic, concepts. In the second place, the classical solution,
which is typically almost everywhere differentiable, is itself not the dominant
contribution to the path integral ; rather, it is the bundle of fields close to the
classical one that constitutes the lowest-order approximation to the behaviour
of the theory.

To gain some insight in the structure of a typical path (field configuration),
let us consider the interrelation of three consecutive fields : it is given by

K∆(ϕ0, ϕ1)K∆(ϕ1, ϕ2) = exp

(

− 1

2h̄∆

(

(ϕ0 − ϕ1)
2 + (ϕ1 − ϕ2)

2

))

. (2.49)

For simplicity, we neglect the rest of the action. The positions of these three
fields are separated by ∆. The ‘typical’ jumps in field values are of order

√
∆,

as mentioned above. Now imagine ‘zooming out’, that is, disregarding the value
of ϕ1, and inspecting only ϕ0 and ϕ2, which are now separated by 2∆. This is
obtained by integrating over ϕ1 in Eq.(2.49) :

∫

dϕ1K∆(ϕ0, ϕ1)K∆(ϕ1, ϕ2) ∝ exp

(

− 1

4h̄∆
(ϕ0 − ϕ2)

2

)

= K2∆(ϕ0, ϕ2) , (2.50)

where the proportionality constant is absorbed in the normalization of the path
integral. The typical jump from ϕ0 to ϕ2 is now of order

√
2∆. We conclude

that, if we resolve the continuum path down to a scale ∆, the typical fluctuations
over this scale will always be of order

√
∆. The typical path has a fractal struc-

ture. Such behaviour, with zigs and zags at every length scale, is encountered
in Brownian motion – and in the behaviour of the stock market15.

15Note that this qualitative picture holds only for one-dimensional theories (and, luckily,
the price of stocks, bonds, futures etc is expressed in one-dimensional currency). In more
dimensions, the paths’ behaviour is even more wild.
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Here we plot a typical fractal path run-
ning over 10,000 points separated by a
distance of 0.01, with ∆ = 1. The first
plot shows all points ; in the second,
only every 10th point is used, and in
the third plot only every 100th point is
used. The qualitative form of the three
paths remains the same, as expected
for a fractal path. The average abso-
lute value of the point-to-point jumps
are 0.80, 2.49, and 6.97, respectively :
the ratios between these numbers are
indeed roughly equal to

√
10.

2.4 More-dimensional theories

2.4.1 Continuum formulation

The choosing a labelling of fields with a single integer index is, of course, ar-
bitrary. We can consider an alternative in which the fields are labelled by D
integer indices. An appropriate action for this choice would be

S({f}) =
∑

n1,n2,...,nD

[

1

2
µϕn1,n2,...,nD

2

− γ

(

ϕn1,n2,...,nD
ϕn1+1,n2,...,nD

+ · · ·

+ ϕn1,n2,...,nD
ϕn1,n2,...,nD+1

)
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+
λ4
4!
ϕn1,n2,...,nD

4 − Jn1,n2,...,nD
ϕn1,n2,...,nD

]

(2.51)

The obvious visualization for this choice is
that of a space rather than a line, covered with
a regular square grid of fields, each connected
to 2D nearest neighbors: the corresponding
continuum picture, therefore, is that of a the-
ory in D equivalent dimensions. Here a part
of the space for the case D = 2 is shown.

The propagator of this theory obeys, of course, the SDe

Π(n1, n2, . . . , nD) =
h̄

µ
δn1,0δn2,0 · · · δnD ,0

+
γ

µ

(

Π(n1 + 1, n2, . . . , nD) + Π(n1 − 1, n2, . . . , nD) + · · ·

+Π(n1, n2, . . . , nD + 1) + Π(n1, n2, . . . , nD − 1)

)

, (2.52)

with the solution

Π(n1, n2, . . . , nD) =

h̄

(2π)D

+π
∫

−π

dDz
exp(i(n1z1 + · · ·+ nDzD))

µ− 2γ cos(z1) · · · − 2γ cos(zD)
. (2.53)

The continuum limit takes a different form than in the one-dimensional case.
We define

~x = (x1, x2, . . . , xD) , xj = nj∆ ,

~k = (k1, k2, . . . , kD) , kj = zj/∆ , (2.54)

The simplest nontrivial choice is then to approach the continuum as follows :

γ → ∆D−2 , µ→ 2Dγ +m2∆D , λ4 → ∆Dλ4 ,

ϕn1,n2,...,nD
→ ϕ(~x) , Jn1,n2,...,nD

→ ∆DJ(~x) . (2.55)

The propagator takes the continuum form

Π(~x) =
h̄

(2π)D

∫

dDk
exp
(

i~x · ~k
)

~k · ~k + m2
. (2.56)
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The continuum form of the action is

S[ϕ, J ] =

∫ [

1

2
m2ϕ(~x)2 +

1

2
(~∇ϕ(~x))2 + λ4

4!
ϕ(~x)4 − J(~x)ϕ(~x)

]

dDx , (2.57)

The Feynman rules are seen to be

x y
↔ Π(~x− ~y)

↔ −λ4
h̄

x
↔ +

J(~x)

h̄

Feynman rules, version 2.4 (2.58)

and also the SDe is a straightforward generalization of the one-dimensional case :

φ(~x) =

∫

dDy Π(~x− ~y) ×
{

J(~y)

−λ4
6

(

φ(~y)3 + 3h̄φ(~y)
δ

δJ(~y)
φ(~y) + h̄2

δ2

(δJ(~y))2
φ(~y)

)}

. (2.59)

The classical field equation for this case,

m2ϕ(~x)− ~∇2ϕ(~x) +
λ4
3!
ϕ(~x)3 = J(~x) , (2.60)

can be obtained directly from the continuum action by the functional Euler-
Lagrange equation

δ

δϕ(~x)
S[ϕ, J ]− ~∇ ·

(

δ

δ~∇ϕ(~x)
S[ϕ, J ]

)

= 0 . (2.61)

It should be noted that the propagator only depends on |~x| and is therefore
rotationally invariant : this is a larger symmetry16 than that of the original
lattice, that only allows rotations over multiples of π/2. The way in which the
relation between field values at two points depends on the coordinates of these

16The increase in symmetry depends on an interplay between the lattice action and the form
of the continuum limit ; it is possible to construct actions in which the continuum symmetry
is not larger than that of the lattice theory.
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points defines the nature of the space. The ‘real distance’ between two points
with coordinates xj and yj is in this case

|~x− ~y|2 =

D
∑

j=1

(xj − yj)2 , (2.62)

the Euclidean distance between the points ; this type of quantum field theory
is therefore said to be Euclidean.

2.4.2 Explicit form of the propagator

It is possible to express the Euclidean propagator Π(~x) in terms of known func-
tions, using a Gaussian representation :

Π(~x) =
h̄

(2π)D

∞
∫

0

dt

∫

dDk exp
(

i~x · ~k − t~k · ~k − tm2
)

=
h̄

(2π)D

∞
∫

0

dt e−m
2t

D
∏

j=1

∫

dkj exp
(

−z(kj)2 + ikjxj
)

=
h̄

(2π)D

∞
∫

0

dt e−m
2t

D
∏

j=1

(

(π

t

)1/2

exp

(

− (xj)2

4t

))

=
h̄

(4π)D/2

∞
∫

0

dt t−D/2 exp

(

−m2t− |~x|
2

4t

)

=
h̄

2π

(

2π|~x|
m

)1−D/2

K1−D/2(m|~x|) . (2.63)

The function K is the so-called modified Bessel function of the second kind,
defined by the integral representation

Kα(z) = K−α(z) =
1

2

∞
∫

0

du uα−1 exp

(

−z
2

(

u+
1

u

))

(z > 0) . (2.64)

For very large values of z, the integrand is dominated by the region around
u = 1, and we find

Kα(z) ≈ e−z
√

π

2z
, z →∞ . (2.65)

For very small (but positive) z, on the other hand, we may (for positive α)
approximate the factor u+ 1/u in the exponent by just u, and

Kα(z) ≈ 1

2

(

2

z

)α

Γ(α) (α > 0 , z → 0) ,

K0(z) ≈ log

(

1

z

)

(z → 0) . (2.66)
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For large m|~x|, the propagator therefore decreases exponentially, while for small
m|~x|, we have

Π(~x) ≈ h̄

2π
log

(

1

m|~x|

)

, D = 2 ,

Π(~x) ≈ h̄Γ
(

D
2 − 1

)

4 πD/2
x2−D , D ≥ 3 . (2.67)

In every dimension, the propagator is normalized in the same way :

∫

Π(~x) dDx =
h̄

(2π)D

∫

dDx

∫

dDk
exp
(

i~k · ~x
)

|~k|2 +m2

=
h̄

(2π)D

∫

dDk
(2π)DδD(~k)

|~k|2 +m2
=

h̄

m2
. (2.68)

2.4.3 Three examples

We may consider where the evolution in Feynman rules has taken us so far.
We can best illustrate this by inspecting three examples. In the first place, we
of course have the lowest-order (no-loop) two-point function, the propagator,
given by the diagram

A1 = x1 x2 (2.69)

which equals
A1 = Π(~x1 − ~x2) . (2.70)

Next, we we can look at the lowest-order contributions to the four-point func-
tion: A2 = 〈ϕ(~x1)ϕ(~x2)ϕ(~x3)ϕ(~x4)〉 in ϕ4 theory. According to the standard
rules, we can obtain this Green’s function by writing down all Feynman dia-
grams with four external lines, and no source vertices. In lowest order of the
loop expansion, this Green’s function contains four diagrams :

A2 =

x1 x2

x x43

+

x1 x

x x4

3

2

+

x1 x

x x
2

3

4
+

x
x

x

y1

2

3

4x
, (2.71)

and, upon implementation of the Feynman rules, evaluate to

A2 = Π(~x1 − ~x2) Π(~x3 − ~x4)
+ Π(~x1 − ~x3) Π(~x2 − ~x4)
+ Π(~x1 − ~x4) Π(~x3 − ~x2)

− λ4
h̄

∫

dD~y Π(~x1 − ~y) Π(~x2 − ~y) Π(~x3 − ~y) Π(~x4 − ~y) . (2.72)
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The last example is a contribution to the connected two-point function A3 =
〈ϕ(~x1)ϕ(~x2)〉 in ϕ3 theory :

A3 = x
1

y
1

y
2

x
2 (2.73)

It evaluates, with its symmetry factor, to

A3 =
λ3

2

2h̄2

∫

dDy1 d
Dy2 Π(~x1 − ~y1) Π(~y1 − ~y2)2 Π(~y2 − ~x2) . (2.74)

In all these cases, the power of h̄ of each contribution is, in fact, precisely what
is expected from the diagrammatic sum rules17 ; in particular, A3 is of order
h̄2, one higher than the lowest-order contribution which is simply Π(~x1~x2).

2.4.4 Introducing wave vectors

So far, we have considered the field values at every point in the Euclidean space
as the independent variables. Another approach is that of considering modes as
the independent variables. That is, we decompose the field ϕ(~x) into Fourier
modes (waves) of given wave vectors18 as follows:

ϕ(~x) =
1

(2π)D

∫

dDk exp
(

i~x · ~k
)

ϕ(~k) . (2.75)

The use of the same symbol for the field and its Fourier transform should not
lead to confusion provided we consistently work in either the space or the wave
vector representation. Similarly, then, we also have a Fourier decomposition of
the source:

J(~x) =
1

(2π)D

∫

dDk exp
(

i~x · ~k
)

J(~k) . (2.76)

The inverse transformations are, of course

ϕ(~k) =

∫

dDx exp
(

−i~x · ~k
)

ϕ(~x) ,

J(~k) =

∫

dDx exp
(

−i~x · ~k
)

J(~x) . (2.77)

There are three good practical reasons for using wave vector (‘momentum’)
rather than position as the basic representational feature. In the first place,
as we shall see, for the free theory the various modes are independent of one
another, in contrast to the fields at different space points19. In the second place,

17Recall that every propagator Π() contains a factor h̄.
18In loose parlance, Fourier modes are said to be characterized by their momentum. For

now, however, we shall stick to wave vectors, the dimension of which is simply inverse to that
of space vectors.

19Indeed, the more-dimensional theories have been constructed expressly to make fields at
different points correlate to one another!
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there is a law of momentum conservation operative in the universe, and not a
law of conservation of position. In the third place, momenta or wave vectors
are more directly the physical characteristics that are controlled and measured
in actual particle physics experiments.

2.4.5 Feynman rules in mode space

The introducing waves rather than positions as basic characteristics of a Eu-
clidean field configuration enforces a renewal of the Feynman rules, which we
shall now investigate using the examples of the previous section.

First, let us look at A1 :

〈ϕ(~x1)ϕ(~x2)〉 = Π(~x1 − ~x2) . (2.78)

The corresponding two-point amplitude in mode space rather than position
space is

〈

ϕ(~k1)ϕ(~k2)
〉

=

∫

dDx1 d
Dx2 e

−i~x1·~k1−i~x2·~k2 〈ϕ(~x1)ϕ(~x2)〉

=
h̄

(2π)D

∫

dDx1 d
Dx2 d

Dk
ei(~x1·~k1+~x2·~k2+~x1·~k−~x2·~k)

|~k|2 +m2

=
h̄

(2π)D

∫

dDk
(2π)2DδD(~k1 + ~k)δD(~k2 − ~k)

|~k|2 +m2

=
h̄

|~k1|2 +m2
(2π)DδD(~k1 + ~k2) (2.79)

Secondly, the connected contribution to A2 reads

〈ϕ(~x1)ϕ(~x2)ϕ(~x3)ϕ(~x4)〉c =

−λ4
h̄

∫

dD~y Π(~x1 − ~y) Π(~x2 − ~y) Π(~x3 − ~y) Π(~x4 − ~y) . (2.80)

Its mode-space analogue s
〈

ϕ(~k1)ϕ(~k2)ϕ(~k3)ϕ(~k4)
〉

c
=

− λ4h̄
3

(2π)4D

∫

dDx1 · · · dDx4 dDy dDq1 · · · dDq4

ei~x1·(−~k1+~q1) · · · ei~x4·(−~k4+~q4)e−i~y·(~q1+···+~q4)

(|~q1|2 +m2) · · · (|~q4|2 +m2)

=
−λ4h̄3

(|~k1|2 +m2) · · · (|~k4|2 +m2)
(2π)D δD(~k1 + · · ·+ ~k4) . (2.81)

The Green’s function therefore reads

A2 =
−λ4h̄3

(|~k1|2 +m2) · · · (|~k4|2 +m2)
(2π)D δD(~k1 + · · ·+ ~k4)
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+

(

(2π)DδD(~k1 + ~k2)

|~k1|2 +m2

)(

(2π)DδD(~k3 + ~k4)

|~k3|2 +m2

)

+

(

(2π)DδD(~k1 + ~k3)

|~k1|2 +m2

)(

(2π)DδD(~k2 + ~k4)

|~k2|2 +m2

)

+

(

(2π)DδD(~k1 + ~k4)

|~k1|2 +m2

)(

(2π)DδD(~k2 + ~k3)

|~k2|2 +m2

)

. (2.82)

Each connected diagram carries a factor (2π)DδD(K) where K stands for the
sum of all external wave vectors entering that connected diagram. By the same
method we can easily compute the last example: the diagram

A3 =

k1

k2

q

q’ (2.83)

evaluates, in mode space, to

A3 =
λ3

2h̄2

2
(2π)DδD(~k1 + ~k2)

∫

dDq

(2π)D
dDq′

(2π)D
(2π)DδD(~q + ~q′ − ~k1)

(|~k1|2 +m2)2(|~q|2 +m2)(|~q′|2 +m2)
. (2.84)

We see that not all the internal wave vector integrals are resolved by wave vector
conservation ; in fact, a Feynman diagram containing L closed loops contains
precisely L such unresolved integrals. In higher dimensions, such integrals are
usually divergent, thus giving rise to the notorious infinities of quantum field
theory.

With the help of the above examples, we can now formulate the Feynman
rules for Green’s functions with fixed external wave vectors :
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k ↔ h̄

|~k|2 +m2

k3

k2

k4

k1
↔ −λ4

h̄
(2π)DδD(~k1 + ~k2 + ~k3 + ~k4)

k1 k2 ↔ +
J(~k2)

h̄
(2π)DδD(~k1 + ~k2)

At vertices, the wavevectors are considered either all incoming or
all outgoing.
Each internal wave vector ~k is to be integrated over, with integra-
tion element dD~k/(2π)D.

Feynman rules, version 2.5 (2.85)

2.4.6 Loop integrals

As stated above, diagrams with loops contain internal wave vectors that have
to be integrated over, and many of these integrals are divergent. Therefore, we
have two face two technical challenges. In the first place, we have to devise a
way to quantify these divergences : this is called regularization. In the second
place, regularizing these divergences does not make them go away, and there-
fore we shall have to arrive at a method of including these divergences into the
theory in such a way as to yield finite and unambiguous answers for physically
interesting quantities. This last procedure is called renormalization. In this
section we shall only address regularization, for the case of one-loop integrals.

The idea of regularization is to let the theory depend on an arbitrarily intro-
duced parameter, such that the divergences appear when that parameter takes
on a certain value. Different regularization schemes are available, with different
choices for the extra parameter, which may be particle masses, upper limits on
momenta, etcetera. It must be kept in mind, however, that theories may depend
sensitively on such parameters, and therefore it may be prudent to choose the
parameter in such a way that the behaviour of the theory does not depend on it
too sensitively. The most popular regularization scheme is that of dimensional
regularization : in this approach the number of dimensions, D, is chosen as the
freely varying parameter. Already anticipating that we shall study theories in
four spacetime dimensions, we therefore write

D = 4− 2ǫ ,

with the implication that, at the end of all calculations, we shall take ǫ down to
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zero. Any divergences in the intermediate stages of the computation will then
show up as singularities for ǫ→ 0, and (with any luck) at the end all these sin-
gularities will have cancelled. If not, the theory is simply not very well defined.

As an example, we shall consider the diagram for A3 of Eq.(2.84), which in
four dimensions reads

A3 =
λ3

2h̄2

2
(2π)4δ4(~k1 + ~k2)

1

(|~k1|2 +m2)2
T (~k1) ,

T (~k) =

∫

d4q

(2π)4
1

(|~q|2 +m2)(|~k − ~q|2 +m2)
. (2.86)

Dimensional regularization requests us to change the dimensionality of the in-
tegral in T from 4 to D = 4 − 2ǫ. In doing so, however, we also change the
engineering dimension of T , that is, its unit in powers of meters, seconds, and
kilograms. This would make tree-level quantities and their loop corrections have
different dimension, which is clearly unacceptable. We therefore introduce an
engineering scale µ with the same dimension as |~q|, and write

T (~k) = µ2ǫ

∫

d4−2ǫq

(2π)4−2ǫ
1

(|~q|2 +m2)(|~k − ~q|2 +m2)
. (2.87)

The ‘Feynman trick’ of sect.(10.7.1) allows us to write

1

(|~q|2 +m2)(|~k − ~q|2 +m2)

=

1
∫

0

dx
1

(

x|~q − ~k|)2 + (1− x)|~q|2 +m2
)2

=

1
∫

0

dx
1

(

|~q − x~k|2 + x(1 − x)s+m2
)2 , (2.88)

where s = |~k|2. After shifting the integration variable20 from ~q to ~q − x~k, the
general formula of sect.(10.7.2) then gives, up to terms of order O (ǫ),

T (~k) =
1

(4π)2

1
∫

0

dx

(

1

ǫ
− γE − log(4π) + log(µ2)− log

(

sx(1 − x) +m2
)

)

.

(2.89)
Since

sx(1 − x) +m2 = s(x+ − x)(x − x−) , x± =
1

2

(

1±
√

1 +
4m2

s

)

, (2.90)

20The assumed convergence of the integral for suitably chosen ǫ jstifies this kind of shift, at
least for the case we are considering here. This is not always the case : more tricky situations
may lead to so-called anomalies.
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the integral is easily performed, and we find

T (~k) =
1

(4π)2

(

1

ǫ
− γE − log(4π)− F (|~k|2)

)

,

F (s) = log

(

s

µ2

)

+ 2x+ log(x+)− 2|x−| log |x−| − 2 . (2.91)

Two limits are of interest. In the first place, when m2/s becomes very small,
x+ goes to 1 and x− goes to −m2/s so that

F (s) ≈ log

(

s

µ2

)

− 2 , s/m2 →∞ . (2.92)

On the other hand, whenm2 is very large compared to s, we have that log(sx(1−
x) +m2) approaches log(m2), so that

F (s) ≈ log

(

m2

µ2

)

, s/m2 → 0 . (2.93)

A final remark is in order. One may wonder why we treat loop integrals in
Euclidean space in such detail, since after all our known spacetime may be
(approximately) Minkowskian, but is certainly not Euclidean. The reason is
that, even in Minkowskian spacetime, loop integrals are invariably computed by
transforming the Minkowskian theory into a Euclidean one, and then performing
the integrals as described above. The precise relation between Euclidean and
Minkowskian theories will be discussed in the next chapter.



Chapter 3

QFT in Minkowski space

3.1 Introduction

Since the known space in which particle physics takes place is not of a Euclidean,
but rather of a Minkowskian nature1, it behoves us to make the transition to this
new type of space. Essentially, this involves singling out one of the coordinate
directions in order to allow for time.

3.2 Moving into Minkowski space

3.2.1 Distance in Minkowski space

Whereas the ‘real distance’, that is, the distance measure that actually governs
the relative influence of fields at different points, is given in Eulidean space by
the Euclidean square distance of Eq.(2.62), we know that in the spacetime in
which we actually live and do physics, the real distance is quite different. In
particular, one of the coordinate directions represents time. That is, events in
spacetime taking place at position ~x = (x1, x2, x3) and time t relative to some
freely chosen origin are denoted by four coordinates:

xµ = (x0, x1, x2, x3) , x0 = ct , (3.1)

where c is the universal constant providing the exchange rate between units of
distance and units of time2 ; it is the necessary velocity of massless particles3,
and the real distance between two events with coordinates xµ and yµ is given

1We shall not involve ourselves in the horrible complications that arise upon the use of
curved space ; a consistent theory of quantum gravity is not, at present, relevant to particle
physics.

2See section 0.3.1.
3It is customary to add the provision in vacuo here, but since particles inside a medium

with which they interact are no longer massless, this may not be necessary.

87
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by

(x− y)2 = (x0 − y0)2 −
3
∑

j=1

(xj − yj)2

= gµν (x − y)µ (x− y)ν , (3.2)

(summation over repeated indices implied), where gµν is the covariant metric
tensor4

gµν = diag(1,−1,−1,−1) ≡







1 if µ = µ = 0
-1 if µ = ν ∈ {1, 2, 3}
0 otherwise

(3.3)

We also have the contravariant metric tensor gµν , defined by

gµα gαν = δµν , (3.4)

so that gµν is numerically equal5 to gµν . The metric tensors allow for the raising
or lowering of indices : for instance,

xµ = gµν x
ν : x0 = x0 , xj = −xj (j = 1, 2, 3) . (3.5)

The special rôle of time in physics is evidenced by the relative minus sign in the
metric tensor.

3.2.2 The Wick transition for the action

Let us refer back to the Euclidean action of Eq.(2.57) :

S[ϕ, J ] =

∫ [

1

2
m2ϕ(~x)2 +

1

2
(~∇ϕ(~x))2 + λ4

4!
ϕ(~x)4 − J(~x)ϕ(~x)

]

dDx , (3.6)

The integral runs over the four Euclidean dimensions of space. In order to
implement the special rôle of the singled-out time dimension, we replace x4 by
the time coordinate6 x0 as follows :

x4 ≡ ix0 , (3.7)

so that, formally, x0 is purely imaginary. We now make a crucial assumption :
the integral over x0 may be taken along the real axis. That is, we postulate that
nothing drastic happens by deforming the integral along the imaginary axis
into one along the real axis. This is called the Euclidean postulate. It cannot be

4See section 0.3.2.
5By coincidence. Even in the flat Minkowski space, another set of coordinates (spherical

ones, for instance) would lead to a gµν quite different from gµν . However, we shall always use
the sensible (pseudo)Cartesian coordinates in these lectures.

6It is called the time coordinate, but it is still measured in meters, according to Eq.(3.1).
The connection is, of course, the speed of light c, which we shall however not use overmuch.
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proven, but only justified by the apparent success of the resulting theory. Upon
invoking the Euclidean postulate, the action in the path integral becomes

S[ϕ, J ] = i

∫

d4x

[

1

2
m2ϕ(x)2 − 1

2
(∂µϕ(x))(∂µϕ(x))

+
λ4
4!
ϕ(x)4 − J(x)ϕ(x)

]

,

d4x = dx0 d3~x , ∂µ =
∂

∂xµ
. (3.8)

By convention, an overall facor −i is extracted from the Minkowski action, and
so the provisional form of the path integral becomes

Z[J ] = N

∫

Dϕ exp

(

i

h̄
S[ϕ, J ]

)

,

S[ϕ, J ] =

∫

d4x

[

1

2
(∂µϕ)(∂µϕ)−

1

2
m2ϕ2 − 1

4!
λ4ϕ

4 + Jϕ

]

, (3.9)

where the x dependence is implied. This step from Euclidean to Minkowski
space is called the Wick transition7.

3.2.3 The need for quantum transition amplitudes

After the Wick transition, we find ourselves in a new interpretational situation.
Since the exponent in the path integrand is now no longer real but rather purely
imaginary, a straightforward probabilistic interpretation of the path integral is
no longer possible. Indeed, every path gives a contribution which is a complex
phase factor, with the same absolute value, namely precisely one. In fact, all
possible dynamics must now arise from interference effects. The leading contri-
bution still comes from the bundle of paths around the classical solution (that
is still given by the Euler-Lagrange equation), because there the phases are to
first order approximation constant. Further away from the classical solution the
phases of nearby path fluctuate wildly as h̄→ 0 and these paths contribute very
little8.

In spite of all this, we shall keep the machinery of Green’s functions, con-
nected Green’s functions and the Feynman diagrams to compute them. Instead,
we shall have to reinterpret them. In accordance with standard quantum me-
chanical practice, we shall postulate that the (connected) Green’s func-
tions are related to the quantum-mechanical transition amplitudes.
The squared modulus of such an amplitude is the transition probability, to be
used in the computation of cross sections and decay rates. The precise nature
of the Green’s function-amplitude relation will be elucidated later.

7It is more commonly called the Wick rotation, but we prefer to reserve this for another,
more technical step later on.

8The remarks about instantons remain valid also in Minkowski space.
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3.2.4 The iǫ prescription

A single, somewhat technical, issue remains at this point. Since the path inte-
grand is now a pure phase factor, it does not vanish when the field values become
very large, and the convergence of the path integral is even more dubious than
it was in Euclidean theory. In order to cure this, we shall add a very mild, but
sufficient, damping ingredient to the path integral : from now on, we write it as

Z[J ] = N

∫

Dϕ exp

(

i

h̄
S[ϕ, J ]

)

,

S[ϕ, J ] =

∫

d4x L ,

L =
1

2
(∂µϕ)(∂µϕ)−

1

2
(m2 − iǫ)ϕ2 − 1

4!
λ4ϕ

4 + Jϕ , (3.10)

where ǫ is a vanishingly small positive number. The object L is called the La-
grangian density (or Langrangian) of the theory. In future applications, spec-
ifying the Lagrangian implies specifying a theory complete with its Feynman
rules, which can be read off from the Lagrangian directly. It is seen that the
introduction of iǫ makes the path integrand vanish for infinitely large ϕ values9.
In spite of the fact that the iǫ is introduced here as a regulator of the path
integral, it does have a definite physical effect ; as we shall see it defines the
direction of the ‘flow of time’. On the other hand, its only usefulness resides in
the fact that ǫ > 0, and we ought to be able to take ǫ→ 0 from positive values
at the end of any calculation. Any result that depends on the numerical value
of ǫ is wrong, or at least suspect. In specifying the Lagrangian, one usually does
not explicitly include the iǫ terms, they are to be understood.

3.2.5 Wick rotation for the propagator

In four-dimensional Euclidean theory, the propagator is given by Eq.(2.56) :

Π(~x) =
h̄

(2π)4

+∞
∫

−∞

dk4
+∞
∫

−∞

d3~k
exp
(

i(k4x4 + ~k · ~x)
)

(k4)2 + |~k|2 +m2
, (3.11)

where we have already singled out the fourth components of x and k for spe-
cial treatment. After the Wick transition and the implementation of iǫ, the

9This tactic is also used, e.g. in the derivation of the integral representation of the Dirac
delta function : under the assumption that ǫ is positive but vanishingly small, we have

∫

dx exp(ixk) =

∫

dx exp
(

ixk − ǫx2
)

=
√

π/ǫ exp
(

−k2/4ǫ
)

= 2π δ(k) ,

where the common representation of the δ distribution as a normal distribution with vanishing
width is invoked. Without the ǫ, the integral is not absolutely convergent.
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propagator reads

Π(~x) =
h̄

(2π)4

+∞
∫

−∞

dk4
+∞
∫

−∞

d3~k
exp
(

−k4x0 + i~k · ~x
)

(k4)2 + |~k|2 +m2 − iǫ
, (3.12)

We now perform the Wick rotation, which consists in moving the integration
over k4 from the real to the imaginary axis. Let us define, for given three-
dimensional vector ~k,

ω(~k) =

√

|~k|2 +m2 . (3.13)

The integrand has simple poles whenever (k4)2 +ω(~k)2− iǫ = 0, in other words
when

k4 = ±
(

iω(~k)− ǫ
)

.

(remember that the only significant property of ǫ is its sign, not its magnitude).
If the poles are not to be crossed in moving the integration contour, we must
have

Π(~x) =
h̄

(2π)4

−i∞
∫

+i∞

dk4
+∞
∫

−∞

d3~k
exp
(

i(ik4x0 + ~k · ~x)
)

(k4)2 + |~k|2 +m2 − iǫ
, (3.14)

as illustrated in the picture below. We may now write10

k4 ≡ ik0 (3.15)

without more ado11, and then we find, upon extracting some minus signs,

Π(x) =
ih̄

(2π)4

∫

d4k
exp(−ikµxµ)
k · k −m2 + iǫ

, d4k = dk0 d3~k . (3.16)

This is the form of the propagator that will be used in what follows.

10It is tempting, after we have chosen x4 = ix0, to write k4 = −ik0 since ‘x and k must be
conjugate variables’. Doing this, however, we will never obtain the Minkowski product k · x.

11Note that this is a simple change of variable, without any postulate creeping in.
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Re k

Im k

4

4

Illustration of the Wick rotation.
The two poles in the complex
k4 plane are indicated by dots,
and the directions of integration
along the real and imaginary
axis by respective arrows. We
see that the situation of the poles
with respect to the imaginary
axis determines the direction
of integration along it, from
+i∞ to −i∞. If the poles
were on the opposite side of the
axis, the direction of integra-
tion would be from −i∞ to +i∞.

The Wick transition involves a belief in the validity of the Euclidean postulate ;
the Wick rotation, on the other hand, follows quite naturally.

3.2.6 Feynman rules for Minkowskian theories

Having deduced the propagator in four-dimensional Minkowski space, we can
now formulate the provisional Feynman rules for Green’s functions with fixed
external wave vectors :

k ↔ ih̄
1

k · k −m2 + iǫ

k3

k2

k4

k1
↔ − i

h̄
λ4(2π)

4δ4(k1 + k2 + k3 + k4)

k1 k2 ↔ +
i

h̄
J(k2)(2π)

4δ4(k1 + k2)

In the wavevector conservation at the vertices, the wavevectors
must be counted either all incoming or al outgoing.
Each internal wave vector kµ is to be integrated over, with inte-
gration element d4k/(2π)4.

Feynman rules, version 3.1 (3.17)
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The vertices also pick up an additional factor i, and all vectors from now on are
assumed to be Minkowskian four-vectors.

3.2.7 The Klein-Gordon equation

For a free theory, with vanishing interaction vertices, the SDe is again quite
simple. In position, rather than wave vector, representation, we have

φ(x) =
i

h̄

∫

d4y Π(x− y) J(y)

= − 1

(2π)4

∫

d4y d4k
exp(−ik · (x− y))
k · k −m2 + iǫ

J(y) . (3.18)

The classical equation is immediately seen to be

(

∂µ∂µ +m2

)

φ(x) = J(x) , (3.19)

and this is known as the Klein-Gordon equation. In more conventional treat-
ments, this equation is the starting point for a relativistic quantum field the-
ory, being introduced as a direct relativistic adaptation of the nonrelativistic
Schrödinger equation ; for us, it is a fairly unimportant12 result following from
the Feynman rules. What is important, however, is the light it sheds on the
source J : the natural interpretation is, indeed, for J to be a physical source,
generating the field φ via Huygen’s principle. The propagator takes the rôle
of the Green’s function as used in the solution of inhomogeneous differential
equations.

3.3 Particles and sources

3.3.1 Unstable particles, iǫ and the flow of time

We are now in a position to investigate the physical meaning of the iǫ prescrip-
tion. In order to so so, let us assume that ǫ is not infinitesimal, but rather of
fixed value γ. That is, we shall use a propagator

Πγ(x− y) =
ih̄

(2π)4

∫

d4k
exp(−ik · (x− y))
k2 −m2 + iγ

, γ > 0 . (3.20)

Moreover, let us choose a source that emits particles simultaneously13 at time
t = 0, all over space : we take14

J(x) ∝ δ(x0) . (3.21)

12Unimportant in the sense that we shall not derive any consequences from it. The same
will be seen to hold for the Dirac, Proca and Maxwell equations.

13Simultaneity is an ambiguous concept in Minkowski space : here, we mean simultaneous
in our frame.

14We do not worry about normalization issues here.
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The response of the field can be written as

φ(x) =
i

h̄

∫

d4y Πγ(x− y) J(y0)

= − 1

(2π)4

∫

d4y d4k
exp
(

−ik · x+ ik0y0 − i~k · ~y
)

δ(y0)

(k0)2 − |~k|2 −m2 + iγ

=
−1
2π

∫

dk0
exp
(

−ix0k0
)

(k0)2 −m2 + iγ
. (3.22)

The integrand has poles in the complex k0 plane at

k0 = ±
√

m2 − iγ ≈ ±
(

m− i γ
2m

)

,

where we have assumed that γ is small compared to m2. For times later than
t = 0, the integration contour can be closed along the lower half complex plane,
and we find

φ(x) ∝ exp
(

−imx0 − γ

2m
x0
)

. (3.23)

Re k0

Im k0 The integration contour used in
Eq.(3.22). The two poles are in-
dicated. The contour must be
closed in the lower half plane
in order to make the exponent
exp
(

−ix0k0
)

vanish at infinity.

In accordance with the quantum-mechanical interpretation of our theory, |φ(x)|2
must be (related to) the probability of finding particles. In the present case, we
have

|φ(x)|2 ∝ exp
(

− γ
m
x0
)

= exp

(

− t
τ

)

, τ ≡ γc

m
. (3.24)

That is, the probability of finding particles anywhere decreases exponentially
as time goes on. This is what one expects for unstable particles with a mean
lifetime equal to τ . We shall write γ = mΓ, where Γ is called the total decay
width of the particle. We see that a Feynman rule is now available for unstable
particles :

k ↔ ih̄
1

k · k −m2 + imΓ

The propagator for an unstable particle with mean lifetime Γ/c.

Feynman rules, version 3.1 (addendum) (3.25)
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The iǫ prescription is seen to just mean that we should treat stable particles as
the infinitely-long-lifetime limit of unstable particles.

Another issue that appears resolved is the direction of time flow. Whereas
Minkowski space itself, being essentially static, does not assign any preferred
direction associated with the time coordinate, the direction of time flow is now
defined to be that direction in which unstable particles disappear , rather than
appear15.

Another point to be noted is the following. The unstable propagator by itself
is seen to lead to a decreasing overall probability, in contradiction to the normal
unitary evolution of quantum mechanics. This, however, is not the whole story :
for a particle to be unstable it must be able to go over into other particles, that
is, there must be interactions. These have been left out of our discussion. In a
more complete treatment, we shall of course see that, as the unstable particles
disappear, the density of other particles will increase, and total probability will
be preserved. In other words, the decay width must be consistently computable
from the interactions present in the theory.

The assumption that γ is considerably smaller than m2 implies that Γ is
small compared to m. Indeed, if we assume that Γ becomes nonzero due to
interactions, the very spirit of perturbation theory argues that Γ is relatively
small. Rigorous upper limits on the width of any given particle cannot easily
be given ; but let us imagine a particle of mass M (in kilograms, not inverse
meters !). Its natural ‘size’ is given by its Compton wavelength λc = h̄/(Mc). If
Γ (a quantity with the dimension of inverse length) were larger than 1/λc, this
would mean that such a particle would, upon production, decay even before a
lightlike signal could have crossed its diameter : it is as if the particle would
vanish before it was even aware that it existed. In general, the situation Γ > m
is held to signal a breakdown of the concept of a particle as a more or less
identifiable entity.

3.3.2 The Yukawa potential

As another illustration, we can consider a static pointlike source :

J(x) ∝ δ3(~x) . (3.26)

The response of the field is then

φ(x) =

∫

d4y
ih̄

(2π)4

∫

d4k
e−ik·x

k · k −m2 + iǫ

i

h̄
δ3(~y)

15Attractive as the above argument appears, a drawback comes from the case x0 < 0. In
that case, the contour integral must be closed along the upper half plane, so that the pole
k0 = −m+ iγ/(2m) becomes the significant one. We find φ(x) ∝ exp(−|t|/τ), which is to be
interpreted as a particle density that starts out as zero at t = −∞, and grows to a crescendo
at t = 0 ; this lacks an obvious interpretation. We ascribe this to the use of the simple form
(3.21). A better source, needed for a more rigorous treatment, can be simply constructed.
Notice that this really means that the direction of time is governed by the sources !
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=
1

(2π)3

∫

d3~k
ei

~k·~x

|~k|2 +m2
. (3.27)

The iǫ term in the denominator can safely be neglected here. Writing |~x| ≡ r ≥
0 and k ≡ |~k|, and going over to polar coordinates for ~k, we have

φ(x) =
1

(2π)3

∞
∫

0

dk k2
2π
∫

0

dϕ

1
∫

−1

d cos θ
eikr cos θ

k2 +m2

=
1

4iπ2 r

∞
∫

0

dk k

[

eikr

k2 +m2
− e−ikr

k2 +m2

]

=
1

4iπ2 r

∫

dk
k

k2 +m2
eikr . (3.28)

For r > 0 we can close the integration contour in the upper half of the complex-k
plane, and we find

φ(x) =
1

4π

exp(−mr)
r

. (3.29)

This is the so-called Yukawa potential, introduced in the 1930’s as a model for
the strong nucleon-nucleon force, with m the mass of the pion. The Compton
wavelength of the pion is, indeed, roughly the range of the nuclear forces. If
we take m → 0 we find the Coulomb potential of a static electric source ; the
real propagator of the photon field, responsible for the Coulomb interaction,
is however more complicated, so that the above derivation is more or less just
handwaving for the case of electromagnetism.

3.3.3 Kinematics and Newton’s First Law

Let us see to what extent the picture of the source as an object that, in a sense,
emits particles can be reconciled with standard ideas in classical relativistic
mechanics. That is, we want to measure positions and times, as well as energies,
velocities and momenta, as well as possible. To this end, we shall choose the
source to be

J(x) ∝ exp

(

−|x
0|
σ0
− |~x|

2

4σ2
− i

h̄

(

p0x0 − ~x · ~p
))

. (3.30)

That is, the source is active for a period σ0/c around t = 0, and in a region of
volume σ3 around the spatial origin. Its Fourier transform,

J(k) ∝
[

1

σ02
+

(

k0 − p0

h̄

)2
]−1

exp

(

−σ2

(

~k − ~p

h̄

)2
)

, (3.31)

shows that it emits particles with all kinds of wave vectors kµ = (k0, ~k), centered
around values pµ/h̄, with pµ = (p0, ~p). For a bridge to non-quantum physics
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to be built, both the position and wave representation of the source should be
adequately localized ; σ0 and σ should be neither too large nor too small. For
now, we do not assume any particular relation between p0 and ~p.

Let us now study the response of the field to this source for positive times.
We have

φ(x) ∝
∫

d4k
exp
(

−ik0x0 + i~k · ~x
)

(k0)2 − |~k|2 −m2 + iǫ
J(k) . (3.32)

For x0 > 0, the contour is to be closed in the lower half complex-k0 plane. The
integrand displays simple poles at the loci

k0 = ω(~k)− iǫ , k0 =
p0

h̄
− i

σ0
, k0 = −ω(~k) + iǫ , k0 =

p0

h̄
+

i

σ0
,

the latter two lying outside the contour. The k0 integral therefore leads to the
following expression for φ(x) :

φ(x) ∝
∫

d3~k exp

(

i~x · ~k − σ2

(

~k − ~p

h̄

)2
)

×







1

2ω(~k)

exp
(

−ix0ω(~k)
)

(

p0/h̄− ω(~k)
)2

+ 1/σ02

+
iσ0
2

exp
(

−ix0p0/h̄ − x0/σ0
)

(p0/h̄− i/σ0)2 − ω(~k)2 + iǫ

]

. (3.33)

The second term in the square brackets decays exponentially at the same rate
as the source. Since we are interested in the behaviour of the field when it is
free, i.e. unaffected by any interactions, we can only study that behaviour once
the source has died out, and then so has this term16. The first term describes
Fourier modes of the field that obey the dispersion relation k0 = ω(~k), together
with the resonance condition that tells us that the field can only be appreciable
if both p0/h̄ ≈ ω(~k) and ~p/h̄ ≈ ~k. We therefore expect any fruitful resonance
in the field, which can allow for the transmission of signals over macroscopic
distances, if

p0

h̄
≈ ω

(

~p

h̄

)

. (3.34)

If we relate the zero component p0 (with dimension kg m/s) to an energy E by
writing

p0 = E/c , (3.35)

16This is comparable with what you would do classically: studying the trajectory of a thrown
ball to see whether Newton’s laws are obeyed only makes sense once the ball has definitively
left your hand.
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we find that the only particle modes emitted by the source that have a chance
of propagating over distances much further than σ must satisfy

E ≈
√

|~p|2c2 +M2c4 , m =
Mc

h̄
. (3.36)

This is the mass shell condition, which prescribes the relation between the en-
ergy E (in Joule), momentum ~p (in kg m/s), and mechanical mass M (in kg) of
a particle moving freely through spacetime. We recognize the quantity m that
we have been using so far as the inverse Compton wavelength of the particle17.

Given that the particle is emitted on its mass shell, the integral φ(x) is not
yet automatically large. The complex phase in Eq.(3.32) will lead to extremely
rapid oscillatory behaviour of the integrand, and an essentially vanishing result,
except for those regions where the phase of the integrand is stationary. This
happens if

∂

∂~k

(

x0k0 − ~x · ~k
)

=
∂

∂~k

(

x0ω(~k)− ~x · ~k
)

=
~k

ω(~k)
x0 − ~x = 0 . (3.37)

That is, φ(x) is appreciable on a line in spacetime given by

~x = t
c ~p

p0
: (3.38)

the particle moves along a straight line, with constant velocity c~p/p0. This is
Newton’s First Law.

A further remark is in order. It might be proposed that the source we have
used would become more æsthetically pleasing if also the time dependence were
Gaussian. However, in that case the k0 contour cannot be simply closed since

exp(−k02) diverges badly for arg(k0) between −π/4 and −3π/4. Hence the

dispersion relation k0 = ω(~k) does not hold, and the mass-shell condition on pµ

does not apply. In a sense, a Gaussian time dependence implies that the source is
‘switched on’ and ‘switched off’ too rapidly, so that energies are not well-defined.
In a similar spirit, one might feel uncomfortable with the pole at p0/h̄− i/σ0 in
the complex-k0 plane. Indeed, one can get rid of it by multiplying the source
of Eq.(3.30) by θ(x0 < 0) so that the source is only active up to x0 = 0 and
then stops. However, the absence of this pole means that after the k0 integral
we have

not
1

(

p0/h̄− ω(~k)
)2

+ 1/σ02
but

1

p0/h̄− ω(~k) + i/σ0

17A particle is called on-shell if its momentum pµ satisfies Eq.(3.36) ; if not, it is called
off-shell. Off-shell particles are not exotic or improbable ; they are just not visible as the
result of any experiment since they cannot propagate well. In popular literature, off-shell
particles are often dicussed with a lot of mumbling about ‘uncertainty relations’, ‘borrowing
energy from the vacuum’, and so on. Do not be misguided ! When a theorist starts invoking
the uncertainty principle as a reason for something, keep your hand on your wallet. The
‘uncertainty principle’ is not a reason but a result.
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which does not single out p0/h̄ ≈ ω(~k) as an especially favorable situation.
Again, if the source is switched off so rapidly our control over energies is lost.

From this simple investigation we may conclude that (a) motion of free
particles over macroscopic distances follows Newton’s first law; and (b) that we
can effectively assume that the Fourier modes of the fields obey the dispersion
relation k0 = ω(~k) for positive times large enough for sources to have died out.

3.3.4 Antimatter

We again consider the free SDe :

φ(x0, ~x) = −
∫

dk0

2π

∫

d3~k

(2π)3
exp(−ik · x)

(k0)2 − ω(~k)2 + iǫ
J(k0, ~k) ,

ω(~k) =

√

|~k|2 +m2 . (3.39)

If x0 > 0, the integration contour can be closed through the lower half of the
complex k0 plane :

φ(x0, ~x) = i

∫

d3~k

(2π)32ω(~k)
exp
(

−i(x0ω(~k)− ~x · ~k)
)

J(ω(~k), ~k) . (3.40)

If, on the other hand, x0 < 0, the closure must be over the upper half of the
plane, and then

φ(x0, ~x) = i

∫

d3~k

(2π)32ω(~k)
exp
(

−i(−x0ω(~k)− ~x · ~k)
)

J(−ω(~k), ~k) . (3.41)

We see that the propagator essentially describes plane waves, with the following
characteristic: positive energies travel towards the future, and negative energies
travel towards the past.

While the concept of particles with positive energy, moving from past to
future, conforms to our everyday experience, the idea of negative (kinetic) en-
ergies and movement backwards in time is not only æsthetically repellent but
may lead to splitting headaches in the verbal description of physical processes.
When, however, we consider more closely how such a situation will appear, it
becomes clear that negative energies moving backwards in time are indistin-
guishable from positive energies moving forward.
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E > 0

x

t

A

B

E(A) ↓ , E(B) ↑

E < 0

x

t

A

B

E(A) ↓ , E(B) ↑

Some bookkeeping will easily convince you of this, with the help of the above two
diagrams. Consider two loci in space, denoted by A and B. In the first diagram
a particle moves forward in time, with positive energy, from A to B. As a result
the energy at A decreases, and that at B increases. In the second diagram, a
particle with negative kinetic energy starts at B, and moves backwards in time
to A. The net effect on the energies at A and B is exactly the same ! The two
situations are indistinguishable from the point of view of the energy balance.

E > 0

x

t

A

B

E(A) ↓ , E(B) ↑
Q(A) ↑ , Q(B) ↓

E < 0

x

t

A

B

E(A) ↓ , E(B) ↑
Q(A) ↓ , Q(B) ↑

There may still be a difference, of course ; if the particles have additional
properties such as electric charge, the backwards-moving particles will appear
with the opposite charge. For instance, a negatively charged electron moving
backwards will appear as a positively charged positron moving forward, as can
be seen from the two diagrams above. Such re-interpreted time-reversed parti-
cles are called antiparticles . Every particular object whose propagator contains
the denominator of Eq.(3.39) is seen to contain both the regular particles and
their antiparticles. Moreover, we find the fundamental result that particles and
their antiparticles must have exactly the same mass and lifetime. Particles and
their antiparticles may be identical, the photon being an example. Such parti-
cles must, of course, be electrically neutral. On the other hand, not all neutral
particles are their own antiparticles ; neutrons and antineutrons are distinct
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from one another18. We have thus found the following result for free particles :
if we (a) replace all particles by their antiparticles and vice versa, the so-called
charge conjugation operation C, (b) inverse all space directions19, the so-called
parity transformation P, and (c) invert the direction of time, the so-called time
reversal operation T, then the world will look exactly the same ! This is (a
restricted form of) the CPT theorem, valid for the propagation of free particles.
The more interesting, real CPT theorem, valid also for interacting particles,
needs more tools than we have at our disposal right now : its proof is referred
to Appendix 10.12.

Let us consider the (classically depicted) path a particle tracks out in space-
time, as given by the space-time diagram given below. In one description, the

0

x

t

A

B

C

t

particle starts at A and moves to B,
where at time t0 it reverses its time
direction, and moves backwards in
time to C. In the alternative de-
scription, a particle starts at A and
its antiparticle starts at C, and the
pair collides at B at time t0. For
times later than t0, the particle
and/or its antiparticle have disap-
peared ; but because of momentum
conservation their combined energy
has to be transferred onto one or
more other particles (not depicted).

The two descriptions are completely equivalent, but the second one conforms
much better to the way we tend to view the world20. At the ‘collision/reversal-
point’ B the particle coming from A must dump its energy, and even an ad-
ditional amount since its energy must become negative for it to start moving
backwards to C. Therefore, particle-antiparticle collisions release energy, often
in the form of photons21. For instance, when positrons meet electrons, the usual
result22 is e− e+ → γ γ. We also see that nothing forbids the opposite process,

18Once the neutron is seen to be a collection of charged quarks, the distinction becomes
obvious. So, in some sense, the realization that the neutron and the antineutron are distinct
is an argument for their compositeness !

19Since, as can be seen from our diagrams, inverting the direction of the motion through
time will simultaneously change motion towards the left (say) into motion towards the right,
and so on.

20Note that the antiparticle interpretation is just the way we surrender to a prejudice about
motion in time. Physicists from some alien civilization might have less problems with the
other interpretation.

21It is sometimes stated that prticles can only annihilate with their own antiparticle. This
is a somewhat restricted point of view, since for instance electrons can annihilate with anti-
neutrinos into W particles, as we shall see. It may be more appropriate to say that it needs
particles with their own antiparticles to annihilate into something that has quantum numbers
(electric charge, fermion number, etcetera) equal to those of the vacuum. Neutrinos and their
antineutrinos cannot easily annihilate into photons, being electrically neutral : but they can
annihilate into a pair of Z bosons.

22Note that the simpler-seeming process e− e+ → γ is kinematically impossible if the
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in which available energy turns into particle-antiparticle pairs : γ γ → e− e+.

3.3.5 Counting states : the phase-space integration ele-

ment

The treatment of the previous section is also useful in that it provides a hint on
how to count the wave-vector states. For on-shell particles of mass23 m we use
the integration element

1

(2π)3
d3~k

ω(~k)
, ω(~k) =

√

~k2 +m2 .

This object has dimension L−2. It is not explicitly Lorentz-covariant, but we
can write it also in the more attractive form

1

(2π)3
d3~k

ω(~k)
=

1

(2π)3
d4k δ

(

k2 −m2
)

θ(k0) . (3.42)

Note that if k0 is positive for an on-shell particle in any given inertial frame, it is
positive in all intertial frames that can be reached by Lorentz transformations
from the first one. This ensures that the step function θ(k0) always has the
same value, irrespective of any Lorentz boosts we may care to make. Lorentz
covariance of the phase space integration element is thus guaranteed. We shall
use the density of states (3.42) for all on-shell particles in the calculation of
cross sections and lifetimes.

If, for a given scattering process, the final state contains N particles with
massesmj , j = 1, 2, . . . , N , and wavevectors pµ1 , p

µ
2 , . . . , p

µ
N , the combined phase-

space integration element is

dV (P ; p1, p2, . . . , pN) ≡




N
∏

j=1

1

(2π)3
d4pj δ(pj

2 −mj
2)



 (2π)4δ4



P −
N
∑

j=1

pj



 , (3.43)

where Pµ is the total wavevector of the scattering system. The four-dimensional
Dirac delta forces the overall conservation of wavevectors24. The condition
θ(p0 > 0) imposing positive energy for the outgoing particles is, here and in the
following, always understood.

resulting photon is to be on its mass shell. On the other hand, an single off-shell photon can
be produced, but such a photon must immediately decay again, in for instance a particle-
antiparticle pair of some kind.

23We shall use the term ‘mass’ also for m, although strictly speaking it has the wrong
dimensionality ; the actual mass is, of course, M . Confusion will not readily arise. For the
same reason, we shall occasionally call the wave-vector the momentum.

24Conservation of total energy and momentum.



Chapter 4

Scattering processes

The mere movement of the atoma through the æther will
never suffice to endow the cosmos with any character

whatsoever: rather, by their conflict, combat and
collisions they suffuse creation with vivacity.

— Democritus Minor, Peri Atomôn (c. AD 42)

4.1 Introduction

In this chapter we turn our attention to the bread-and-butter subject of particle
phenomenology : the description of scattering processes. We shall discuss the
way in which Feynman diagrams and their evaluation are postulated to predict
the probability for finding specified final states given specified initial states.
We also investigate the consequences of the claim that our approach describes
quantum physics and is therefore of a probabilistic nature : that is, we can only
compute probabilities, which are necessarily bounded1. This leads to the notion
of unitarity and the use (and usefulness) of cutting rules.

4.2 Incursion into the scattering process

4.2.1 Diagrammatic picture of scattering

To a large extent, particle phenomenology can be viewed as the study of scatter-
ing processes, in which some initial state is prepared and allowed to time-evolve,
and finally an observation is made in which the system is seen to have resulted
in some final state. A useful example is provided by the current practice in
high-energy colliders : here the initial state is prepared by machine physicists
operating the collider, and it consists of two (beams of) particles with more or
less well-defined momenta coming out of the beam pipes. The interesting part of

1After all, the probability of a certain scattering process occurring cannot exceed 100%.
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the time-evolution of the system is that during which the initial-state particles
approach one another and meet (hopefully2 !) in the interaction point, where
the dynamics takes place. The final state is observed by the detector operated
by the particle physicists.

Since not only the scattering itself but also the initial-state preparation and
the final-state observation are quantum processes, all these parts of the process
must, according to our assumptions, be described by Feynman diagrams in a
manner still to be established. The diagrammatic form of the complete process
will then look as follows :

Here and in the following we adopt the convention that the initial state appears
on the left-hand side of the diagrams, and the final state on the right-hand
side. This does not imply any spatial or timelike relation between any of the
vertices in the diagram: indeed, they are supposed to be integrated over all of
spacetime3. Another observation on the above diagram is also relevant : the
initial-state preparation and the final-state observation should contain physics
that is better understood than the scattering part, and there should be a clear
notion of precisely which particles constitute the initial and final states. This is
indicated by the identifiable propagators connecting the various ingredients of
the process. We therefore adopt the idealization that the only relevant part of
the scattering should reside in the central, or scattering part, in this case

We now have to confront the two following questions. In the first place, which
Feynman diagrams should occur in the scattering part ? And secondly, in
actual experiments the initial- and final-state particles travel over many meters
between preparation, scattering, and detection. These particles should therefore
be on their mass shell, but isn’t this precisely the case in which their propagators

2In the sense that particles with perfectly well-defined momenta form plane waves of infinite
spatial extent, they can hardly avoid meeting. In practice, the momenta and spatial extensions
of the particles’ wave packets are of course more limited.

3Of course, if there is any justice the contribution from paths in which a vertex is very far
out ought to be small.



July 24, 2013 105

blow up ? The situation obviously calls for some reinterpretation and additional
Feynman rules, to which we shall come.

Before finishing this section, let us remark that also initial states consisting
of only a single particle occur :

In this case, we simply study the decay properties of the particle, such as its
total or partial decay width.

4.2.2 The argument for connectedness

Let us consider the set of all Feynman diagrams describing a decay process.
As discussed before, we omit any vacuum bubbles that do not contain external
lines. The set can then be split up into its connected pieces, for instance

=
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

+ �������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

+ · · ·

(4.1)
where as before the shading indicates connected diagrams. Now, recall that ev-
ery vertex in any diagram contributes a Dirac delta imposing energy-momentum
conservation. Therefore, every connected diagram has an overall Dirac delta im-
posing overall energy conservation. That, however, implies that a diagram like
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(4.2)

asks for particles carrying positive energy to originate (by some interactions)
from the vacuum. Such contributions therefore vanish by energy conservation,
and the only contributing diagrams are contained in the totally connected blob.
Next, consider two-particle scattering. If we forbid (for the same reason as
above) connected parts where particles are created from the vacuum, the only
possible contributions are given by
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Now, the second term here is in principle possible but only if a) the two in-
coming particles are inherently unstable4 and b) the outgoing particles arrange
themselves in precisely two groups according to the indicated decay patterns.
Leaving aside such special cases, we conclude that the scattering amplitude
is given by the connected Feynman diagrams. Note that the restriction
to connected diagrams only arises here from simple energy considerations, and
not from any deep inherent superiority of connected diagrams over disconnected
ones : in essentially all cases of interest, the result of the disconnected diagrams
vanish anyway.

In fact, we may conceive of situations where particles can be created from
the vacuum. This is the cases in ‘field theories at high temperature’ where
processes take place in a heat bath which can deliver energy to create particles.
In such a picture the heat bath is the ‘vacuum’ of the theory, and diagrams such
as that of Eq.(4.2) are not automatically zero. Another more delicate situation
is that of more incoming particles : for instance, we might consider four particles
scattering into four, in which we might recognize two groups of two particles
scattering into two :
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In this case, the only argument to disregard the disconnected diagrams is an
appeal to the special kinematics.

4.3 Building predictions

4.3.1 General formulae for decay widhts and cross sections

Consider a ‘slightly unstable’ particle of mass5 m at rest, with wavevector Pµ.
We shall adopt the following prescription for its differential decay width into n
particles with wavevectors pµ1 , p

µ
2 , . . . , p

µ
n :

dΓ = ΦΓ 〈|M|2〉 dV (P ; p1, p2, . . . , pn) Fsymm . (4.3)

Here, M stands for the transition amplitude, which we still have to establish.
The symbol 〈|M|2〉 indicates that in accordance with quantum-mechanical prac-
tice we have to square the absolute value ofM in order to arrive at a probability,
and the brackets indicate summation and/or averaging over degrees of freedom
other than the momenta : at present such degrees of freedom are not in our
theory yet, but they will come ! The symbol ΦΓ denotes the collection of fac-
tors that must be included to account for the density of states for the incoming
particle, etcetera. The momentum Pµ is that of the incoming particle at rest.

4This makes the notion of particles ‘coming in from infinity’ conceptually dubious in this
scattering.

5The inverse-length mass, not that in kilograms.
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The symmetry factor Fsymm is included to handle identical particles in the final
state. In quantum mechanics, the statement that two particles are identical
means that an interchange of these particles leads to the physically identical
final state, so that an unconstrained summation over their momenta (and other
quantum numbers) would lead to over-counting. We therefore prescribe that
Fsymm contains a factor 1/k! for every group of precisely k indentical particles
in the final state6. For example, a final state containing precisely 2 photons, 3
electrons and 1 positron leads to Fsymm = 1/(2!)(3!)(1!) = 1/12.

Note that the decay width is inversely proportional to the particle’s lifetime.
This means that for a moving particle the decay width must decrease by a factor
m/P 0 to account for time dilatation.

In the case of two stable incoming particles with wavevectors pµa and pµb , we
rather talk about the transition rate per unit flux, that is, the cross section for
their scattering. It has dimension L2, and must be given by a formula of the
form

dσ = Φσ 〈|M|2〉 dV (pa + pb; p1, p2, . . . , pn) Fsymm . (4.4)

We see that, in order to get the formulae (4.3) and (4.4) to actually work, we
have to establish

• the flux factors ΦΓ and Φσ ;

• the algorithm to derive from the connected Green’s function the ampli-
tude. In particular this calls for a special treatment of the external lines.

We shall solve these issues in the next section.

4.3.2 The truncation bootstrap

We have come to one of the centrally important steps in our treatment of scat-
tering. Consider the process in which two particles with wavevectors pa and pb
scatter and yield j + n stable particles in the final state, whose wavevectors we
label by k1, k2, . . . , kj and q1, q2, . . . , qn. The distinction between these groups
lies in the fact that, whereas the k’s emerge ‘directly’ from the scattering, the
q’s are in fact the decay products of an unstable particle that was ‘directly’
produced together with the k’s. Nevertheless, the complete final state consists
of both the k’s and the q’s. The relevant diagrams are given here :
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}
A B

k

q
p

p

a

b

p 1,2,...

1,2,...

6Some authors choose to include a factor 1/
√
k! in the transition amplitude M. I am

opposed to this since such a prescription introduces a distinction between particles in the
initial and those in the final state, which may destroy the crossing symmetry of the amplitude.



108 July 24, 2013

Note that the connected blobs may themselves contain many different individual
diagrams. By separating the blobs A and B we indicate that the unstable
particles is actually quite long-lived so that the place where it is produced and
that where it decays tend to be clearly separated.

Now, we shall assume that we have somehow solved the problem of how to
go from connected Green’s function to amplitude, and that we have applied this
procedure to the above process. We then have for the amplitude the form

M = [A]
ih̄

p2 −m2 + imΓ
[B] , (4.5)

where p = q1 + · · ·+ qn is the momentum of the (internal!) line corresponding
with the unstable particle, and p2 = p ·p. The unstable particle’s mass is m, and
its total decay width is Γ. The symbols [A] and [B] stand for the processed con-
nected Green’s functions for the ‘production’ process A and the ‘decay’ process
B, but with the Feynman factors for the unstable particle removed. Assuming,
for simplicity, that Fsymm = 1, we then have for the differential cross section the
form

dσ = Φσ |[A]|2 |[B]|2 h̄2

(p2 −m2)2 +m2Γ2
dV (P ; k1, . . . , kj , q1, . . . , qn) , (4.6)

where P = pa + pb. In order to emphasize that p is the sum of the q’s, we may
write this also as

dσ = Φσ |[A]|2 |[B]|2 dV (P ; k1, . . . , kj , q1, . . . , qn)

h̄2

(p2 −m2)
2
+m2Γ2

d4p

(2π)4
(2π)4δ4(p− Σq) , (4.7)

with obvious notation for the sum over the wavevectors q.

Now, we let the unstable particle approach stability, so that the location
where it decays becomes widely separated from that where it is produced. That
is, we examine the case that Γ becomes very, very small, and we may approxi-
mate7

1

(p2 −m2)
2
+m2Γ2

→ π

mΓ
δ(p2 −m2) . (4.8)

We can then use this to rewrite

dV (P ; k1, . . . , kj , q1, . . . , qn)

(p2 −m2)2 +m2Γ2

d4p

(2π)4
(2π)4δ4(p− Σq) (4.9)

7This follows from the well-known representation of the Dirac delta function as

δ(x) = lim
z→0

1

π

z

x2 + z2
,

which has unit integral and vanishes for every x 6= 0.
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as

1

2mΓ
dV (P ; k1, . . . , kj , q1, . . . , qn)

d4p δ(p2 −m2)

(2π)3
(2π)4δ4(p− Σq)

=
1

2mΓ
dV (P ; k1, . . . , kj , p) dV (p; q1, . . . , qn) . (4.10)

Inserting this in Eq.(4.7) we see that the cross section now takes the form

dσ =
(

h̄ |[A]|2
)

dV (P ; k1, . . . , kj , p)

1

Γ

1

2m

(

h̄ |[B]|2
)

dV (p; q1, . . . , qn) . (4.11)

Let us now step back and consider what it is we are actually computing here :
it is the cross section for producing an almost-stable particle p, together with
the k’s in a specified configuration, followed by the decay of the particle p into a
specified configuration of q’s. Under the usual ideas of conditional probability,
this is the same as first computing the cross section for the production of p and
the k’s, followed by the conditional probability that, given p, we see it decay into
the q’s. This conditional probability, called the (differential) branching ratio, is
the partial decay width for p to go into the q’s (computed in the p rest frame !),
divided by the total decay width, in this case Γ. We conclude that

• h̄ |[A]|2 is 〈|M|2〉 for the process pa + pb → k1 + · · ·+ kj + p ;

• h̄ |[B]|2 is 〈|M|2〉 for the process p→ q1 + · · ·+ qn ;

• ΦΓ must be given by 1/(2m).

In a sense, we have managed to cut through the p line, and interpret the process
rather as it would be given by the diagrams
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}
A B

k

q
p

p

a

b

1,2,...

1,2,...

pp

A point to be noted here has been somewhat hidden so far. The connected
Green’s functions contain overall factors (2π)4δ4() for overall wavevector con-
servation. This conservation has been imposed already, however, in our choice
of the phase space integration elements dV . We therefore have to remove these
factors as well in the transition from connected Green’s function toM.

What about the treatment of the external lines ? In the above discussion
we started with p as an internally ocurring unstable particle, carrying its own
propagator. As we let it become stable, the propagator has disappeared into
the phase space counting, leaving only a residue of a factor h̄2. At the end of
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the story the particle p has become a stable particle occuring as an external line
in the blob A. This, therefore, must be the prescription for the external lines !
This is called truncation or amputation of external lines. An external line must
apparently carry, instead of its undefined propagator, simply a factor

√
h̄. We

arrive at the following, expanded set of rules for the calculation of scattering
amplitudesM (as opposed to Green’s functions) :

k ↔ ih̄

k · k −m2 + iǫ

internal lines
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k
↔
√
h̄

external lines

k3

k2

k4

k1
↔ − i

h̄
λ4(2π)

4δ4(k1 + k2 + k3 + k4)

k1 k2 ↔ +
i

h̄
J(k2)(2π)

4δ4(k1 + k2)

ǫ is replaced by mΓ for unstable particles.
In the wavevector conservation at the vertices, the wavevectors
must be counted either all incoming or al outgoing.
Each internal wave vector kµ is to be integrated over, with inte-
gration element d4k/(2π)4.

Feynman rules, version 4.1 (4.12)

The flux factor ΦΓ for particle decay has been found to be 1/(2m). It is
related to how we count the density of states of the incoming particle. We
can directly translate to the case of two-particle scattering. Let us work in the
Lorentz frame in which particle b is at rest while particle a impinges upon it.
Keeping in mind the effect of Lorentz transformations on the density of states
we see that whereas mb remains, ma has to be replaced by p0a. The density-of-
states factor for the two-body initial state is therefore 1/4p0amb. Since, however,
we are asking for a cross section rather than a transition rate, we have to divide
this by the velocity of particle a in b’s rest frame, that is, by a factor |~pa|/p0a.
The flux factor therefore becomes

Φσ =

(

4mb|~pa|
)−1

.

This expression, being given in a specific Lorentz frame, is not very attractive.
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We can, however, write it in an explicitly Lorentz-invariant form :

Φσ =
1

2λ
(

(pa + pb)2, p2a, p
2
b

)1/2
, (4.13)

where we have introduced the Källén function

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz = (x− y − z)2 − 4yz . (4.14)

It often happens that the colliding particles have masses that are negligible
compared to their combined invariant mass, which is commonly denoted by the
Mandelstam variable s. In that case, we may write

Φσ ≈
1

2s
. (4.15)

This finishes our bootstrap treatment of the relation between connected Green’s
functions and scattering amplitudes, or matrix elements.

4.3.3 A check on dimensionalities

It is instructive to check that the widths and cross section expressions that we
have derived do, indeed, have the correct dimensionality. By dim[ ] we shall
denote the dimensionality of objects. In the first place, from the fact that the
action S must have the same dimension as h̄, we can immediately derive the
dimensionality of the fields8 :

dim

[

ϕ

]

= dim

[

φ

]

= dim

[

h̄1/2

L

]

, (4.16)

where, as before, L denotes a length. Therefore, a connected Green’s function
with n external lines (being nothing much more than the expectation value of
ϕn) has dimension9

dim

[

Cn

]

= dim

[

h̄n/2

Ln

]

. (4.17)

The Dirac delta function imposing wavevector conservation has dimensionality

dim
[

δ4(k)
]

= dim
[

k−4
]

= dim
[

L4
]

. (4.18)

To go from the connected Green’s function Cn to the n-point matrix element
Mn, we have to extract the external propagators as well as the overall wavevec-
tor conservation delta function, and assign a factor h̄1/2 to each external line:
therefore,

dim

[

Mn

]

= dim

[

Cn

(C2)n δ4(k)
h̄n/2

]

= dim

[

Ln−4

]

. (4.19)

8In four spacetime dimensions! In d dimensions it would read dim[ϕ] = dim

[

h̄1/2L1−d/2
]

.
9Higher-order contributions to Green’s functions contain, of course, additional powers of

h̄: but these must occur only in dimensionless combinations with the coupling constants of
the theory.
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The n-particle phase-space integration element dVn has dimensionality L4−2n

as we have seen. Taking into account that the flux factor ΦΓ = 1/2m must have
the dimensionality of 1/m, that is, L, the dimensionality of the decay width of
a single particle into n particles is given by

dim

[

Γ(1→ n)

]

= dim

[

1

m
(Mn+1)

2 dVn

]

= dim

[

L−1
]

, (4.20)

as required. Similarly, for the cross section of two particles going into n particles
we have

dim

[

σ(2→ n)

]

= dim

[

(

1

m

)2

(Mn+2)
2 dVn

]

= dim

[

L2

]

, (4.21)

again as required. Note that the above analysis is kept simple because we have
restricted ourselves to the use of wavevectors rather than mechanical momenta,
which would introduce additional factors of h̄ in the calculation. The other
natural constant, c, need not enter here.

4.3.4 Crossing symmetry

In our treatment of antimatter in the previous chapter we have seen that the
production (absorption) of a particle is, in a sense, æquivalent to the absorption
(production) of its antiparticle. We can make this even more specific as a rela-
tion between various scattering amplitudes : this goes by the name of crossing
symmetry. Consider a generic 2→ 2 scattering process :

a(p1) + b(p2)→ c(q1) + d(q2)

where we have indicated the momenta of the particles. Let us write the corre-
sponding amplitude asM(p1, p2, q1, q2). By moving particles from the initial to
the final state10, or vice versa, we can then find the amplitudes for the crossing-
related processes, for example :

a+ b→ c+ d : M(p1, p2, q1, q2) ,

a+ c̄→ b̄+ d : M(p1,−p2,−q1, q2) ,

a+ d̄→ b̄+ c : M(p1,−p2, q1,−q2) ,

c̄+ d̄→ ā+ b̄ : M(−p1,−p2,−q1,−q2) . (4.22)

Since the momenta of all (anti)particles have positive energy, the minus signs
yield momenta with negative energy. Depending on the type of the particle11,
this may involve an analytic continuation of the amplitude functionM.

10You can visualize this by taking an outgoing particle, say, and dragging its external leg
from the final to the initial state.

11Especially for Dirac particles.
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4.4 Unitarity issues

4.4.1 Unitarity of the S matrix

If M is to be a correct form of the scattering amplitude for a given initial
state to be observed, after time evolution, as a given final state, it must obey
the constraints of unitarity which we shall now discuss. In a more traditional
quantum-mechanical parlance, the initial state is given to us at some time in the
far past, where the incoming particles are supposed to be so widely separated
that they are essentially free : the state of the system is then

|in, t = −∞〉

We now let nature take its course : the incoming particles approach one another,
the interaction is ‘switched on’, and the system evolves into some, possibly very
complicated, superposition of free-particle states :

|in, t = −∞〉 → |in, t = +∞〉

Finally, the final state is observed to be a particular free-particle state (assuming
the final-state particles have been able to move very far away from one another),
that is,

|out, t = +∞〉 .
The probability amplitude for this to happen is of course

M = 〈out, t = +∞|ins, t = +∞〉 ≡ 〈out, t = +∞| S |in, t = −∞〉 , (4.23)

where S is the matrix describing the time evolution of the incoming state from
t = −∞ to t = +∞. Assuming that both the in- and the out-states contain
complete orthonormal bases, the S matrix must be unitary12. The free-particle
states are natural choices for complete orthonormal bases, and we see thatM
is simply a matrix element of the S matrix. We shall investigate this in some
more detail.

For simplicity, let us assume that we can label the initial states with a
discrete label i, and the final states by a similar discrete label f . We can then
write the S matrix element as

Sfi = δfi +Mfi , (4.24)

where the Kronecker delta embodies what would happen if there were no inter-
actions : the only possible observed final state would in that case be identical
to the initial state (two particles, say, continuing on their way without having
interacted). The remainderMfi is the object described by Eq.(4.23) ; it is the
result of the interactions of the theory, and is described by the Feynman dia-
grams. Note thatMii 6= 0 is quite possible ; it corresponds to the case where
the final state happens to reproduce the initial state, so to speak in spite of the

12It might also be anti-unitary, but we shall not consider this.
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interactions. This is called the forward scattering amplitude. Now, the unitarity
of the S matrix is expressed13 as SS† = S†S = 1, or

∑

k

S∗kfSki = δfi , (4.25)

or, in terms ofM :

Mfi +M∗if +
∑

k

M∗kfMki = 0 . (4.26)

As a special case, we can consider f = i : we then have the optical theorem,

2 Re (Mii) +
∑

k

|Mki|2 = 0 , (4.27)

which immediately shows that the forward scattering amplitude must have neg-
ative real part14. Another simple result is the well-known property of unitarity
matrices : by putting f = i in Eq.(4.25) we see that for every S-matrix element
we have

|Sfi| ≤ 1 ∀ i, f (4.28)

which implies thatMfi can not be arbitrarily large. We shall employ this idea
extensively later on.

4.4.2 An elementary illustration of the optical theorem

We consider the following physical process. We start with an empty initial state
i (that is, a state containing no particles). At some moment a source kicks in,
producing an unstable particle with wavevector p, mass m and total width Γ.
Sometime later, the same source absorbs the particle, and at the end the final
state f is empty again. The simple Feynman diagram describing this is

J Jp

Since the initial and final state coincide, f = i and this is a forward scattering
amplitude ; it must obey the optical theorem. We shall now verify this. The
matrix element is given by

Mii =

(

i
J

h̄

)

ih̄

p2 −m2 + imΓ

(

i
J

h̄

)

, (4.29)

so that

Re (Mii) = −
J2

h̄

mΓ

(p2 −m2)
2
+m2Γ2

, (4.30)

13Since S may be an infinite matrix, both conditions are necessary, whereas for a finite
matrix one would suffice.

14A word of caution : in much of the literature, the statement reads that the amplitude
must have positive imaginary part. This is simply due to the fact that in those texts, the S
matrix element is written not δ +M but δ + iM. I do not see any particular virtue in this.
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which is indeed negative. Now, we consider the matrix elements Mki as used
in Eq.(4.27). These describe the initial state i going over in any final state k,
that is, they describe the decay of the particle after it has been produced by the
source :

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���J

p

and we shall denote them by

Mki = −i
J

h̄

h̄

p2 −m2 + imΓ
D , (4.31)

where iD is the contribution of the ‘decay blob’. We then have

∑

k

|Mki|2 =
J2

(p2 −m2)
2
+m2Γ2

∑

k

|D|2 . (4.32)

The optical theorem (4.27) will therefore be satisfied if

Γ =
1

2m

∑

k

h̄ |D|2 . (4.33)

But this is, of course, precisely the prescription for the decay width of the parti-
cle, if we realize that the final state k indicates not only all possible final states,
but also that the summation over k should include the phase-space integration.
This short excercise illustrates both the optical theorem and the computational
prescriptions arrived at before. Note that the factor h̄ corresponds precisely
with the Feynman rule that an external line should carry a factor

√
h̄.

4.4.3 The cutting rules

We shall now consider how the unitarity relation (4.26) can be made useful in the
language of Feynman diagrams. To start, we realize that this equation contains,
in addition to the ‘standard’ matrix element Mfi for initial state i and final
state f , alsoM∗if which describes the (complex conjugate) matrix element for
initial state f going over into final state i, that is, the time-reversed process. We
shall embody this in a useful manner by introducing a cutting line. A cutting
line cuts across diagrams separating them into a ‘left’ and ‘right’ piece. Any
diagram to the left of a cutting line is interpreted in the usual manner ; any
diagram to the right of a cutting line is interpreted to be the complex conjugate
of the time-reversed version of the diagram. That is,
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If the diagram contains oriented lines, the time-reversal also inverts the orien-
tation of those lines (if the orientation is indicated by an arrow, we reverse the
arrow). We can write Eq.(4.26) diagrammatically as
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i k fk = 0 . (4.34)

It is possible to sharpen this equation to make it more useful. In the first place,
Eq.(4.34) holds for whole matrix elements, evaluated to all orders in pertur-
bation theory. This implies that it must also hold for each order separately15.
However, even at some fixed order,Mfi can contain very many diagrams. Con-
sider a somewhat-complicated Feynman diagram in ϕ3 theory :

(4.35)

The corresponding Lagrangian reads

L =
1

2
(∂µϕ)(∂µϕ)−

1

2
m2ϕ2 − 1

6
λϕ3 . (4.36)

The unitarity structure of the above Feynman diagram is not immediately ob-
vious since there are, at this order of perturbation theory, quite a few diagrams
that contribute to this amplitude (58, in fact). We can, however, employ the
following trick. Let us assign a different label to each line in the diagram, in an
arbitrary manner, for instance

1

2

3

4

5
6

7

89

(4.37)

and let us pretend that each line corresponds to a different field. This diagram
can then be interpreted as coming from a theory with 9 distinct fields (with

15If Eq.(4.34) were not to hold order-by-order, this would imply subtle relations between
coupling constants, h̄, and the like. We would then be in a position to actually compute

coupling constants from first principles, which would be good — too good to be true, in fact.
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identical mass) and Lagrangian

L =

9
∑

n=1

(

1

2
(∂µϕn)(∂µϕn)−

1

2
m2ϕ2

n

)

− V ,

V = λ123ϕ1ϕ2ϕ3 + λ245ϕ2ϕ4ϕ5 + λ349ϕ3ϕ4ϕ9

+λ567ϕ5ϕ6ϕ7 + λ789ϕ7ϕ8ϕ9 . (4.38)

Nothing forbids us to assign to the various ϕϕϕ couplings precisely the value λ.
Now, it is easily seen that, in order λ123λ245λ349λ567λ789, the diagram (4.37) is
the only diagram that can contribute in this theory16 ! We can do even more :
by inspection of all possibilities, we can simply realize that the only final states
k in the unitarity condition (4.34) must be precisely k = {2, 3}, {5, 9}, {2, 4, 9}
or {3, 4, 5}, if we want to end up with the right order in perturbation theory17.
In other words,

+ +

+ + + = 0 , (4.39)

where we have omitted the line labellings : indeed, the same identity must
hold for the original diagram (4.35)! This establishes the so-called cutting rules
(also called the Cutkoski rules), which can be most simply expressed in words:
take a diagram and move the cutting line through it from right to left in all
possible manners, making sure that the two halves in which the diagram is cut
remain connected and that neither the inital state or the final state is dissected.
The particles described by internal lines through which the cut runs must be
assumed to be on their mass shell18. The sum of all the possible contributions
then vanishes19.

4.4.4 Infrared cancellations in QED

As an illustration of how the cutting rules may be applied we shall make a
slight jump ahead and consider quantum electrodynamics, that is the theory

16The secret resides in the fact that in V the external fields 1,6 and 8 occur precisely once,
and the other fields precisely twice.

17Note that, for instance, the choice k = {5, 7, 8} would result in the right-hand half of the
diagram being disconnected ; the choice k = {2, 4, 7} is inconsistent since both 6 and 8 are in
the final state.

18This may mean that the situation thus described fails to meet the restrictions of momen-
tum/energy conservation ; then, that contribution vanishes.

19You might object that in a theory with many different fields the symmetry factors of
the diagrams will, in general, be different from those of a theory with only a single field,
and this is true : however, in the summation over the ‘intermediate states’ k we must of
course also include the ‘indentical-particle’ symmetry factor Fsymm, which precisely repairs
the correspondence — another illustration of the crucial rôle of the symmetry factors !
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of photons and electrons. Their Feynman rules will be dicussed later ; for now
it is sufficient to know that the only interaction vertex in the theory is the
three-point vertex

where the oriented lines stand for electrons and positrons, and the wavy line
denotes the photon. Let us consider the 1PI two-loop corrections to the photon
propagator. These are given by
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By applying the cutting rules we can investigate the real part of this two-loop
contribution:
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This set of 10 cut diagrams is, as we can see, equal to

(

+ +

)( )∗

+ (c.c.)
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2

, (4.41)

where integration over the final state is implied. As we shall see, the presence of a
photon in the final state leads to a so-called infrared (IR) divergence arising from
the fact that the probability of emitting an on-shell photon goes to infinity as
the photon energy goes to zero. The process described by the last two diagrams
has therefore an infrared divergence. This divergence is neatly cancelled by
a compensating divergence in the diagrams with a virtual photon in the first
line. This is a well-known fact20 ; but it is instructive to see that the statement
about the cancellation of the infrared divergences can be replaced by the simpler

20And a fortunate one.
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statement that the photon propagator is free from infrared divergences21. This
is one example of a useful rule of thumb : when you encounter loop diagrams,
try to envisage the physics that is described by cutting them. In fact, the
cancellation can be pinpointed further ; the single statement that the single
diagram

is IR-finite means that the IR divergences in
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+ (c.c.)

must cancel between them.

4.5 Some example calculations

4.5.1 The FEE model

As an example of an application of what we have learned so far, we shall inves-
tigate at theory that contains two particle types, one of mass m, denoted by E,
and another denoted by F , of mass M . The Lagrangian density of this theory
is given by

L =
1

2
(∂µϕE) (∂µϕE)−

m2

2
ϕE

2

+
1

2
(∂µϕF ) (∂µϕF )−

M2

2
ϕF

2 − mλ

2
ϕFϕE

2 . (4.42)

There exists a single coupling between two E’s and one F . Note that the
Feynman rule for the vertex is given22 by −imλ/h̄ ; we have introduced a factor
m in order to ensure that

dim[λ] = dim

[

1

h̄1/2

]

with no length scale.

21Two remarks are in order here. In the first place, the virtual-photon diagrams do contain
divergences related to the loop momentum going to infinity : these are ultraviolet (UV)
divergences. The photon propagator is therefore still ultraviolet divegrent, and this is cured
in the usual manner by renormalization. In the second place, the cancellation if IR divergences
takes place even when we restrict the phase space for the outgoing particles, provided that
zero-energy photons are admitted.

22It is customary to leave out the (2π)4δ4() of momentum conservation, since it is present
in all vertex Feynman rules for translation-invariant interactions.
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4.5.2 Two-body phase space

Since we shall consider processes ending in a two-body final state, it is expedient
first to work out the corresponding two-body phase space. For the sake of
generality we shall do this for a final state containing two momenta q1,2

µ with
general masses m1,2. Furthermore we shall write

Pµ = q1
µ + q2

µ , s = PµPµ . (4.43)

The phase space (and with it widths and cross secions) is often most easily eval-
uated in the rest frame of Pµ, in which ~q1 = −~q2. The phase space integration
element is given by23

dV (P ; q1, q2) =
1

(2π)2
d4q1 δ(q1

2 −m1
2) d4q2 δ(q2

2 −m2
2) δ4(P − q1 − q2) .

(4.44)
As a first step, we cancel d4q2 against the four-dimensional Dirac delta, and
write the q1 integration in its not-explicitly-covariant form :

dV (P ; q1, q2) =
1

(2π)2
d3~q1
2q10

δ
(

(P − q1)2 −m2
2
)

. (4.45)

Now, the q1 integration element can be expressed in polar coordinates as

d3~q1
2q10

=
|~q1|2 d|~q1| dΩ

2q10
=

1

2
|~q1| dq10 dΩ , (4.46)

where we denote the ~q1 solid angle by

dΩ = d cos θ dφ (4.47)

with a polar angle θ running from 0 to π and an azimuthal angle φ running from
0 to 2π, and use the fact that

|~q1| d|~q1| = q1
0 dq1

0 . (4.48)

The Dirac delta imposing the mass shell condition on q2 can be written as

δ
(

(P − q1)2 −m2
2
)

= δ
(

s+m1
2 −m2

2 − 2q1
0√s

)

=
1

2
√
s
δ

(

s+m1
2 −m2

2

2
√
s

− q10
)

, (4.49)

where the rest frame of P has been used. We immediately find that

q1
0 =

s+m1
2 −m2

2

2
√
s

, q2
0 =

s+m2
2 −m1

2

2
√
s

, (4.50)

and

|~q1| = |~q2| =
1

2
√
s
λ(s,m1

2,m2
2)1/2 , (4.51)

23It is usual not to include the step functions that require the energies to be positive.
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where the Källén function crops up again. In the Pµ rest frame, the phase space
integration element is therefore given by

dV (P ; q1, q2) =
1

32π2
λ

(

1,
m1

2

s
,
m2

2

s

)1/2

dΩ . (4.52)

4.5.3 A decay process

As a first application, we shall assume that M > 2m so that the F particle can
decay into a pair of E’s:

F (P ) → E(q1) E(q2) .

In lowest order, its single Feynman graph is given by

P

q

q

1

2

The corresponding matrix element is quite simple :

M = −imλ
h̄

(√
h̄
)3

= −imλ
√
h̄ , (4.53)

so that it has dimensionality dim[1/L] as it should. The decay width is therefore

dΓ(F → EE) =
1

2M
|M|2 dV (P ; q1, q2)

1

2!

=
m2λ2h̄

128π2M

√

1− 4m2

M2
dΩ . (4.54)

Note the occurrence of the symmetry factor 1/2! arising from the fact that the
two final-state E particles are indistinguishable. The angular integration is of
course trivial in this simple case, and we immediately find the total width

Γ(F → EE) =
m2λ2h̄

32πM

√

1− 4m2

M2
, (4.55)

with the correct dimensionality dim[Γ] = dim[1/L].

4.5.4 A scattering process

As a second application, we take the mass M of the F particle to be zero. We
now have an extremely primitive picture of the electron-photon system, where
E is the electron and F the photon. We consider the process of ‘Compton
scattering’ :

E(p1) F (p2) → E(q1) F (q2)
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which, to lowest order, is given by two Feynman diagrams:

p
1

q
1p2

q
2 p

1

q
1p2

q
2

The total momentum involved is now

Pµ = p1
µ + p2

µ = q1
µ + q2

µ , (4.56)

and we shall use the invariant products

s = (p1 + p2)
2 , u = (p1 − q2)2 . (4.57)

Again applying the rules for the construction of the matrix element, we find

M = iλ2m2h̄

(

1

s−m2
+

1

u−m2

)

. (4.58)

We shall also introduce the quantity

K ≡ λ(s,m2, 0)1/2 = s−m2 , (4.59)

which allows us to write

u−m2 = −2(p1 · q2) = −
K2

2s
(B + cos θ) , B =

s+m2

s−m2
. (4.60)

Here, θ is the angle between ~p1 and ~q1 in the centre-of-mass frame, that is, the
angle over which the E particle is scattered in the collision. The differential
cross section is now written as

dσ =
λ4 m4 h̄2

64 π2 s

(

1

K2
− 4s

K3(B + cos θ)
+

4s2

K4(B + cos θ)2

)

dΩ . (4.61)

At high energies, where B ≈ 1, the cross section is strongly peaked in the
backward direction. At low collision energy, where s ≈ m2, B is very large
and the angular distribution is flat. The total cross section is found, after some
straightforward algebra, to be

σ =
λ4 m4 h̄2

32 π s

(

2

K2
+

2s

K2m2
− 4s

K3
log

(

1 +
K

m2

))

. (4.62)

At first sight the cross section might appear to diverge at the very lowest ener-
gies, since K vanishes there. However, by carefully expanding the logarithmic
term to third order we find that the poles in K cancel, and

lim
s→m2

σ(EF → EF ) =
λ4 h̄2

48 π m2
. (4.63)
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A remark is in order here. In the first place, the factor λ4 and consequently
the factor h̄2 could have been foreseen from the start. The fact that the cross
section must have dim[σ] = dim[L2] implies that at the threshold, where m is
the only length scale in the problem, there must also be an overall factor 1/m2.
Moreover, n body phase space contains a power π4−3n from its definition ; and
also it contains n− 1 solid angles to be integrated over, each giving rise to24 a
factor π. This means that the total cross section for an n-body final state will
contain a factor π3−2n. In this way, almost the whole cross section formula is
determined, and all the calculational effort is only used to find the numerical
factor 1/48.

24This is to say that the angular integral does not necessarily evaluate to π, but rather that
a factor π invariably arises in the result of a solid-angle integral.
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Chapter 5

Dirac particles

5.1 Pimp my propagator

5.1.1 Extension of the propagator and external lines

So far we have been studying particles that can carry only a limited amount of
information : such a particle is completely specified once we have determined
its identity and its momentum. In this chapter we shall start increasing the
number of properties that particles can carry, by examining how the Feynman
propagator can be modified. Since the pole structure of the propagator is closely
connected with the causality of the theory, and must be used to derive Newton’s
first law in the approximation of propagation over macroscopic distances, we will
not mess around with the denominator of the propagator. The generalizations
we shall propose therefore concern themselves with the numerator, and are of
the form

ih̄
1

p2 −m2 + iǫ
→ ih̄

T (p)
p2 −m2 + iǫ

, (5.1)

where T (p) is some object that informs us that the particle propagating is not
as simple as we have seen so far, but has additional properties. What those
properties are depends, of course, on the choice of T (p).

Now, one very important observation is in order here. The particle prop-
agator never occurs in isolation, but always between two vertices, where the
particle is ‘produced’ and where it is ‘absorbed’1. This implies that, as long as
we have not committed ourselves to particular vertices, a change in the prop-
agator may be compensated to some extent by a change in the vertices. For
instance, suppose that T (p) is a simple number: then the predictions of the
theory will remain unchanged if we opt to multiply the vertices by T (p)−1/2.

1It may be realized that this statement holds true also in the case of external lines, if it is
kept in mind that these are defined in the square of the matrix element.
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Therefore, T (p) must be more complicated than a single number, i.e. it must
have some matrix form. We therefore assume that

T (p)ab =
∑

n

(

U(p)(n)
)a (

W(p)(n)
)

b
, (5.2)

where a, b are some indices living in some linear space. They may be Lorentz
indices2, but not necessarily. Note also that T (p) must not be a simple dyad
(which would be the case if the label n takes only a single value), since in that
case the ‘vectors’ U andW could again be absorbed into the vertices. Therefore
the sum over nmust contain at least two terms. The vertices of the theory must,
of course, contain corresponding indices a, b with which those of the propagator
are contracted, otherwise the matrix element could not be a simple number.

If we now reappraise the truncation argument of the previous chapter, we
see that we can redo it with the more complicated propagator. Again the de-
nominator contribution will end up in the phase space, but the numerator will
be left. We can remedy this by assigning the factorWb to the production matrix
element, and Ua to the decay amplitude, with the understanding that this only
holds if the particle is on-shell. We see that an extension of the propagator nat-
urally leads to new Feynman rules for the external lines as well. In the following
we shall investigate several such extensions.

Note that in the above discussion we have not assumed any particular rela-
tion between the ‘vectors’ U and W . In particular we have not defined W to
be the ‘hermitian conjugate’ of U . In the usual cases of Dirac fermions and of
regular spin-1 bosons, U and W are related by conjugation ; but in the Weyl
formulation for spinors no such conjugation is necessarily implied. This means
that, whereas Dirac spinors are only defined for on-shell, positive-energy parti-
cles (as we shall see), Weyl spinors can be constructed for negative-energy (but
massless) momenta.

5.1.2 The spin interpretation

As we have seen, particles with generalized propagators will carry factors U orW
when they occur as external lines in Feynman diagrams. Such particles therefore
carry, by definition, additional information which is somehow embodied in the
label (n). Adhering to good quantum practice, we shall assume that particles
with different values of (n) are physically distinct from one another even if their
momentum is the same. That is, for p2 = m2 we require

∑

a

(

W(n)
)

a

(

U (n′)
)a

= K δn,n′ , (5.3)

with K some constant (that is, the external-line factors are (multiples of) the
elements of an orthonormal set). This implies that

T (p)2 ∝ T (p) , (5.4)

2As in the case of spin-1 particles, see later on.
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In other words, T must have properties of a projection operator. By simple
counting arguments, it would seem reasonable to interpret the external factors
U (n) as members of a (k−1)/2-spin multiplet if the label (n) runs over k values :
however, the more careful treatment is to first see how the U transform under
rotations in the rest frame of pµ, and only then to assign them a spin interpre-
tation3. We shall do this explicitly for various particle types.

Before closing this section, we point out that the particles we have studied
in the previous chapter, whose propagator has the trivial numerator T (p) = 1,
of course transform trivially (i.e. not at all) under rotations : such particles are
therefore scalars, or spin-0 particles.

5.2 The Dirac algebra

5.2.1 The Dirac matrices

Probably the simplest nontrivial choice for T (p) is to let it depend linearly on
the momentum4. At this point, an immediate objection may be raised ; for the
momentum carries a Lorentz index. Now we do not want to contract this index
with a corresponding index in one of the vertices since this would simply amount
to a redefinition of the vertices. On the other hand, we cannot afford to have
the Lorentz index floating loose, which would destroy the Lorentz invariance of
the theory. We therefore choose

T (p) = pµγµ +K m 1 . (5.5)

Here, γµ (µ = 0, 1, 2, 3) is a set of four matrices since as we have argued the
propagator’s numerator must be of matrix form5. The symbol 1 stands for the
unit matrix of whatever space the γ matrices live in, and the term Km1 has
been added since there is no clear reason to forbid it from the start. Of course,
simply prescribing the γ matrices would again destroy the Lorentz invariance
of the theory since any matrix element would have γ’s all over the place. We
therefore require that, in the final form of the matrix element, all reference to
the specific choice of these matrices can be removed in a Lorentz-invariance-
respecting manner. That is, the γ matrices must be endowed with a property
that allows us to remove them from the final answer. The momenta with which
they are contracted should then end up in ordinary Minkowski products. That
is, there must be a requirement of the form

Q(γµ, γν, γρ, . . . , γσ) = (some tensor)
µνρ···σ

, (5.6)

3This becomes particularly important in the case of massless particles.
4As has been stated, we shall use ‘momentum’ and ‘wavevector’ interchangeably, with the

understanding that in every serious application of the Feynman rules, the dimensionality must
be L−1.

5Another argument against the γ’s being simple numbers is that, in that case, they would
define a preferential vector γµ. This would destroy the assumed isotropy of Minkowski space,
and a frame in which ~γ vanishes would deserve to be equated with Newton’s absolute reference
frame.
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where Q is some algebraic combination of Dirac matrices. This had better be
a simple as possible, otherwise we might not be able to eliminate the Dirac
matrices from very simple amplitudes. A moment’s reflection will tell us that
essentially the only possible such property is6

γµγν + γνγµ = 2gµν1 . (5.7)

Note that this is a matrix equation: in its full glory it would read

∑

c

{

(γµ)
a
c(γ

ν)
c
b + (γν)

a
c(γ

µ)
c
b

}

= 2 gµν δab ,

but, as is conventional, we shall not explicitly write out the Dirac indices unless
it is unavoidable. Note also that Eq.(5.7) immediately confirms that the Dirac
objects γ cannot be simple numbers7. Dirac matrices with different indices
anticommute, while

(γ0)2 = 1 , (γk)2 = −1 (k = 1, 2, 3) . (5.8)

We also find immediately that

γµ γµ = 4 . (5.9)

From Eq.(5.8) we see that the eigenvalues of γ0 are either 1 or -1 ; and those of
γ1,2,3 are either i or −i. We therefore have the following Hermiticity properties
for the Dirac matrices :

γ0
†
= γ0 , γk

†
= −γk (k = 1, 2, 3) . (5.10)

For the rest of these notes, the eigenvalues of the Dirac matrices are actually
unimportant. Any choice of Dirac matrices satisfying Eqs.(5.7) is acceptable.
Many possible choices have been proposed in the literature. That none of them
possesses a physical advantage over the others follows from the ‘fundamental the-
orem of Dirac matrices’ which shows that any two representations of the Dirac
algebra (5.7) can be transformed into each other8. This again strengthens our
conviction that any result involving Dirac particles should be deriveable with-
out any reference whatsoever to their particular form, and we shall endeavour
to adhere to this. Note that, at this point, we have not specified the dimension-
ality of the Dirac matrices. In order to avoid confusion with Lorentz indices,
the Dirac indices will be called spinor indices , and the objects U andW for this
propagator will be called spinors. Spinors carry only a single spinor index.

6The anticommutation is necessary because of the symmetry of gµν in its indices. Another
possibility might read something like γµγνγαγβ = ǫµναβ1 but this woud not allow us to
remove fewer than 4 Dirac matrices in any matrix element. The factor 2 in Eq.(5.7) is simply
conventional.

7Because in that case the fact that g01 = 0 would imply that γ0 or γ1, or both, vanish:
and that would clash with g00 = −g11 = 1.

8We defer the proof of this theorem to Appendix 10.8.
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Before finishing this section, let us introduce the Feynman ‘slash’ notation :
if aµ is a Lorentz vector, we shall mean by /a its contraction with Dirac matrices:

/a ≡ aµ γµ . (5.11)

The Dirac equation (5.7) can therefore also be written as9

/a/b+ /b/a = 2 (a · b) ∀ aµ, bν , (5.12)

with the corollary that
/a/a = a2 . (5.13)

We stress that the vector object aµ and the matrix /a encode exactly the same
information ; further on we shall see how the vector can be recovered once
the matrix is given. A few simple results, which can be checked by repeated
application of the anticommutation rule, are

γµ /a γµ = −2 /a ,

γµ /a /b γµ = 4(a · b) . (5.14)

5.2.2 The Clifford algebra

By the anticommutation relation (5.7), any product of more than four Dirac
matrices can be reduced to a smaller number. Let us define the enormously
useful object10

γ5 ≡ i γ0 γ1 γ2 γ3 , (5.15)

for which we can immediately derive that

γ5γµ = −γµγ5 , (γ5)2 = 1 . (5.16)

Also we can define the commutator of Dirac matrices as

σµν ≡ i

2
[γµ, γν ] =

i

2
(γµγν − γνγµ) . (5.17)

Obviously there are 6 independent σ matrices. The most general object that
can be constructed using Dirac matrices is therefore

Γ = S 1 + Vµγ
µ + Tµνσ

µν + Aµ γ
5γµ + P γ5 , (5.18)

and these objects form the Clifford algebra. We see that T (p) must be an
element of the Clifford algebra. The various coefficients are called, repectively,
the scalar (S), vector (Vµ), tensor (Tµν), axial-vector (Aµ) and pseudo-scalar

9It is customary to leave the unit matrix 1 out of the notation. Its presence can always be
inferred where necessary.

10In some texts the definition of γ5 is slightly different, for instance it may lack the factor
i. Some care is necessary in comparing results between different texts. The reason why it is
called γ5 and not γ4 is that in some older treatments the Minkowski indices were assumed to
run from 1 to 4, with the 4th index playing the rôle of our 0th one.
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(P ) coefficients. Since the tensor coefficient may be taken antisymmetric, there
are in total 1+4+6+4+1=16 coefficients. This suggests (but does not prove)
that the Dirac matrices are 4× 4 matrices. Given an element Γ in the Clifford
algebra, we can recover its coefficients using the trace identities that we shall
discuss below.

Finally, we can define the two Clifford elements

ω± =
1

2

(

1 ± γ5
)

. (5.19)

These are mutually exclusive projection operators ; that is,

ω2
± = ω± , ω+ω− = ω−ω+ = 0 . (5.20)

These operators are widely used.

5.2.3 Trace identities

A very important rôle is played by traces of Dirac matrices or Clifford elements.
To start, we have of course

Tr (1) = N , (5.21)

where N is the (as yet unknown) dimensionality of the Dirac matrices11. Using
γ5 and the cyclicity property of the trace operation, we see that

Tr (γµ) = Tr
(

γµγ5γ5
)

= Tr
(

γ5γµγ5
)

= −Tr
(

γµγ5γ5
)

= −Tr (γµ) (5.22)

so that the trace of a single Dirac matrix vanishes ; and by the same method
we see that the trace of a product of an odd number of Dirac matrices is also
zero, in particular

Tr
(

γ5γµ
)

= 0 . (5.23)

For two matrices we have

Tr (γµγν) =
1

2
Tr (γµγν + γνγµ) = N gµν , (5.24)

from which we see that the trace of a σ matrix must vanish. To continue,

Tr
(

γ5
)

=
1

4
Tr
(

γ5γαγα
)

=
1

4
Tr
(

γαγ5γα
)

= −1

4
Tr
(

γ5γαγα
)

= −Tr
(

γ5
)

,

(5.25)
so that also this trace evaluates to zero. The trace of 4 Dirac matrices requires
a bit more anticommutation :

Tr
(

γµγνγαγβ
)

= Tr
(

2gµνγαγβ − 2gµαγνγβ + 2gµβγνγα − γνγαγβγµ
)

,
(5.26)

so that, by cyclicity,

Tr
(

γµγνγαγβ
)

= N
(

gµνgαβ − gµαgνβ + gµβgνα
)

; (5.27)

11We shall prove later on that N = 4.
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and the same method may be used to arrive at the 15 terms for a trace of 6 Dirac
matices, the 105 terms for a trace of 8 matrices, and so on12. Furthermore, since
the anticommutation operations used in Eq.(5.26) might as well have moved to
the left inside the trace instead of to the right, we immediately find that13

Tr (γµ1 γµ2 γµ3 · · · γµn−1 γµn) = Tr (γµn γµn−1 · · · γµ3 γµ2 γµ1) . (5.28)

Since γ5 is the product of all four different Dirac matrices, the product γ5γµγν

(with µ 6= ν) is actually a product of two different Dirac matrices, and therefore

Tr
(

γ5γµγν
)

= 0 . (5.29)

Finally, it is immediately seen that

Tr
(

γ5γµγνγαγβ
)

= iNǫµναβ . (5.30)

Returning to the general Clifford algebra element Γ, we can straightforwardly
derive the following results :

Tr (Γ) = N S ,

Tr (Γ γµ) = N V µ ,

Tr (Γ σµν) = 2N T µν ,

Tr
(

Γ γ5γµ
)

= −N Aµ ,

Tr
(

Γ γ5
)

= N P . (5.31)

This shows that we can indeed recover all coefficients from a given Γ. It also
leads to the following useful insight : if all the above five traces vanish, then
Γ itself must be identically zero. The above method of computing the Clifford
coefficients from the algebra element is also called Fierzing.

A final, important remark : we have shown that the trace identities, which
have been obtained using only Eq.(5.7), evaluate to expressions containing only
the metric and the Levi-Civita symbol, which are Lorentz tensors. Therefore, if
we can show that all matrix elements (or, at a pinch, their absolute squares) can
be written as traces, we have realized our goal : the particular representation of
the Dirac matrices is irrelevant, and all possible choices will lead unambiguously
to a unique result.

5.2.4 Dirac conjugation

The linear space in which the Dirac matrices operate can be endowed with an
attractive notion of conjugation, called Dirac conjugation, which we shall now
construct. Denoting the Dirac conjugation by an over-bar, we require that the
Dirac matrices be all self-conjugate :

γµ = γµ , µ = 0, 1, 2, 3 . (5.32)

12It is clear that such trace evaluations are best performed by computer algebra.
13For even n, we have the proof here ; for odd n it is trivial.
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Obviously, then, Dirac conjugation cannot be simple Hermitean conjugation,
and we look for a definition of the form

Γ = Ω Γ† Ω−1 (5.33)

for any Clifford element Γ ; such a form ensures the reasonable property

Γ1Γ2 = Γ2 Γ1 (5.34)

for two Clifford elements. Double conjugation should be equal to the identity :

Γ =
(

Γ
)

= Ω
(

Ω−1
)†

Γ Ω†Ω−1 = B−1Γ B , B = Ω†Ω−1 . (5.35)

The element B must therefore commute with any Clifford element, which implies
that B is a multiple of the unit element (this is a variant of Schur’s lemma, see
excercise ??). Without loss of generality we may therefore take B = 1, so that
Ω is Hermitean. The straightforward choice (in fact the only one, see excercise
??) is therefore to take Ω = γ0, and the Dirac conjugate is then defined as

Γ = γ0 Γ† γ0 . (5.36)

For a spinor ξ (which carries an upper spinor index) we have

ξ = ξ† γ0 , (5.37)

which is seen to carry a lower spinor index. A conjugate spinor η, which carries
a lower index, obeys

η = η , (5.38)

which has an upper index. A spinor sandwich14 is an object of the form

η Γ ξ ,

and it carries no spinor indices as can be seen ; reasonably, we have

η Γ ξ = ξ Γ η =

(

η Γ ξ

)∗

. (5.39)

Further conjugacy properties follow immediately from Eq.(5.32) :

σµν = σµν , γ5γµ = γ5γµ , γ5 = −γ5 , ω± = ω∓ . (5.40)

In order for a general Clifford element of the form (5.18) to be self-conjugate,
the coefficients S, V µ, T µν and Aµ must be real, and P imaginary.

The standard Dirac spinors which we shall investigate are defined such that
W = U , although as we have already mentioned this is not an unavoidable
choice to make. Note that the Dirac choice implies that

T (p) = T (p) . (5.41)

14Named after John Montagu, 4th Earl of Sandwich, PC, FRS (13 November 1718 30 April
1792).
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5.2.5 Sandwiches as traces

Consider a spinor sandwich:
η Γ ξ .

In terms of explicit indices, this reads

η Γ ξ =
∑

a,b

(η)a (Γ)
a
b ξ

b . (5.42)

Once we realize that the individual terms in this double sum are, in fact, simple
numbers, it is clear that we may also write

η Γ ξ =
∑

a,b

ξb (η)a (Γ)
a
b = Tr (ξ η Γ) , (5.43)

where ξη is seen as a (dyadic) matrix. This ‘mental flip’, whereby we may sud-
denly interpret the combination spinor-conjugate spinor as a matrix, frequently
turns out to be extremely useful in the evaluation of objects involving Dirac
matrices.

5.2.6 A Fierz identity

As an application of what we have learned of the Clifford algebra, we shall prove
the Fierz identity. This deals with the object

F (1, 2, 3, 4) = ξ1ω+γ
µξ2 ξ3ω+γµξ4 , (5.44)

where the ξ’s are arbitrary spinors. Obviously, F (1, 2, 3, 4) = F (3, 4, 1, 2). Now,
as F stands denoted above, it appears to be the (Minkowski) product of two
spinor sandwiches, but we may also (by the ‘mental flip’ mentioned above) see
it as the single sandwich

F (1, 2, 3, 4) = ξ1ω+γ
µ
(

ξ2ξ3
)

ω+γµξ4 , (5.45)

since ξ2ξ3 is an element of the Clifford algebra. We therefore have coefficients
such that

ξ2ξ3 = S + Vαγ
α + Tαβσ

αβ +Aaγ
5γα + Pγ5 . (5.46)

The contraction over the indices µ is then possible :

ω+γ
µξ2ξ3ω+γ

µ =

= ω+γ
µ
(

Vαγ
α +Aαγ

5γα
)

ω+γµ

= ω+γ
µ
(

Vαγ
α +Aαγ

5γα
)

γµ

= −2ω+ (Vαγ
α −Aαγ

α) , (5.47)

where we have used the fact that ω+Γω+ = ω+ω−Γ = 0 if Γ contains an odd
number of Dirac matrices15. We can therefore write

F (1, 2, 3, 4) = −2ξ1ω+ (Vα −Aα) γ
αξ4 . (5.48)

15So that S, T , and P drop out.
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Now, we also know that, whatever the spinors ξ2 and ξ3 are,

Vα =
1

N
Tr
(

ξ2ξ3γα
)

=
1

N
ξ3γαξ2 ,

Aα = − 1

N
Tr
(

ξ2ξ3γ
5γα
)

= − 1

N
ξ3γ

5γαξ2 . (5.49)

This leads us to the alternative form

F (1, 2, 3, 4) = − 2

N
ξ1ω+

(

ξ3
(

1 + γ5
)

γαξ3

)

γαξ4

F (1, 2, 3, 4) = − 2

N
ξ1ω+γ

αξ4 ξ3
(

1 + γ5
)

γαξ3

= − 4

N
F (1, 4, 3, 2) . (5.50)

As we have already mentioned, we shall show that N = 4 and the Fierz identity
then becomes

F (1, 2, 3, 4) = −F (1, 4, 3, 2) . (5.51)

In words, the spinors ξ2 and ξ4 may be interchanged at the price of a minus
sign16.

5.2.7 The Chisholm identity

Consider a Clifford algebra element Γ that consists of only an odd number of γ
matrices (that is, one or three). In that case it has the decomposition

Γ = Vµ γ
µ +Aµ γ

5γµ . (5.52)

Let us define the reverse ΓR as the result of writing all the Dirac matrices
involved in the reverse order17. By the reflection property of Eq.(5.28), this
means that

Tr
(

ΓR
)

= Tr (Γ) , (5.53)

for all elements of the Clifford algebra. In the present case, we have

ΓR = Vµ γ
µ −Aµ γ

5γµ . (5.54)

Therefore,
ΓR + Γ = 2Vµ γ

µ . (5.55)

We immediately arrive at the so-called Chisholm identity :

γµ Tr (Γ γµ) =
N

2

(

Γ + ΓR

)

. (5.56)

This identity is quite be useful in the evaluation of spinor sandwiches that
contain a free Lorentz index.

16This is very suggestive, once we are convinced that the Dirac system describes fermions.
However, the Fierz identity holds only for this particular sandwich, and relies heavily on the
presence of the ω±. On the other hand again, it is eminently suited to resolve a potential
problem in the Fermi model of muon decay, which we shall discuss later on.

17Note that, fortunately, (γ5)R = γ5, so that (γ5γµ)R = −γ5γµ.
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5.3 Dirac particles

5.3.1 Dirac spinors

The requirements on the object T (p) that we have gathered so far are that it
be a member of the Clifford algebra, and that

T (p)2 = T (p) , T (p) = T (p) , (5.57)

although by a renormalization we may relax the first requirement into a propor-
tionality. Now, it must be remembered that any modification of the propagator
may be compensated for by a transformation of the vertices : so, if there is a
Clifford-algebra object Σ such that

ΣΣ = ΣΣ = 1 ,

then, effectively, the propagator

Σ T (p) Σ

is equivalent to T (p) itself. We may then perform a search18 through all inequiv-
alent possibilities for T . The upshot is that there are precisely four projection
operators, for a choice of two Minkowski vectors kµ and sµ such that

k · k = 1 , s · s = −1 , k · s = 0 , (5.58)

and they read

Π(λ1, λ2) =
1

4

(

1 + λ1/k

)(

1 + λ2γ
5/s

)

, (5.59)

where λ1,2 = ±1. We have

Π(λ1, λ2) = Π(λ1, λ2) (5.60)

and
Π(λ1, λ2)Π(λ

′
1, λ
′
2) = δλ1,λ′

1
δλ2,λ′

2
Π(λ1, λ2) (5.61)

and also we conclude that, since there are precisely 4 projection operators,
we can settle for N = 4 for the Dirac matrices19. Since for on-shell particles

18This is a quite tedious task, in particular the unearthing of the necessary Σ matrices.
This is relegated to Appendix 8, based on the efforts of J. de Groot.

19This presupposes that a four-dimensional choice of dirac matrices is actually possible.
This is the case, witness the so-called Pauli representation :

γ0 =





1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



 , γ1 =





0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



 ,

γ2 =





0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0



 , γ3 =





0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0



 . (5.62)

Any other representation will do as well: that is the whole point of it !
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p2 = m2 we can settle on kµ = pµ/m, and then the new degree of freedom is
the choice of the vector sµ which we shall call the spin vector. We are, then,
naturally led to define two Dirac spinors, depending on momentum and spin
vector, by

u(p, s)u(p, s) =
1

2

(

/p+m

)(

1 + γ5/s

)

,

v(p, s)v(p, s) =
1

2

(

/p−m
)(

1 + γ5/s

)

. (5.63)

These are defined for momenta pµ that are on-shell, and have positive energy
p0. To see this last property, inspect

2p0 = Tr
(

u(p, s)u(p, s)γ0
)

= u(p, s)γ0u(p, s) = u(p, s)†u(p, s) , (5.64)

which is cleary positive ; and the same goes for the spinor v. Spinors for negative-
energy particles can be defined, but then they will not be Dirac spinors and the
relation W = U does not hold. The following properties are easily ascertained :

(/p±m)2 = ± 2m(/p±m) , (/p+m)(/p−m) = 0 ,

(1 ± γ5/s)2 = 2(1± γ5/s) , (1 + γ5/s)(1− γ5/s) = 0 ,

(/p±m) and (1 + γ5/s) commute , (5.65)

provided that p · p = m2, s · s = −1 and p · s = 0. We can immediately conclude
that

u(p, s)u(p, s) = 2m , v(p, s)v(p, s) = −2m ,

u(p, s)v(p, s′) = 0 , u(p, s)u(p,−s) = 0 . (5.66)

Another point to be made here, and used later, is that the Dirac spinors contain
all the information about their momentum and spin vectors. That is, if we are
told that ξ is some Dirac spinor, then we can at once determine whether it is of
the form u(p, s) or v(p, s) by computing ξ̄ξ and using Eq.(5.66) ; this will also
tell us the value of m. If ξ = u(p, s), we can recover pµ and sµ from

ξ̄ γµ ξ = 2pµ , ξ̄ γ5γµ ξ = −2msµ ; (5.67)

if, on the other hand ξ = v(p, s) we use

ξ̄ γµ ξ = 2pµ , ξ̄ γ5γµ ξ = +2msµ . (5.68)

5.3.2 Example of the Casimir trick

In the last section we saw that u-spinors with the same momentum p and op-
posite spin vectors are orthogonal. Could there be other spin vector choices
also yielding an orthogonal state ? To this end we can consider u(p, s)u(p, s′)
where sµ and s′µ are spin vectors. If the spinors refer to orthogonal quantum
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states, then the absolute square of the spinor product must vanish. We shall
now compute this exactly, by turning the product into a trace using the so-called
Casimir trick. It helps to write the Dirac indices explicitly for once :

|u(p, s)u(p, s′)|2 =

=
∑

a,b

(

u(p, s)
)

a

(

u(p, s′)
)a (

u(p, s′)
)

b

(

u(p, s)
)b

=
∑

a,b

(

u(p, s)
)b (

u(p, s)
)

a

(

u(p, s′)
)a (

u(p, s′)
)

b

=
∑

a,b

(

u(p, s)u(p, s)
)b

a

(

u(p, s′)u(p, s′)
)a

b

=
∑

b

(

u(p, s)u(p, s)u(p, s′)u(p, s′)
)b

b

= Tr
(

u(p, s)u(p, s) u(p, s′)u(p, s′)
)

. (5.69)

For any correctly constructed amplitude involving Dirac particles, its absolute
square is always amenable to the Casimir trick : traditionally, therefore, the
evaluation of such amplitudes is done in this way20. This establishes the last
requirement for the uniqueness (up to a phase) of matrix elements involving
Dirac particles (cf. section 5.2.3). We can evaluate the trace by standard
operations. For didactical purposes we give them here in excruciating detail :

Tr
(

u(p, s)u(p, s) u(p, s′)u(p, s′)
)

=

=
1

4
Tr
(

(/p+m)(1 + γ5/s)(/p+m)(1 + γ5/s′)
)

=
1

4
Tr
(

(/p+m)2(1 + γ5/s)(1 + γ5/s′)
)

=
m

2
Tr
(

(/p+m)(1 + γ5/s)(1 + γ5/s′)
)

=
m

2
Tr
(

/p+m+ /pγ5/s+mγ5/s+ /pγ5/s′ +mγ5/s′ + /pγ5/sγ5/s′ +mγ5/sγ5/s′
)

=
m

2
Tr
(

m+mγ5/sγ5/s′
)

=
m

2
Tr (m−m/s/s′) = 2m2

(

1− (s · s′)
)

. (5.70)

Note that only two out of the eight terms contain the right number of Dirac
matrices to survive the trace. Since we can work in the pµ rest frame, where
the spin vectors must be spatial unit vectors, we conclude that, in that frame

|u(p, s)u(p, s′)|2 = 2m2
(

1 + ~s · ~s′
)

. (5.71)

The states are only strictly orthogonal if ~s′ = −~s.
20Note that there is a price: the length of the expressions is doubled by the squaring, and if

the amplitude contains many diagrams the algebra can become very cumbersome indeed. A
lot of computational shortcuts have been proposed, the most useful of which appears to be not
to bother with squaring at all but rather to evaluate the spinor products themselves directly
as complex numbers, by so-called spinor techniques. On the other hand, the existence of the
Casimir trick ensures that, as required, one can completely get rid of the Dirac matrices in
the prediction of cross sections using only their anticommutation properties.
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5.3.3 The Dirac propagator, and a convention

We have now arrived at a possible choice for the Dirac propagator. Since the
two spin states described by uu should propagate in the same manner21, we
shall use the projection operator

T (p) = /p+m , (5.72)

and adopt this choice also off the mass shell (where it is actually used). The
Dirac propagator therefore takes the form

ih̄
/p+m

p2 −m2 + iǫ
.

The fact that the numerator is linear in p means that the propagator is oriented,
in contrast to what we have used so far. To indicate this we define the orientation
with an arrow, and adhere to the convention that the momentum is counted in
the direction of the arrow, irrespective of the sign of the energy component. The
first Dirac Feynman rule therefore becomes

k
↔ ih̄

/k +m

k · k −m2 + iǫ
internal lines

Feynman rules, version 5.1 (5.73)

In writing out Feynman diagrams containing Dirac particles, we of course have
to keep track of the Dirac indices resident in propagator and vertices. This may
lead to incredibly cumbersome notation, that may however be greatly simplified
if we adopt the following writing convention : write out the Dirac-index
carrying factors in order, moving against the orientation of the line.
Then, all these factors are contracted together using the usual rules for matrix
multiplication, and one hardly ever needs to write the Dirac indices explicitly.
This convention is really to be urged on anyone contemplating any calculation
involving Dirac particles22 !

A final word on notation : since
(

/p+m
) (

/p−m
)

= p2 −m2 , (5.74)

the Dirac propagator might be written as

ih̄
/p+m

p2 −m2 + iǫ
=

ih̄

/p−m+ iǫ
. (5.75)

In instances were the iǫ can be neglected, this is certainly allowed ; however in
more delicate situations (such as inside loops) the first alternative is probably
to be preferred. Nevertheless we shall occasionally also use Eq.(5.75).

21Otherwise we would not consider them to be states of the same particle
22Try it out for yourself ; after at most ten minutes you will be convinced.
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5.3.4 Truncating Dirac particles : external Dirac lines

Let us now return to the truncation argument that gave us the Feynman rule for
external lines in chapter 4. We shall redo this for Dirac particles moving between
production and decay. As a first case, let the ‘p’-line connecting production
and decay be oriented from production to decay, as indicated in the following
diagram :
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According to the convention described above we then have for the amplitude

M = [B]
ih̄(/p+m)

p2 −m2 + imΓ
[A] . (5.76)

Note that, in this amplitude, the factor [A] must carry the upper Dirac index
of a spinor, and [B] the lower index of a conjugate spinor. pµ, obviously, carries
positive energy. As we let Γ vanish and pµ approaches the mass shell, we may
then write

/p+m =
∑

s

u(p, s) u(p, s) , (5.77)

where the sum over s runs over two values, sµ and−sµ. Following the truncation
argument, we readily see that the spinor u(p, s) must then be included in the
decay amplitude, and u(p, s) in the production amplitude.

In the alternative case, where the line is oriented against the flow of energy,
the amplitude is given by
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and reads (again with our convention !)

M = [A]
ih̄(−/p+m)

p2 −m2 + imΓ
[B] . (5.78)

Note that it is now [A] that is the conjugate spinor, and [B] the regular one. Of
course, they describe a physical process different from the first case ! We are
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now forced by the negativity of the energy to write

−/p+m = −
∑

s

v(p, s) v(p, s) . (5.79)

The sign flip in the projection operator is of course precisely that which turns
a particle description (with negative energy, moving backwards in time along
the orientation of the propagator) into the antiparticle description, with pos-
itive energy. The truncation argument then tells us that v(p, s) must be the
factor associated with the production, and v(p, s) must be associated with the
annihilation, of the antiparticle. There remains the question of where to put
the left-over Fermi minus sign. Consistently, we may decide to keep it with the
v, in which case we arrive at the following Dirac Feynman rules :

k
↔ ih̄

/k +m

k · k −m2 + iǫ
internal lines
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√
h̄ v(p, s) outgoing antiparticle
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p,s
↔ −

√
h̄ v(p, s) incoming antiparticle

Feynman rules, version 5.2 (5.80)

The awkward-looking minus sign is usually subjected to the argument that any
matrix element containing an incoming antiparticle will have the factor −v in
each of its diagrams, and since we are interested in absolute values squared
anyway, there would appear to be little harm in deleting this overall minus sign
from the Feynman rules : and this is what is commonly done. A little reflexion,
though, will remind us that the sign of the amplitude’s real part is fixed by
unitarity, and now we have changed it ! Clearly, the minus sign will be back to
haunt us later on.

5.3.5 The spin of Dirac particles

We shall now determine the spin of Dirac particles. Although the fact that they
have two orthonormal spin states strongly suggests that they have spin-1/2,
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a real proof must rest on the way they form a representation of the rotation
group. The rotation group is, of course, a subgroup of the Lorentz group.
Now, we have argued that the vector pµ and the matrix /p contain exactly the
same information, for any vector pµ. Therefore, we must be able to find how /p
transforms under a Lorentz transformation. Let us define by Λ(p; q) the minimal
Lorentz transformation, that is it makes pµ go over in qµ while keeping any
vector rµ unchanged for which p · r = q · r = 0. Rotations are an example : in
that case p0 = q0 = 0, |~p| = |~q|, and ~r ·~p = ~r ·~q = 0. Since /p is a matrix, the effect
of a Lorentz transformation must be represented by a matrix transformation,
that is

Λ(p; q) : /p → Σ1 /p Σ2 . (5.81)

Since we must ensure that Dirac conjugation commutes with Lorentz transfor-
mation, we must have Σ2 = Σ1 ; and in order to have matrix multiplication
commute with Lorentz transformations as well23 we must have Σ2Σ1 = 1. We
conlude that

Λ(p; q) : /p → Σ /p Σ , Σ Σ = 1 . (5.82)

The explicit form of Σ reads24

Σ = C

(

1 +
/q/p

p2

)

, |C|2 =
p2

(p+ q)2
. (5.83)

You can simply check that this is indeed correct :

Σ Σ = |C|2
(

1 +
/q/p+ /p/q

p2
+
/q/p/p/q

p4

)

= |C|2
(

1 +
2(pq)

p2
+
p2q2

p4

)

= 1 , (5.84)

and

Σ /pΣ = |C|2
(

/p+
/q/p/p+ /p/p/q

p2
+
/q/p/p/p/q

p4

)

= |C|2
(

/p+ 2/q +
/q/p/q

p2

)

= /q , (5.85)

where we have used the anticommutation result /q/p/q = 2(pq)/q − /pq2. The other
requirements, Σ/qΣ = /p and Σ/rΣ = /r, are proven trivially. For general Clifford
elements Γ, we have now also ensured that

Γ → Σ Γ Σ (5.86)

23So that we can either first mutiply /p1 and /p2, and then Lorentz-transform them, or do
the Lorentz transform first and the multiplication afterwards.

24This form tacitly assumes that under minimal Lorentz transforms the sign of p2 and
(p+ q)2 are the same. This is not obvious ; however, for boosts and spatial rotations it does
hold.
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under Lorentz transformations. It is somewhat surprising to see that the form of
the Lorentz transformation in Clifford space is quite simple. Since all spinorial
dyads ξη are Clifford elements, we find from the above that the transformation
rules are

ξ → Σ ξ , ξ → ξ Σ . (5.87)

Let us now select the spinor of a particle in its rest frame, and consider rota-
tions of the space axes. By xµ, yµ and zµ we shall mean the four-dimensional
extensions of the spatial unit vectors in the x-, y- and z-directions, respectively.
A rotation Σz over an infintesimal angle θ from x towards y around the z axis25

is then determined by choosing

pµ = xµ , qµ = cos(θ)xµ + sin(θ)yµ ≈ xµ + θyµ , (5.88)

if we restrict ourselves to first order in θ. To this order, we find that |C| = 1/2,
and so

Σz ≈
1

2
(1− (/x+ θ/y)/x) = 1 +

θ

2
/x/y . (5.89)

(realize that x2 = y2 = z2 = −1). The generators of the rotation group must
therefore be26

Tx = β/y/z , Ty = β/z/x , Tz = β/x/y , (5.90)

where we have used cyclicity, but not specified the constant β. This constant
can be determined from the rotation group algebra requirement:

[Tx, Ty] = TxTy − TyTx = ih̄Tz , (5.91)

which for the Dirac system is seen to read

[Tx, Ty] = β2
(

/y/z/z/x− /z/x/y/z
)

= 2β2/x/y = 2β Tz , (5.92)

from which we see that β = ih̄/2. Noticing also that27

Tz
2 = β2/x/y/x/y = −β2x2y2 =

h̄2

4
= Tx

2 = Ty
2 , (5.93)

we conclude that the total-spin operator comes to

~T 2 = Tx
2 + Ty

2 + Tz
2 =

3

4
h̄2 . (5.94)

The spinors are, therefore, representatives of a spin-1/2 system.

25Here the confusing active-passive distinction rears its ugly head. We shall not worry about
it since the rotation algebra is the same in each case.

26By inserting the Pauli representation of the Dirac matrices, one may figure out that these
generators are nothing but the Pauli matrices in disguise. The present treatment aims at a
more relativistic description.

27The fact that the square of any of the generators is proportional to the unit matrix is
more or less a coincidence ; for systems with higher spins it no longer holds.
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5.3.6 Full rotations in Dirac space

It is instructive to see how Dirac particles behave under certain non-infinitesimal
rotations. To this end, consider the action of a rotation over π/2 in the x − y
plane ; we denote this by

Σ(π/2) =
1√
2

(

1− /y/x
)

. (5.95)

Taking powers of this rotation operator, we obtain, successively,

Σ(π) = Σ(π/2)2 = −/y/x ,

Σ(2π) = Σ(π/2)4 = −1 ,

Σ(4π) = Σ(π/2)8 = 1 . (5.96)

We see that a full rotation over 2π changes the sign of any spinor state ; to
obtain the identically original state we have to rotate, instead, over 4π. In
standard quantum-mechanical parlance, we say that the wave function for spin-
1/2 particles is two-valued. Of course, under a rotation over just 2π any spinor
sandwich is again transformed into itself.

5.3.7 Massless Dirac particles ; helicity states

In the projection operators u(p, s)u(p, s) and v(p, s)v(p, s) as we have defined
them, the limit m → 0 appears unproblematic. There is, however, a subtlety.
Let us take a Dirac particle with definite helicity : in that case, the spin vector is
parallel to the direction of motion28. Let us take ~p along the z axis for simplicity.
Then, the requirements s2 = −1, (ps) = 0 determine that

pµ =









p0

0
0
p









, sµ = sµ‖ ≡









p/m
0
0

p0/m









, (5.97)

where p = |~p|. As m→ 0, the spin vector diverges, and the massless limit is not
so obvious. We may, however, write for this case

sµ‖ =









p0/m
0
0

p/m









+
p0 − p
m









−1
0
0
1









=
1

m
pµ +O

(

m/p0
)

, (5.98)

since (p0 − p)/m = m/(p0 + p). The projection operator can then be evaluated
by

u(p, s)u(p, s) =
1

2

(

1 + γ5/s‖
)

(/p+m)

28This is, obviously, not a Lorentz-invariant notion. As the particle’s velocity approaches
c, however, it becomes Lorentz-invariant.



144 July 24, 2013

=
1

2

(

1 +
1

m
γ5/p+O

(

m

p0

))

(/p+m)

=
1

2
(1 + γ5)(/p+m) +O

(

m

p0

)

≈ ω+/p , (5.99)

which is well-defined. Of course, for sµ antiparallel to the velocity, we find

u(p, s)u(p, s) ≈ ω−/p . (5.100)

These are the so-called helicity states for massless Dirac particles, which can
also be written as29

uλ(p)uλ(p) = vλ(p)vλ(p) = ωλ/p , λ = ± . (5.101)

Because of their simplicity, massless helicity states are very popular in high-
energy calculations where fermion masses may be neglected ; but we should
not forget that states without pure helicity are also possible. Indeed, we can
consider the case where ~p and ~s make a fixed angle θ. In that case the spin
vector reads

sµ =
m cos θ sµ‖ + p0 sin θ sµ⊥
√

(p0)2 − p2 cos2 θ
, (5.102)

where

sµ⊥ =









0
sinφ
cosφ
0









. (5.103)

Here φ denotes the azimuthal angle of ~s around ~p. If we now let m→ 0 so that
p→ p0, then the limit of the projection operator becomes

u(p, s)u(p, s) ≈ 1

2
(1 + γ5/s⊥)/p , (5.104)

and we see that this limit is indistinguishable from a masless, transversely po-
larized Dirac particle. The message is that the massless limit is always defined,
but must be taken with some care30.

5.3.8 The parity transform

An interesting excercise is the following. Let ξ be an arbitrary spinor. The
object

u(p, s) = C (/p+m)(1 + γ5/s)ξ (5.105)

29Strictly speaking, the antiparticle of the right-handed particle is left-handed, whereas the
above definition does not respect this. In practice this does not usually lead to confusion.

30It is also clear that to produce, say, beams of ultrahigh-energy electrons with given helicity,
one needs to be able to align the spin vector very precisely with the momentum, to angles of
order m/p0. Nevertheless, this is feasible in practice, as the LEP/SLC colliders have proven.
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is then exactly the spinor for a Dirac particle with momentum pµ an spin vector
sµ, provided that C is chosen appropriately31. Now, let us consider

γ0u(p, s) = C γ0(/p+m)(1 + γ5/s)ξ . (5.106)

By anticommuting the γ0 to the right, we can arrive at

γ0u(p, s) = C (/̂p+m)(1 + γ5/̂s) γ0ξ . (5.107)

Here, the vectors with and without hats are related as follows :

pµ =

(

p0

~p

)

, p̂µ =

(

p0

−~p

)

; sµ =

(

s0

~s

)

, ŝµ =

(

−s0
~s

)

.

(5.108)
Since γ0ξ is also an arbitrary spinor, the object γ0u(p, s) is exactly the spinor
u(p̂, ŝ) for a Dirac particle with momentum p̂µ and spin vector ŝµ. What is this,
precisely ? The spatial momentum of the particle has been reversed : this is
called the parity transform. The spin vector, however, retains its spatial part
while its time-part has now been flipped. The spin vector is, therefore, a four-
vector of a different type from the more regular vector pµ : such four-vectors are
called axial vectors32. We conclude that multiplying a spinor by γ0 induces its
parity transform. For antiparticle spinors, as well as for the conjugate spinors,
the treatment is completely identical.

5.4 The Feynman rules for Dirac particles

5.4.1 Dirac loops. . .

As mentioned above, there is a natural tendency in formulating the Feynman
rules to leave out the Fermi minus sign in the rules for external particles. Let
us suppose that we choose to do that. Now, consider the following cutting rule :

p

q

+

p

q

+

p

q

= 0

Here, a scalar particle has a three-point coupling to a pair of Dirac particles33.
We shall not evaluate the whole diagram, but rather concentrate on the two

31This idea lies at the basis of the spinor techniques, to be discussed below.
32This explains the term ‘axial-vector’ coefficient we used in the Clifford algebra.
33The requirement that amplitudes do not contain uncontracted indices essentially forces

us to use Feynman rules in which the orientation of Dirac lines is conserved at every vertex.
For so-called Majorana fermions this is not true : Majorana fermions, therefore, have no
distinction between particle and antiparticle.
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Dirac propagators. In the third, cut-through diagram, they occur as external
lines, giving rise to a factor

u(p)Γ1v(q) v(q)Γ2u(p) ,

where Γ1,2 represent the rest of the diagrams. The momenta p and q are assumed
to run from left to right. We have not indicated the spins since anyway we have
to sum over them. Therefore we would have to evaluate the trace

Tr

(

(/p+mp)Γ1(/q −mq)Γ2

)

,

where we have indicated that the two Dirac particles are not necessarily of the
same type. Let us now shift our attention to the first diagram, say. A closed
loop of Dirac particles is automatically also a trace: this diagram, then, requires
the analogous trace

Tr

(

(/p+mp)Γ1(−/q +mq)Γ2

)

,

since the momentum q is running against the orientation34. The second trace
has the opposite sign of the first one ! To solve this problem (and save unitarity
of the S matrix !) we therefore have to introduce an additional Feynman rule
for Dirac particles :

k
↔ ih̄

/k +m

k · k −m2 + iǫ
internal line
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p,s
↔
√
h̄ u(p, s) outgoing particle
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√
h̄ u(p, s) incoming particle
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p,s
↔
√
h̄ v(p, s) outgoing antiparticle
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p,s
↔
√
h̄ v(p, s) incoming antiparticle

For every closed loop of Dirac particles, count a factor −1.

Feynman rules, version 5.3 (5.109)

34We disregard the denominators of the Dirac propagators since they do not influence our
argument.
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5.4.2 . . . and Dirac loops only

In the above we have not yet explained why the minus sign must be assigned
only to those closed loops that contain only Dirac particles. The reason for this
is based on crossing symmetry. Consider a (cut) diagram like this one :

The lines without arrows have no Dirac propagators but just the ‘original’
ones35. The cut crosses two Dirac lines, and we might conclude that a mi-
nus sign is called for. However, by crossing symmetry this diagram is related
to

where now the cut crosses one Dirac line and one line without an arrow. Since
the propagator in that line is even in its momentum, we can always choose the
loop momentum to run in the ‘correct’ direction for the Dirac line, and no minus
sign is needed. Therefore, the first diagram also takes no extra minus sign, since
crossing symmetry forbids for an amplitude to suddenly pick up an extra minus
sign under crossing. It is only when a closed loop consists of only Dirac particles
that no crossing can be found for which the loop momentum can be chosen to
run in the ‘correct’ direction. Therefore, only for such loops is a minus sign
unavoidable36.

5.4.3 Interchange signs

Consider the following two diagrams, that can both contribute to the decay of
a scalar into a Dirac-antiDirac pair at the one-loop level :

35i.e. ih̄/(p2 −m2 + iǫ) for momentum p and mass m.
36This holds true later on, where we also introduce vector particles, the propagator of which

is also even in the momentum.
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The first diagram contains a fermion loop and hence carries an overall minus
sign ; the second one does not. Now consider the cut versions of these diagrams :

The left-hand sides of the cut-through diagrams are identical. The right-hand
sides differ in the way that the in-going fermions are connected to the out-going
ones ; the ingoing ones are interchanged in in the second diagram with respect
to the first one. This, then, must correspond to a minus sign associated with
the interchange of external lines in a diagram, and we arrive at the final form
of the Feynman rules for Dirac particles :

k
↔ ih̄

/k +m

k · k −m2 + iǫ
internal line
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h̄ u(p, s) outgoing particle

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

p,s
↔
√
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√
h̄ v(p, s) outgoing antiparticle
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p,s
↔
√
h̄ v(p, s) incoming antiparticle

For every closed loop of Dirac particles a factor −1.

For every interchange of external Dirac particles a factor −1.

Feynman rules, version 5.4 (5.110)

Note that the interchange rule only determines the relative sign between two
Feynman diagrams. How the interchange sign can be determined is best illus-
trated by an example. Consider, for instance, a process with 6 external fermions.
Three of them must then be oriented outward from the diagram, carrying a u
of v, and the other three must be oriented inward and carry a u or a v. Let us
assume that there are three Feynman diagrams, schematically given by37

diagram 1 : u1Γ1u2 v3Γ2u4 u5Γ3v6
37The process e−e−e+ → e−e−e+ is an example.
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diagram 2 : u1Γ4u2 v3Γ5v6 u5Γ6u4

diagram 3 : u1Γ7u4 v3Γ8v6 u5Γ9u2 ,

Clearly, we have left out an enormous amount of detail here, and the Γ’s can be
anything. Note that we have written the three diagrams in such a way that the
conjugate spinors u1, v3 and u5 are in the same order in each diagram : this is
always possible. Now, we see that to go from diagram 1 to diagram 2, the posi-
tions of u4 and v6 must be interhanged, whereas one can go from diagram 1 to
diagram 3 by, say, interchanging first u2 and u4, and then u2 and v6. Therefore,
diagram 1 and 3 have no relative minus sign, and diagram 2 has a minus sign
with respect to 1 and 3. In actual practice, the determination of the relative
signs can be made even easier ; simply decide on some preferred ordering of
all your u’s, v’s, u’s and v’s , and compare the ordering in your given diagram
with your preferred one. Note that, since spinor sandwiches always contain two
spinors, spinor sandwiches may be interchanged at will without destroying this
simple rule.

Before finishing this section we want to make an important observation.
The loop and interchange minus signs as we have discussed them depend on the
structure of the diagrams, and not on the type of the Dirac particles ; even if a
neutrino and a top quark were interchanged, the minus sign would crop up38.
The minus signs depend only on the fact that they are Dirac particles, that is,
spin-1/2 fermions. No notion of ‘identical particles’ is relevant here.

5.4.4 The Pauli principle

Let us consider a possible experiment in which we attempt to produce two Dirac
particles of the same type (two electrons, say), with exactly the same momentum
and spin. Any such process is, in principle, described by Feynman diagrams.
We can say immediately that the number of diagrams must be even, since for
every diagram there must be a corresponding one in which the two electons
are interchanged. Now, if the momenta and the spins of the two electrons
are precisely the same, they will be described by identical conjugate spinors,
and in fact the two diagrams of the pair will have exactly the same value —
apart from the relative minus sign ! The total amplitude is therefore identically
zero. We conclude that it is not possible two produce two Dirac particles in
exactly the same state. By considering incoming electrons, we can also conclude
that it is not possible to observe two Dirac particles if they are in exactly the
same state, since the observation process is also describable (presumaby !) by
Feynman diagrams. This is the Pauli exclusion principle39.

38Of course, the interactions in the theory may be such that no such interchange is possible :
but this is beside the point.

39Note that I do not comment on the possibility that electrons in identical states might sim-
ply exist : they would not be observable by any process describable by Feynman diagrams.
Their only influence could arise through some non-diagrammatic process, involving possibly
gravity since that appears not to be amenable to diagrammatics. Of course, classical quan-
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5.5 The Dirac equation

5.5.1 The classical limit

So far we have not mentioned the Dirac equation, nor have we had need for it.
As an illustration, we shall show how it can be obtained. To this end, we need
to provide a few Feynman rules in position, rather than in momentum space.
The Dirac propagator, oriented from spacetime point x to spacetime point y, is

x y
↔ ih̄

(2π)4

∫

d4 e−ik·(y−x)
/k +m

k2 −m2
, (5.111)

where we have dropped the iǫ for simplicity. The Dirac particles are created
by a spinorial source J(x), and absorbed by a conjugate-spinorial source J̄(x),
with the rules

↔ − i
h̄
J(x) ,

↔ − i
h̄
J̄(x) . (5.112)

If we forget about any other couplings, the Dirac field is free, and its SDe is
exactly its own classical limit. Now, consider the following form of it :
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x = x . (5.113)

With the field function of the Dirac field denoted by ψ(x), this SDe reads

ψ(x) =
1

(2π)4

∫

d4y d4k e−ik·(x−y)
/k +m

k2 −m2
J(y) , (5.114)

where matrix multiplication is implied as usual. We can now study the object
(

i/∂ −m
)

ψ(x) =

=
1

(2π)4

∫

d4y d4k e−ik·(x−y)(/k −m)
/k +m

k2 −m2
J(y)

=
1

(2π)4

∫

d4y d4k e−ik·(x−y)J(y)

=

∫

d4y δ4(x− y) J(y) = J(x) , (5.115)

which is the classical Dirac equation :
(

i/∂ −m
)

ψ(x) = J(x) . (5.116)

tum mechanics finds that the combined wave function for identical-state electrons vanishes
identically, but again quantum and gravity do not see completely eye to eye.
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We can also consider the ‘Dirac-conjugate’ SDe :
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x = x , (5.117)

which is written as

ψ̄(x) =
1

(2π)4

∫

d4y d4k J̄(y)
/k +m

k2 −m2
e−ik·(y−x) . (5.118)

By the same simple manipulation as above, we can then show that the conjugate
Dirac equation reads

ψ̄(x)

(

− i
←

/∂ −m
)

= J̄(x) , (5.119)

where the leftward arrow indicates that the derivative must be taken towards
the left40.

5.5.2 The free Dirac action

We can cast the above in the form of the – possibly more familiar – Lagrangian
treatment. The action for the free Dirac field including sources is then given by

S[ψ, ψ̄, J, J̄ ] =

∫

d4x L(x) , (5.120)

where the Dirac Lagrangian is given by

L(x) = ψ̄(x) (i/∂ −m)ψ(x)− J̄(x)ψ(x) − ψ̄(x)J(x) . (5.121)

This Lagrangian does not contain a derivative of ψ̄: the Euler-Lagrange equation
is therefore simply

δS

δψ̄(x)
=

∫

d4y
δL(y)
δψ̄(x)

= 0 , (5.122)

which is seen to be exactly Eq.(5.116). By partial integration we can see that
the same action can also be obtained from the Lagrangian

L̂(x) = ψ̄(x)

(

−i
←

/∂ −m
)

ψ(x) − J̄(x)ψ(x) − ψ̄(x)J(x) , (5.123)

which is now independent of any derivative of ψ. The Euler-Lagrange equation
for ψ,

δS

δψ(x)
=

∫

d4y
δL̂(y)
δψ(x)

= 0 , (5.124)

40A word of caution is in order here. The operator i/∂ is self-conjugate and does not change
under Hermitian conjugation. The minus sign in front of it comes from the fact that the
direction of the derivative is now also reversed.
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gives us precisely Eq.(5.119). Finally, it is easily seen that the dimensionality
of the field ψ is given by

dim

[

ψ

]

= dim

[

h̄1/2

L3/2

]

. (5.125)

5.6 The standard form for spinors

5.6.1 Definition of the standard form for massless parti-

cles

In the special case where the momentum is massless, a very handy form for the
spinors may be chosen, which we shall call the standard form. Let pµ be the
momentum of the spinor, so that p2 = 0. We now choose two basis vectors kµ0
and kµ1 , which satisfy

k0 · k0 = k0 · k1 = 0 , k1 · k1 = −1 . (5.126)

Furthermore we require that k0 · p 6= 0 for any massless momentum pµ encoun-
tered in the problem at hand ; this is usually not difficult to arrange. Since k0

is massless, it may serve to define the basis spinor

u0 ≡ u−(k0) ⇒ u0u0 = ω−/k0 . (5.127)

The reversal of this object gives us

(u0u0)
R
= (ω−/k)

R = ω+/k0 = u+(k0)u+(k0) = /k1 u0u0 /k1 . (5.128)

Using the basis spinor, we now define all other massless spinors by

u+(p) =
1√

2p · k0
/pu0 , u−(p) =

1√
2p · k0

/p/k1u0 . (5.129)

We can immediately check that u±(p)u±(p) = ω±/p, so that these spinorial
objects are indeed admissible choices ; in fact, the standard form is nothing
more than a (very useful) phase convention of all occurring spinors. This choice
is at the basis of the so-called spinor techniques : the above definition will be
applied to good effect in what follows.

5.6.2 Some useful identities

At this point we prove a few results that often turn out to be useful. In the first
place, from the property Tr (Γ) = Tr

(

ΓR
)

, we can see that

u+(p1) γ
µ u+(p2) = K u0 /p1 γ

µ /p2u0

= K Tr (u0u0 /p1 γ
µ /p2)

= K Tr
(

/p2 γ
µ /p1(u0u0)

R
)

= K Tr (/p2 γ
µ /p1 /k1 u0u0 /k1)

= K u0 /k1 /p2 γ
µ /p1 /k1 u0 , (5.130)
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with K = (4p1 · k0 p2 · k0)−1/2, which leads to the useful spinor reversal :

u+(p1)γ
µu+(p2) = u−(p2)γ

µu−(p1) . (5.131)

In the second place, the standard form for the spinors allows us to relate + and
– helicities, for instance, for massless p and q, and with K−2 = 4(p · k0)(q · k0) :

γα u±(p) u±(q) γ
α = K γα /p ω∓ /k0 /q γ

α

= −2K /q ω± /k0 /p = −2 u∓(q) u∓(p) (5.132)

Since the standard form of spinors is just a phase convention, a relation like
Eq.(5.132) holds in other conventions as well ; only the factor -2 may pick up
a complex phase that is elegantly absent here. In the last place, the Chisholm
identity of Eq.(5.56) can be applied to simple spinor sandwiches so as to yield

(

u±(p1)γ
µu±(p2)

)

γµ = 2

{

u±(p2)u±(p1) + u∓(p1)u∓(p2)

}

. (5.133)

5.6.3 Spinor products

We may compute an explicit expression for the product of two spinors for mass-
less momenta : we shall define

s±(p, q) ≡ u±(p) u∓(q) . (5.134)

For standard spinors, this can be evaluated using the Casimir trick

s+(p, q) = (4(p · k0)(q · k0))−1/2 u0 /p /q /k1 u0
= (4(p · k0)(q · k0))−1/2 Tr (ω−/k0/p/q/k1)

=
1

√

(p · k0)(q · k0)

(

(p · k0)(q · k1)− (p · k1)(q · k0)

− iǫµναβk0
µk1

νpαqβ
)

. (5.135)

This is antisymmetric in p ↔ q, and moreover

s−(p, q) = − s+(p, q)∗ . (5.136)

In addition, it is easily seen that

s+(p, q)s−(q, p) = |s+(p, q)|2 = u+(p) /q u+(p) = 2(p · q) . (5.137)

Spinor products are therefore somewhat like ‘square roots’ of vector products.

Finally, we may consider an explicit choice for the vectors kµ0,1 :

k0
µ = (1, 1, 0, 0) , k1

µ = (0, 0, 1, 0) : (5.138)
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this gives the explicit form for the spinor product

s+(p, q) =
(

p2 + ip3
)

√

q0 − q1
p0 − p1 −

(

q2 + iq3
)

√

p0 − p1
q0 − q1 , (5.139)

which is very useful for actual numerical applications. Note that this choice
presupposes that none of the light-like vectors in the problem is oriented exactly
along the x-axis. Since the ‘special’ direction in many problems is traditionally
chosen to be the z-axis, this is usually safe.

5.6.4 The Schouten identity

There exists a useful identity for massless-momentum spinors in the standard
representation. For massless p1,2,3,4, there is the truism

u+(p1)/p2/p3u−(p4)+u+(p1)/p3/p2u−(p4)− 2(p2 ·p3) u+(p1)u−(p4) = 0 . (5.140)

Writing this out in terms of spinor products, we have

s+(p1, p2)s−(p2, p3)s+(p3, p4) + s+(p1, p3)s−(p3, p2)s+(p2, p4)

−s+(p2, p3)s−(p3, p2)s+(p1, p4) = 0 . (5.141)

Using the antisymmetry property of s, and dividing out the factor s−(p2, p3),
we obtain the so-called Schouten identity :

s+(p1, p2)s+(p3, p4)+ s+(p1, p3)s+(p4, p2)+ s+(p1, p4)s+(p2, p3) = 0 . (5.142)

Note the cyclicity in p2,3,4. Obviously, the identity holds for s− as well.

5.6.5 The standard form for massive particles

The standard form for Dirac spinors given in Eq.(5.129) can be simply expended
to the case of massive particles. Let pµ be the momentum of such a particle,
and let m be its mass. We then define

u±(p) =
1√

2p · k0
(/p+m)u∓(k0) ,

v±(p) =
1√

2p · k0
(/p−m)u∓(k0) . (5.143)

From Eqns.(5.67, 5.68) we can find out the spin vector for these two cases :
writing u±(p) = u(p,±s0) we obtain

s0
µ = − 1

2m
u+(p) γ

5γµ u+(p)

= − 1

4mp · k0
Tr
(

ω−/k0(/p+m)γ5γµ(/p+m)
)

=
1

m
pµ − m

(pk0)
k0

µ , (5.144)
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which is indeed the only vector built from p and k0 that can have the right
properties s0

2 = −1 and (ps0) = 0. Note that for small(ish) m and generally
positioned k0, ~s0 points in the general direction of ~p. Therefore we call u+(p) a
right-handed spinor, and u−(p) a left-handed spinor. In addition, from the fact
that, for the antispinor v±(p),

1

2m
v+(p) γ

5γµ v+(p) = −s0µ , (5.145)

we see that v+(p) is a left-handed antispinor and v−(p) is a right-handed anti-
spinor.

The standard spinors suffice to build up other spinors as well. To see this,
consider a general superposition of u+(p) and u−(p) :

ξ = αu+(p) + β u−(p) , |α|2 + |β|2 = 1 . (5.146)

Without loss of generality we may take

α = sin

(

θ

2

)

e−iϕ , β = cos

(

θ

2

)

. (5.147)

The spin vector hidden inside the general spinor ξ is seen to be

− 1

2m
ξ̄ γ5γµξ = cos(θ)s0

µ + sin(θ) cos(ϕ)s//
µ + sin(θ) sin(ϕ)s⊥

µ ,

s//
µ = k1

µ − (pk1)

(pk0)
k0

µ ,

s⊥
µ =

1

(pk0)
ǫµνρσk1

νk0
ρpσ . (5.148)

Since

p · s0 = p · s// = p · s⊥ = s0 · s// = s0 · s⊥ = s// · s⊥ = 0 (5.149)

and
s//

2 = s⊥
2 = −1 , (5.150)

we see that every allowed spin vector is, in fact, accessible by taking a super-
position of two standard forms : the vectors pµ/m, s0

µ, s//
µ and s⊥

µ form an
orthonormal basis.

5.7 Muon decay in the Fermi model

5.7.1 The amplitude

An example of an actually occurring process involving only Dirac particles is
provided by muon decay in the Fermi model. The process is41

µ−(p) → e−(q) νµ(k1) νe(k2)

41In this section, the vector k1 is a momentum, and has nothing to do with the auxiliary
vector of section 5.6.
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and is pictured by the single Feynman diagram

k1

k2

p

q

Here, a muon at rest undergoes a three-particle decay into an electron, a muon
neutrino and an electron antineutrino. We shall assume the neutrinos to be
massless. The Fermi amplitude introduced to describe the phenomenology of
this process contains only a single pointlike vertex at which four fermions meet
with a coupling constant called GF /

√
2, and is given by

M = i
GF h̄√

2
u(q) (1 + γ5)γα v(k2) u(k1) (1 + γ5)γα u(p) . (5.151)

The decision to ‘hook up’ the muon and the muon neutrino is in principle
arbitrary42, but as we have seen in section 5.2.6 we may easily interchange the
muon neutrino and the electron, and end up with the matrix element in the
‘charge retention form’ :

M = −iGF h̄√
2

u(q) (1 + γ5)γα u(p) u(k1) (1 + γ5)γα v(k2) .

The amplitude (5.151) implies that the neutrinos must have negative helicity43 :
we can write

M = i
4GF h̄√

2
u(q) γα v−(k2) u−(k1) γ

α u(p) . (5.152)

We can now apply the result (5.132) to arrive at the very compact form

M = −i8GF h̄√
2

u(q) u+(k1) v+(k2) u(p) . (5.153)

The transition rate can now easily computed with a few simple traces :

〈

|M|2
〉

=
1

2

∑

spins of µ, e

|M|2

= 16 GF
2 h̄2 Tr ((/q +me)ω+/k1) Tr ((/q +mµ)ω+/k2)

= 64 G2
F h̄2 (q · k1) (p · k2) . (5.154)

It is practical to evaluate this in the muon rest frame. We shall write E1,2

for k1,2
0 in this frame. Then (p · k2) is equal to mµE2, and by momentum

conservation we find

(q ·k1) =
1

2

(

(q + k1)
2 −me

2
)

=
1

2

(

(P − k2)2 −me
2
)

= mµ(K−E2) , (5.155)

42Unless lepton flavour number is invoked.
43In the standard form of spinors, the helicity for antispinors is reversed. The antineutrino

therefore actually has positive handedness.
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where

K =
mµ

2 −me
2

2mµ
. (5.156)

The transition rate then takes the form
〈

|M|2
〉

= 64 GF
2 h̄2 mµ

2 E2(K − E2) , (5.157)

and for the partial decay width we find

dΓ(µ→ eνµνe) = 32 GF
2 h̄2 mµE2(K − E2) dV (p; q, k1, k2) . (5.158)

5.7.2 Three-body phase space

The phase space for the muon decay process reads

dV (p; q, k1, k2) =
1

(2π)5
d4q d4k1 d

4k2 δ
4(p− q − k1 − k2)

δ(q2 −me
2) δ(k1

2) δ(k2
2) . (5.159)

Since the rate depends only on E2, we shall implicitly integrate over all other
phase space variables. By cancelling the q integration against the Dirac delta
for momentum conservation, we arrive at

dV (p; q, k1, k2) =
1

(2π)5
E1E2

4
dE1 dE2 dΩ1 dΩ2

δ((p− k1 − k2)2 −me
2) . (5.160)

The Dirac delta function can be written as

δ
(

mµ
2 −me

2 − 2mµE1 − 2mµE2 + 2E1E2 − 2E1E2 cos θ
)

,

where θ is the angle between the neutrino momenta. Hence we can integrate
trivially over the other polar and the two azimuthal angles (leading to a factor
8π2), and the integral over θ is resolved by the delta function. The result is

dV (p; q, k1, k2) =
π2

(2π)5
dE1 dE2 . (5.161)

In terms of these variables, the phase space is perfectly flat44. Since |cos θ|
cannot exceed unity, we also have the restrictions

mµ
2 −me

2 − 2mµE1 − 2mµE2 ≤ 0 ,

mµ
2 −me

2 − 2mµE1 − 2mµE2 + 4E1E2 ≥ 0 , (5.162)

which we can work into bounds on E1 :

K − E2 ≤ E1 ≤ K̂(E2) ≡
mµ

2 −me
2 − 2mµE2

2(mµ − 2E2)
, (5.163)

while E2 is seen to run from 0 to K.

44This flatness does not depend on the masslessness of the neutrinos. For massive neutrinos
the same phase space density s found, only the boundaries of the phase space become (horriby)
complicated.



158 July 24, 2013

5.7.3 The muon width

After the simple integration over E1, we have the muon partial decay width

d

dE2
Γ(µ→ eνµνe) = π2 GF

2 h̄2 mµ E2(K − E2)(K̂(E2) + E2 −K) . (5.164)

The remaining integral over E2 can now be performed, and the final result is

Γ(µ→ eνµνe) =
GF

2 h̄2 mµ
5

192 π3
F (me

2/mµ
2) ,

F (x) = 1− 8x+ 8x3 − x4 − 12x2 log(x) . (5.165)

The function F (x). It is strictly
decreasing since with increasing
me/mµ the available phase space de-
creases. For the realistic values of
me and mµ F (x) is smaller than 1
by about 2 × 10−4. The effects of
nonzero electron mass are therefore
completely negligible, certainly if we
realize that we have not included
any loop diagrams the contribution
of which is much larger than this.

Before finishing, it is instructive to inspect the muon width formula

Γ(µ→ eνµνe) =
GF

2 h̄2 mµ
5

192 π3

from the point of view of dimensional analysis. In the first place, the matrix
element M, being of 2 → 2 type, must be strictly dimensionless. Since every
spinor carries half a power of momentum45, the Fermi coupling constant GF

must carry dimension momentum−2. Since decay widths carry the dimension
of momentum, as do masses like mµ, and the only mass scale in the problem
is mµ if we neglect the electron mass, the width is necessarily proportional to
GF

2mµ
5. The discussion at the end of section 4.5.4 shows that the factor 1/π3

was also to be expected. It is a somewhat sobering thought that all the work of
this section amounts to no more than computing the number 1/192 !

45Since the spin sum of uu contains /p.



Chapter 6

Vectors particles

6.1 Massive vector particles

6.1.1 The propagator

In the last chapter we have studied the consequences of embellishing the scalar
propagator by endowing it with a numerator linear in the momentum. The next
obvious generalization is to let T (p) depend on two powers of the momentum.
That is, we assume it to be of the form

T (p)→ T (p)µν = Agµν +Bpµpν , B 6= 0 ,

for some A and B that may depend on p2. The numerator now carries two
Lorentz indices, one of each to be contracted with a corresponding index in
the vertices between which the propagator runs. The discussion of the last
chapter leads us to require that for momenta on the mass shell T (p) must be
proportional to a projection operator :

T (p)µαT (p)αν
= kT (p)µν if p2 = m2 , (6.1)

for some k 6= 0, in other words

A2 = kA , B2m2 + 2AB = kB . (6.2)

We might choose the solution A = 0, but then the resulting form T (p)µν ∼
pµpν would be immediately absorbable into the vertices at either side, and a
scalar propagator would result again. It follows that A must equal −m2B, and
therefore we shall use

T (p)µν = −gµν + 1

m2
pµpν , (6.3)

as before also (and mostly) using this form for off-shell momenta. The first
Feynman rule for these particles, that we call vector particles since they carry
a Lorentz index, is therefore established :

159
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p νµ ↔ ih̄
−gµν + pµpν/m2

p2 −m2 + iǫ

internal lines

Feynman rules, version 6.1 (6.4)

Note that this propagator is even in p and therefore has no orientation1.

6.1.2 The Feynman rules for external vector particles

From the form of T (p) we must be able to derive the form of the external-line
factors. Indeed, let us assume pµ to be in its rest frame. There, we have

T (p)µν = −gµν + g0µg0ν = diag(0, 1, 1, 1) , (6.5)

that is, the unit tensor in the spatial sector of Minkowski space. We see that
we can write

T (p)µν = −
(

xµxν + yµyν + zµzν
)

, (6.6)

which means that, for the objects U ,W three mutually orthogonal choices can
be made, for instance U (1) = x, U (2) = y, and U (3) = z. Of course, complex
linear combinations of these are also possible : in general, we can say that there
can be found three polarization vectors ǫµλ, with λ = −1, 0, 1, such that

(ǫλ)
µ(ǫλ′)µ = −δλ,λ′ , T (p)µν =

1
∑

λ=−1

(ǫλ)
µ(ǫλ)

ν
. (6.7)

We can now go once more through the truncation argument of chapter 4, with
the obvious result that the polarization vectors are to be assigned to the external
lines, and we immediately arrive at the full set of Feynman rules for massive
vector particles :

p νµ ↔ ih̄
−gµν + pµpν/m2

p2 −m2 + iǫ

internal lines
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������
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������
������
������
������
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������
������
������
������
������

↔
√
h̄ ǫλ

µ
incoming lines

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

↔
√
h̄ ǫλ

µ
outgoing lines

Feynman rules, version 6.2 (6.8)

1That is, its spacetime part is unoriented. There may of course be other properties such
as charge that do impose a distinction between production and decay of the particle.



July 24, 2013 161

Owing to the lack of orientation, the rules for the external lines are quite simple,
and fortunately no Dirac indices appear, nor do any curious minus signs.

6.1.3 The spin of vector particles

To ascertain the spin of vector particles2, we need to establish the form of the
Lorentz transformation in the space of the polarization vectors, i.e. Minkowski
space. We can do this conveniently using the transform in Clifford space, as
follows. Let us denote by Λ(p; q)µν the representation of the minimal Lorentz
transformation between pµ and qµ in Minkowski space : that is, if an arbitrary
vector aµ is transformed into bµ, we have

Λ(p; q)µν a
ν = bµ . (6.9)

Since /a and /b encode exactly the same information as do aµ and bµ, consistency
requires that

/b = Λ(p; q)µν a
ν γµ = Σ/aΣ = Σ aν γν Σ , (6.10)

with Σ as defined in section 5.3.5 ; since this must hold for arbitrary a, we have
the relation

Λ(p; q)µν γµ = Σ γν Σ , (6.11)

By multiplying with γα on both sides and taking the trace, we immediately find
the form of Λ(p; q) in Minkowski space :

Λ(p; q)αν =
1

4
Tr (Λ(p; q)µν γµ γα) =

1

4
Tr
(

Σ γν Σ γα
)

=
p2

4(p+ q)2
Tr

((

1 +
/q/p

p2

)

γν

(

1 +
/p/q

p2

)

γα

)

= gαν −
2

(p+ q)2
(p+ q)α(p+ q)ν +

2

p2
qαpν . (6.12)

The requested matrix form of the minimal Lorentz transform is therefore

Λ(p; q)µν = δµν −
2

(p+ q)2
(p+ q)µ(p+ q)ν +

2

p2
qµpν . (6.13)

Let us now specialize to the case of infinitesimal rotations, as in section 5.3.5:
again, we take pµ = xµ and qµ = xµ + θyµ (θ infinitesimal), and then find to
first order in θ :

Λ(p; q)µν ≈ δµν +
1

2
(2x+ θy)µ(2x+ θy)ν − 2(x+ θy)µxν

≈ δµν − θ (xµyν − yµxν) , (6.14)

so that the generators of the rotation group must in this case have the form

(Tx)
µ
ν = β(yµzν − zµyν) , (Ty)

µ
ν = β(zµxν − xµzν) ,

2The fact that there are three polarization vectors of course suggests that the spin is 1.
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(Tz)
µ
ν = β(xµyν − yµxν) , (6.15)

with the constant β again to be determined from the commutation algebra:

[Tx, Ty]
µ
ν = (Tx)

µ
α(Ty)

α
ν − (Ty)

µ
α(Tx)

α
ν

= β2 (xµyν − yµxν) = β(Tz)
µ
ν . (6.16)

We conclude that β = ih̄ in the Minkowski space. We find

(Tx
2)µν = −h̄2 (yµyν + zµzν) , (6.17)

etcetera, so that the total-spin operator takes the form

(~L2)µν = −2h̄2 (xµxν + yµyν + zµzν) = 2h̄2
(

−δµν +
1

m2
pµpν

)

. (6.18)

we conclude that the spin is indeed unity. The total spin operator contains, as
it must, the projection of all vectors on the spatial subspace. In words: to be a
good polarization vector, ǫµ must satisfy the Lorenz condition3 :

ǫ · p = 0 . (6.19)

Any part of a polarization vector that is parallel to pµ does, of course, not
transform under rotations in the space orthogonal to pµ (in our case, the spatial
part of Minkowski space since pµ is at rest). That part, therefore, corresponds
to a scalar degree of freedom. Returning to T (p) we may interpret the form

T (p)µν = −gµν + 1

m2
pµpν (6.20)

as a propagator in which a priori four degrees of freedom propagate (the gµν

part), and where the scalar part (the pµpν term) is carefully excised. The pµpν

term is sometimes loosely called the ‘longitudinal part’ of the propagator, but
this is wrong ; we should do better by calling it the ‘scalar part’.

6.1.4 Full rotations in vector space

In analogy with the rotations over 90 degrees that we studied in section 5.3.6,
we may cast a quick look at the behaviour of states under the transformation
(6.13) when applied to a 90-degree rotation in the x − y plane. The minimal
Lorentz transformation then reads

Λ(π/2)µν = δµν + xµxν + yµyν + xµyν − yµxν . (6.21)

3Note the spelling ! This does not refer to the famous Dutchman Hendrik Antoon Lorentz
(1853-1928) of transformation fame, but to the Dane Ludvig Valentin Lorenz (1829-1891),
quite another person. A relation between the density and the refractive index of a medium
goes by the funky name of the Lorentz-Lorenz equation.
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Taking powers, we obtain

Λ(π)µν = δµν + 2xµxν + 2yµyν ,

Λ(2π)µν = δµν . (6.22)

In contrast to the Dirac case, it now only needs a rotation over 2π to restore any
state of a vector particle to its original form ; a conclusion which was already
reached in section 5.3.6. There are, of course, polarization vectors that are not
affected by the rotation at all, namely those that point in the z direction : the
point is that a rotation over 2π restores any polarization vector.

6.1.5 Polarization vectors for helicity states

As usual, the helicity of a state refers to its spin as measured along the direction
of its motion. For definitiveness, let us assume that our massive vector particle
moves along the z direction. If we boost carefully (and minimally !) back to
the rest frame, ~p of course vanishes, but we shall remember that to go back to
the original situation we must boost along the z direction. The operator for the
helicity is therefore Tz in this case. Good polarization vectors for helicity 1,0
and -1 are then

ǫ1
µ =

1√
2
(xµ + iyµ) , ǫ0

µ = zµ , ǫ−1
µ = − 1√

2
(xµ − iyµ) , (6.23)

which is easily checked by veryfying that

(Tz)
µ
νǫ1

ν = h̄ǫ1
µ , (Tz)

µ
νǫ0

ν = 0 , (Tz)
µ
νǫ−1

ν = −h̄ǫ−1µ . (6.24)

The vectors ǫ±1 are said to describe transverse polarization, and the vector ǫ0
is called longitudinal. If we now perform the boost back to the original system
in which pµ is moving along the z direction, the transverse polarizations remain
unaffected, while the longitudinal one takes the form4

ǫ0
µ →

( |~p|
mp0

)

pµ +

(

m

p0

)

zµ . (6.25)

Very fast-moving particles, for which m≪ p0 ≈ |~p|, have longitudinal polariza-
tion vector

ǫ0
µ → 1

m
pµ +O

(

m

p0

)

. (6.26)

6.1.6 The Proca equation

Massive vector particles have their own ‘classical’ equation, which we shall now
uncover. The coupling of a massive vector particle to a source is given by the
following Feynman rule for position space :

µ ↔ − i
h̄
Jµ(x) (6.27)

4In a somewhat simpler notation, if pµ = (p0, ~p), with p = |~p| and ~e = ~p/p, then the
longitudinal polarization vector reads ǫ0µ = (p, p0~e)/m.
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The SDe for a free vector particle’s field function V µ is then again very simple :
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x =
x

, (6.28)

or, more explicitly,

V µ(x) =
1

(2π)4

∫

d4y d4k
e−ik·(x−y)

k2 −m2

(

−gµν + 1

m2
kµkν

)

Jν(y) . (6.29)

We can then form the following derivative operator acting on V µ :

∂α∂α V
µ(x)− ∂µ∂α V α(x) +m2V µ(x) =

=
1

(2π)4

∫

d4y d4k
e−ik·(x−y)

k2 −m2
Wµν Jν(y) , (6.30)

where Wµν can be evaluated as

Wµν = (−k2 +m2)

(

−gµν + 1

m2
kµkν

)

+ kµkα

(

−gαν +
1

m2
kαkν

)

= (k2 −m2)gµν . (6.31)

The remaining integrals over y and k now lead immediately to the so-called
Proca equation for V µ :

∂ · ∂ V µ − ∂µ ∂ · V +m2V µ = J . (6.32)

This is the ‘Maxwell equation’ for massive vector fields. It is instructive to
examine this equation in empty space, that is, for J = 0. Multipying it by ∂µ,
we find that the first two terms cancel, and we are left the Lorenz condition
∂ · V = 0 : all physical polarizations must be orthogonal to the momentum, as
we had already found. Reinserting this condition in Eq.(6.32), we are left with
the Klein-Gordon equation (∂ · ∂ +m2)V µ = 0, which essentially requires the
particles to be on the mass shell. Note that this nicely compact way of enforcing
the Lorenz condition only works for m 6= 0 : for massless vector particles, it
must be put in by hand.

We can also write down the Lagrangian corresponding to the Proca equation,
that is, that Lagrangian that has the Proca equation as its Euler-Lagrange
equation. It reads

L =
1

2
(∂µVν)(∂

µV ν)− 1

2
(∂µVν)(∂

νV µ) +
1

2
m2V µVµ

=
1

4
FµνFµν +

1

2
m2V µVµ , (6.33)

where the field strength tensor is defined as

Fµν = ∂µV ν − ∂νV µ . (6.34)
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6.2 The spin-statistics theorem

6.2.1 Spinorial form of vector polarizations

Although there is no special need for it, we can define the polarization vectors
for a massive vector particle using Dirac spinors. Let the momentum of the
vector particle be qµ and its mass m. We can find two massless momenta pµ1
and pµ2 whose spatial parts are parallel (or antiparallel) to ~q and that sum to
qµ :

qµ = pµ1 + pµ2 , p1,2
2 = 0 , 2 (p1 · p2) = m2 . (6.35)

The helicity states can now be constructed by standard-form spinors as follows :

ǫ+
µ =

1

m
√
2
u+(p1)γ

µu+(p2) ,

ǫ0
µ =

1

2m

(

u+(p1)γ
µu+(p1)− u+(p2)γµu+(p2)

)

,

ǫ−
µ =

1

m
√
2
u−(p1)γ

µu−(p2) . (6.36)

In fact, the longitudinal polarization ǫ0
µ can (by the Casimir trick, as usual) be

seen to be nothing else than

ǫ0
µ =

1

m
(p1 − p2)µ . (6.37)

This polarization, then, is properly normalized and orthogonal to ǫ±
µ. Further-

more, we have

ǫ+ · ǫ− =
1

2m2
u+(p1)γ

µu+(p2) u−(p2)γµu−(p1) . (6.38)

By virtue of the standard choice of the spinors, we can see that

γµu+(p2) u−(p2)γµ ∝ γµ /p2 /k0 /k1 /p2 γµ

= −/p2 γµ /k0 /k1 /p2 γµ
= 2/p2 /p2 /k1 /k0 = 0 , (6.39)

where we have used twice that p2
2 = 0. The vectors are therefore all orthogonal

to each other. To check the normalization of ǫ+, we write

ǫ+ · ǫ+ =
1

2m2
u+(p1)γ

µu+(p2) u+(p2)γµu(p1)

=
1

2m2
u(p1)γ

µ/p2γµu+(p1)

= − 1

m2
u+(p1)/p2u+(p1) = −

2(p1 · p2)
m2

= −1 . (6.40)

It remains to ascertain that these states are, indeed, pure helicity states. To
this end, let us assume that ~p1 and ~p2 are aligned with the z axis. The helicity
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operator is then (Tz)
µ
ν = ih̄(xµyν − yµxν), so that ǫ0 trivially has helicity zero.

We have

(Tz)
µ
νǫ+

ν =
1

m
√
2

(

xµ u+(p1)/yu+(p2)− (x ↔ y)
)

. (6.41)

Again employing the properties of the standard form, we can show that this is
orthogonal to ǫ− :

((Tz)
µ
νǫ+

ν) ǫ− =
1

2m2

(

u+(p1)/yu+(p2) u−(p2)/xu−(p1)− (x ↔ y)
)

=
1

2m2

(

u+(p1)/yu+(p2) u+(p1)/xu+(p2)− (x ↔ y)
)

= 0 . (6.42)

Finally, we can examine

((Tz)
µ
νǫ+

ν) ǫ+ =
1

2m2

(

u+(p1)/yu+(p2) u+(p2)/xu+(p1)− (x ↔ y)
)

. (6.43)

The first term in brackets can be evaluated by trace techniques :

u+(p1)/yu+(p2) u+(p2)/xu+(p1) = Tr (ω+ /p1 /y /p2 /x) = 2iA , (6.44)

so that

((Tz)
µ
νǫ+

ν) ǫ+ = − 2h̄

m2
A , (6.45)

where
A = ǫµναβ p

µ
1 y

ν pα1 x
β , (6.46)

which is real ; moreover,

A2 = (p1 · p2)2 = m4/4 . (6.47)

We conclude that
((Tz)

µ
νǫ+

ν) ǫ+ = −h̄ sign(A) . (6.48)

The chosen form do therefore indeed represent correct helicity states5.
Before finishing this sector, we point out that also the (trivial) external-line

Feynman factor for scalar particles can be written in terms of spinors. For a
massive scalar with momentum qµ, the same choice of pµ1,2 is of course possible.
We simply note that

|u+(p1)u−(p2)|2 = Tr (ω+ /p1 /p2) = 2(p1 · p2) , (6.49)

so that we can always find a complex phase eiϕ such that the external-line factor√
h can be cast in a form containing two spinors :

√
h̄ →

√
h̄

eiϕ√
2 p1 · p2

u+(p1)u−(p2) . (6.50)

It should not come as a surprise that an external integer-spin particle can con-
ventiently be represented by a spinor-antispinor pair. After all, this is precisely
the way in which particles like the W and Z are most often seen in experiment :
namely, through their decay into a fermion-antifermion pair.

5We have not established that ǫ+ is ǫ+1; it is actually ǫ−1 if A is negative. This is easily
remedied if necessary, by interchanging p1 and p2.
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6.2.2 Proof of the spin-statistics theorem

The treatment of the previous section may appear somewhat academic, but it
has an interesting consequence. Integer-spin particles (scalars and vectors) can
be represented in their external lines with an even number of spinors, that is an
even number of Dirac particles. Particles with half-integer spin are represented
by an odd number of Dirac particles. This persists : spin-3/2 particles can
be formulated using 3 spinors, spin-2 particles by 4 spinors, and so on. This
implies that the interchange of two external half-integer-spin particles involves
the interchange of an odd number of Dirac particles, and will therefore lead to
a minus sign. The interchange of two external integer-spin particles involves
the interchange of an even number of Dirac particles, and hence no minus sign.
These particles, therefore, obey opposite statistics : integer-spin particles
are bosons, half-integer spin particles are fermions6.

6.3 Massless vector particles

6.3.1 Polarizations of massless vector particles

Let us reconsider the helicity states of Eq.(6.23). These are defined in the rest
frame of the particle, with the understanding that we have to boost back to the
frame in which the particle moves, in our case along the z axis. Under this boost
the longitudinal polarization takes the form of Eq.(6.25). Let us now imagine
that the particle approaches masslessness, that is, we let m/p0 decrease towards
zero. The boost necessary to reach the original frame then becomes enormous,
and the longitudinal polarization will go to infinity when the particle becomes
massless. The only way to avoid matrix elements becoming arbitrarily large,
and hence violating unitarity sooner or later, is to arrange the interactions of the
theory in such a way that the effect of longitudinal polarization are suppressed
by a factor of order O

(

m/p0
)

: we shall use this extensively later on. In
the strictly massless case, the longitudinal polarization vector must decouple
completely, and we arrive at the result that for massless particles, only the
two states of maximal helicity are physical7.

6.3.2 Current conservation from the polarization

A photon is a vector particle ; as far as we know it is massless. Its polarization
vectors must therefore be transverse. For a photon moving in the z direction,
any possible polarization vector must be a superposition of (x + iy)µ/

√
2 and

(x− iy)µ/
√
2. If kµ is the photon momentum, and ǫµ its polarization, we must

therefore have not only k · ǫ but also

ǫ0 = 0 , ~k · ~ǫ = 0 . (6.51)

6Traditionally, the spin-statistics theorem, like the CPT theorem, is considered to be very
deep and difficult. Make up your mind.

7This can also be proven for particles of higher spin, see Appendix 10.10.
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However, a problem immediately arises: for the above equations are not invari-
ant under Lorentz boosts. If we boost kµ and ǫµ to a generically other frame,
they no longer hold. Let us assume that we are in such a frame ; there we have
the Lorentz-invariant conditions

(k0)2 = |~k|2 , (ǫ0)2 − |~ǫ|2 = −1 , k0ǫ0 = ~k · ~ǫ . (6.52)

We can decompose ~ǫ into a parallel and a perpendicular part :

~ǫ = ~ǫ‖ + ~ǫ⊥ , ~ǫ‖ // ~k , ~ǫ⊥ · ~k = 0 . (6.53)

Inserting this into the last equation of Eq.(6.52), we find immediately that
ǫ0 = |~ǫ‖|, and the second equation then gives |~ǫ⊥| = 1. We see that, whatever
the value of ǫµ, we can always write

ǫµ = ǫ⊥
µ +

ǫ0

k0
kµ , (6.54)

where ǫ⊥
µ does satisfy Eq.(6.51). We can therefore have a consistent and unitary

theory of massless vector particles, provided that the kµ term decouples from
the physics. Now, any matrix element involving an external massless vector
particle with momentum kµ and polarization vector ǫµ will be of the form

M = J (k)µ ǫµ , (6.55)

where J µ(k) stands for the rest of the amplitude. Note that J µ does not
carry any information about ǫµ, but it does know what kµ is, by momentum
conservation. Our requirement then is that the interactions of the theory be
such that

J µ(k) kµ = 0 . (6.56)

That is, if we replace the polarization vector by the momentum, the amplitude
must vanish.

6.3.3 Handlebar condition for massless vector particles

Diagrammatically, we may indicate the replacing of polarization by momentum
by attaching a ‘handlebar’ to the external line, so that we may write
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= M⌋ǫ→k . (6.57)

We shall use the convention that the momentum under the handlebar is counted
outgoing. The requirement for strictly massless external vector particles then
becomes
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= 0 . (6.58)
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What, finally, is the physical content of the requirement ? This is simply an-
swered if we let our massless vector particle be a photon. The object J µ is then
seen as a source of photons, that is, an electromagnetic current8. If we now
briefly return from a momentum-language formulation to a position-language
one, we see that the Fourier transform of the requirement (6.56) is written as

∂µ J (x)µ = 0 . (6.59)

We see that our requirement is nothing but current conservation in the case
of electromagnetism ! The fact that electric charge is conserved ensures that
longitudinally polarized photons are safely absent from our experience9.

6.3.4 Current conservation from the propagator

A message similar to that of the previous section can be gotten from the prop-
agator. After all, the massive-vector propagator

ih̄
−gµν + kµkν/m2

k2 −m2

clearly becomes horribly singular atm = 0. The solution, as before, is to require
that in our theory the kµkν term should drop out. There is a catch, however:
whereas external vector particles must be on the mass shell, the momentum of
internal lines is off the mass shell. We therefore arrive at the sharper require-
ment that Eq.(6.58) must hold even if the particle is off-shell.

6.3.5 Handlebar condition for massive vector particles

Let us examine the situation where a vector particle does have a mass, but
the mass m is very small compared to the vector particle’s energy E or its
momentum. Clearly, it would be unacceptable10 if the limit m → 0 would be
singular while the case m = 0 is not11. We shall therefore require that, for
massive vector particles partaking in a process at high energy, the handlebar
condition (6.58) holds in a milder form :

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

= O (m) . (6.60)

The meaning of this condition is the following. The longitudinal polarization
vector of a massive vector boson has energy behaviour different from its two

8One may for instance have the source J represent a charge whose momentum changes,
thereby emitting radiation.

9Whether they exist is another question ; at any rate we cannot produce them, not observe
them.

10Or at least embarassing — after all, we do not know for certain if the mass of the photon
is strictly zero or just a measly 10−137 kilograms. The most trustworthy current limit is
mγc2 < 10−18eV.

11Note that we do not even insist that m → 0 gives the same result as m = 0, only that
the limit is nonsingular.
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transverse ones : it grows at high energy E ≫ m with an extra power of
E. If for transverse polarization the amplitude is well-behaved at high energy
it may not be so for longitudinal polarization. The requirement implied by
the handlebar condition is that the extra power E inserted into the expression
because of longitudinal polarization is softened, by cancellations over at least one
order of magnitude in terms of E/m. We shall presently see that this condtion
is sufficiently severe to determine, to a large extent, the possible couplings of a
theory containing such particles.

6.3.6 Helicity states for massless vectors

The spinor-based helicity states for massive vector particles of section 6.2.1 are
apparently not well suited to the massless case. Note, however, that we may
generalize the method of Eq.(6.35) as follows :

qµ = p1 + α p2 , p1,2
2 = 0 , m2 = 2α (p1 · p2) . (6.61)

Using the fact that the spinors of massless particles are homogeneous of degree
1/2 in the argument :

u±(αp2) =
√
α u±(p2) , (6.62)

we see that (for instance) the polarization vector ǫ+ can be written, in analogy
to Eq.(6.36), as

ǫ+
µ =

1

2
√
p1 · p2

u+(p1) γ
µ u+(p2) . (6.63)

Since α does not occur in the polarization vector, we may consider the limit
α→ 0. In that case, q = p1 is massless, and the only condition on the massless
vector p2 is that (p1 · p2) must not vanish. By a judicious choice of overall
complex phase, this leads us to propose, for a massless vector particle with
momentum kµ, states of definite helicity as follows, where the spinors are again
in the standard form :

ǫλ
µ =

λ

s−λ(k, r)
√
2
uλ(k)γ

µuλ(r) , λ = ± . (6.64)

Here, the vector rµ is an arbitrarily chosen massless vector not parallel to kµ ;
it is called the gauge vector. We can ascertain that

ǫ+ · ǫ− =
1

4k · ru+(k)γ
µu+(r) u−(r)γµu−(k) = 0 , (6.65)

in the same manner we employed in Eq.(6.39). Furthermore,

ǫ+ · ǫ+ =
1

4k · ru+(k)γ
µu+(r) u+(r)γµu+(k) =

−1
2k · ru+(k)/ru+(k) = −1 .

(6.66)
These, then, are acceptable helicity states.
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A few useful properties of these polarization vectors are

ωλ /ǫλ =
λ
√
2

s−λ(k, r)
uλ(r)uλ(k) , ω−λ /ǫλ =

λ
√
2

s−λ(k, r)
u−λ(r)u−λ(k) (6.67)

and
/k /ǫλ = λ

√
2 u−λ(k) uλ(k) , (6.68)

and this object is explicitly gauge-invariant.

6.3.7 The massless propagator : the axial gauge

We can perform the sum over the physical polarization states of a massless
vector from the helicity states :

∑

λ=±

ǫλ
µǫλ

ν =
∑

λ=±

1

4k · ruλ(k)γ
µuλ(r) uλ(r)γ

νuλ(k)

=
∑

λ=±

1

4k · ruλ(k)γ
µ/rγνuλ(k)

=
1

4k · r Tr (/k γµ /r γν)

= −gµν +
1

k · r
(

kµrν + rµkν
)

. (6.69)

The form of the massless vector propagator in which only physical degrees of
freedom propagate is therefore given by the following Feynman rule :

νµ k ↔ ih̄
−gµν + (kµrν + rµkν)/(k · r)

k2 + iǫ

massless internal lines

Feynman rules, version 6.3 (6.70)

Note the appearance of the arbitrary vector r. This way of writing the propa-
gator is called the axial gauge. The propagator is constructed to be orthogonal
to rµ whatever the value of k. The vector r acts as an ‘axis’ with respect to
which the field is always orthogonal, hence the name. The fact that the vector
r is arbitrary is of course bothersome, in the same way that the arbitrariness of
the representation chosen for the Dirac matrices in the case of Dirac particles is
bothersome. We solve it in the same way, by insisting that we ought to be able
to remove r from the final expressions for matrix elements. This can of course
not be by virtue of any property of r itself, but must come from the handlebar
condition, since every term containing r also contains k. Two things are worthy
of remark here. In the first place, the propagator is homogeneous of degree zero
in r, so any result cannot depend on the length of r anyway. In the second place,
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in contrast to the propagator proposed before, with pµpν/m2, the propagator in
the axial gauge does not diverge. We are therefore freed from the requirement
that the handlebar condition must also hold off-shell.

6.3.8 Gauge vector shift

Let us consider helicity states for massless vector particles as defined in sect.6.3.6.
We shall denote these by ǫλ

µ(k, r). If we change the gauge vector r from one
value into another, another perfectly acceptable helicity state is obtained. What
is the relation between these states ? To answer this we simply compute the
difference between the states with different gauge vector :

ǫλ
µ(k, r1)− ǫλµ(k, r2) =

λ√
2

(

uλ(k)γ
µuλ(r1)

s−λ(k, r1)
− uλ(k)γ

µuλ(r2)

s−λ(k, r2)

)

= − λ√
2

(

u−λ(r1)γ
µu−λ(k)

s−λ(r1, k)
+
uλ(k)γ

µuλ(r2)

s−λ(k, r2)

)

= − λ√
2

u−λ(r1)(γ
µ/k + /kγµ)uλ(r2)

s−λ(k, r1) s−λ(k, r2)

= −λ
√
2

s−λ(r1, r2)

s−λ(k, r1) s−λ(k, r2)
kµ . (6.71)

we see that the two states differ only by the vector particle’s momentum. In
any current-conserving set of diagrams we may therfore choose the gauge vector
at will ; there is no risk of picking up a phase difference if two different gauge
vectors are used for two different current-conserving sets of diagrams.

As an illustration of how the gauge vector can disappear from a current-
conserving object, let us consider

ǫλ ·
(

p

2k · p −
q

2k · q

)

,

with p and q two massless momenta. The form of section 6.3.6 turns this into

λ√
2 s−λ(k, r)

(

sλ(k, p)s−λ(p, r)

2k · p − sλ(k, q)s−λ(q, r)

2k · q

)

=
λ√

2 s−λ(k, r)

(

s−λ(p, r)

s−λ(p, k)
− s−λ(q, r)

s−λ(q, k)

)

=
λ√
2

s−λ(p, r)s−λ(q, k)− s−λ(q, r)s−λ(p, k)
s−λ(k, r)s−λ(p, k)s−λ(q, k)

(6.72)

Now, the Schouten identity tells us that

s−λ(p, r)s−λ(q, k) + s−λ(p, k)s−λ(r, q) = −s−λ(p, q)s−λ(k, r) (6.73)

so that the gauge vector indeed drops out, and

ǫλ ·
(

p

2k · p −
q

2k · q

)

= − λ√
2

s−λ(p, q)

s−λ(k, p)s−λ(k, q)
. (6.74)
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One can easily check that the same form is obtained without using the Schouten
identity if we choose either r = p or r = q.
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Chapter 7

Quantum Electrodynamics

7.1 Introduction

In this chapter we shall start to work our way to realistic theories about the
actual elementary particles encountered in nature1. All elementary particles
seen so far have nonzero spin, apart from the newly-discovered Higgs boson.
We shall defer the discussion of charged spin-1 particles to a later chapter ; at
this point we shall only discuss how to set up a consistent theory of spin-1/2
particles (charged leptons and/or quarks) and photons. This is the theory of
quantum electro-dynamics, or QED.

7.2 Setting up QED

7.2.1 The QED vertex

Since the propagators of spin-1/2 particles and of the massless spin-1 photon
have already been fixed, the only ingredient which we still have to determine is
the coupling between them ; and on this coupling rests the burden of ensuring
the current-conservation requirement as embodied in Eq.(6.58). The vertex
coupling Dirac particles must have one upper, and one lower Dirac index : and
since the photon is involved, it must also carry a Lorentz index. The simplest,
and – as we shall see – indeed the correct form of the vertex is that of a Dirac
matrix. We therefore propose the following Feynman rule :

1It may of course be possible that the elementary particles discussed in this text are not
truly elementary and that a yet deeper level of substructure will be discovered. In that case,
please insert in whatever follows the addendum (A.D. 2012).
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µ ↔ i
Q

h̄
γµ QED vertex

Feynman rules, version 7.1 (7.1)

Here Q is the strength of the fermion-photon coupling : the charge of the
fermion2. By dimensional analysis, we see that is has dimension

dim
[

Q
]

= dim
[

h̄−1/2
]

. (7.2)

The Dirac delta function imposing momentum conservation is implied. As is
conventional, we shall employ wavy lines to indicate photons. As stressed in the
previous chapter, this choice of vertex can only been argued to be reasonable if
the photon current is conserved ; this we shall show in what follows.

7.2.2 Handlebars : a first look

Let us now start to investigate the requirements of current conservation for our
theory. One of the simplest possible processes is the decay of a photon into a
fermion-antifermion pair, shown below :

q

1
p

p
2

Of course the photon has to be off-shell here, but that is no problem since also
off-shell photons must obey current conservation. The part of the amplitude
depicted is given by

M = −Qu(p1)γµv(p2) , (7.3)

where the index µ of the photon is coupled to a corresponding index somewhere
else in the larger Feynman diagram. Let us now attach the handlebar, so that
we get

q

1
p

p
2

With the convention, to which we shall try to adhere, that the momentum
assigned in the handlebar must be counted outgoing from the vertex, so in this
case should read −q, the handlebarredM becomes

M⌋ = Qu(p1) /q v(p2) . (7.4)

2Or, rather, it is related to the charge. The precise form of this relation must, of course,
be established by investigating the coupling in a well-defined physical situation.
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Note that we indicate the handlebar algebraically by the symbol ⌋. Now we
apply momentum conservation that tells us that q = p1 + p2 :

M⌋ = Qu(p1)
(

/p1 + /p2
)

v(p2) . (7.5)

To the expression in the middle we add zero in a clever way :

M⌋ = Qu(p1)
(

/p1 −m+ /p2 +m
)

v(p2) , (7.6)

where m is the mass of the fermion. Now, we know that the spinors u and v
satisfy the Dirac equations

(/p1 −m)u(p1) = 0 and (/p2 +m)v(p2) = 0 (7.7)

for on-shell momenta, so that half of the expression 7.6 ‘cancels to the left’ and
the other half ‘cancels to the right’. We shall see that this is the general mech-
anism by which unitarity and current conservation are ensured.

The above is of course only the simplest example of current conservation in
QED, and in the following we shall in fact study all conceivable QED process at
once, but already we can learn a few useful things. In the first place, a possible
alternative coupling, with γ5γµ instead of γµ, is ruled out since we cannot obtain
two Dirac equations :

γ5 /q = −/p1γ5 + γ5/p2 = −(/p1 ±m)γ5 + γ5(/p2 ±m) , (7.8)

so that either the cancellation to the left would be spoiled, or that to the right. In
the second place, it is necessary that both fermions have precisely the same mass.
Since all known different fermion types have different masses, this means that
the QED interaction must conserve fermion type, or ‘flavour’. Electromagnetic
muon decay, µ→ eγ, is therefore forbidden, not by conservation of the electric
charge (which is indeed the same for muons and electrons) but by conservation
of the whole electromagnetic current.

7.2.3 Handlebar diagrammatics

The argument for current conservation in the previous section went through
because both fermions were on their mass shell. Since fermions in internal lines
in Feynman diagrams are not on the mass shell, we have to extend our approach
to off-shell fermions. Consider an arbitrary diagram in which a fermion of mass
m propagates and couples to a photon, as depicted below.

k

qp

The fermion momenta p and q are indicated and for the photon momentum k
we have kµ = (p − q)µ. The momenta p and q may be on-shell (in which case
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the corresponding blob is left out), but any of them may be off-shell, and hence
leads into a further piece of Feynman diagram. In that case the black blobs
stand for the other vertices, where the fermion is created and absorbed3. The
part of the diagram between the blobs is of course given by

(

ih̄
/q +m

q2 −m2

) (

i
Qγµ

h̄

)(

ih̄
/p+m

p2 −m2

)

,

where µ is the index belonging to the photon line ; in an actual process, µ may
be coupled to the photon’s polarization vector if the photon is external, or to
the photon’s propagator if the photon happens to be an internal line. In case
p, say, is on-shell we have to write

(

ih̄
/q +m

q2 −m2

) (

i
Qγµ

h̄

)

(

u(p)
√
h̄
)

.

Let us now put the handlebar on the photon leg :

k

qp

Algebraically, we must multiply the above expression by kµ, and then
(

−iQh̄ /q +m

q2 −m2
γµ

/p+m

p2 −m2

)

kµ =

= −iQh̄ /q +m

q2 −m2
(/p− /q) /p+m

p2 −m2

= −iQh̄ /q +m

q2 −m2

(

(/p−m)− (/q −m)
) /p+m

p2 −m2

= −iQh̄
(

/q +m

q2 −m2
− /p+m

p2 −m2

)

. (7.9)

We see that under the handlebar the double propagator splits up into two single
ones. Note that, for this to be possible, it is essential that the mass of the
fermion does not change at the vertex4. We may write this operation
diagrammatically as

k

qp = − , (7.10)

3Actually, the p and q lines are attached to a semi-connected graph rather than two separate
connected ones, but here the distinction is irrelevant.

4By ‘charge conservation’ we mean not simply the global electric charge of the particles,
but rather the whole electromagnetic current. For example, consider the possible vertex where
a muon emits a photon and turns into an electron. The electric charge of the muon and the
electron are identical, and so charge is conserved ; nevertheless the current is not conserved.
Fortunately, the decay µ → eγ has never been observed, and the branching ratio is smaller
than about 10−11.
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where we have introduced two new diagrammatic ingredients: a slashed fermion
line, with a trivial Feynman rule :

↔ ih̄ , (7.11)

and a new vertex, also carrying a trivial rule :

↔ i
Q

h̄
. (7.12)

The handlebarred photon line is replaced by a dotted line which evaluates triv-
ially to unity, but we do not want to leave it out of the diagram since the dashed
propagator still carries an amount of momentum, so that without it momentum
conservation would not hold at the new vertex. Like the handlebar this rule is
not intended to represent some physical interaction, but serves only as a com-
putational device. For external Dirac lines we find even simpler rules, since the
external spinors satisfy the Dirac equation :

= 0 , (7.13)

where the external line may belong to the initial or final state, and the arrow
orientation may be also reversed. An important result follows immediately from
the triviality of our new Feynman-rule tools :

= . (7.14)

7.2.4 Proof of current conservation in QED

We shall now prove that the Feynman rule (7.2.1) is a good one, in the sense
that a handlebar on any photon gives a zero result, both for on-shell (external)
and off-shell (internal) photon lines. We shall do this with the use of - what
else ? - the SDe’s of the theory. These read :
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The handlebar on a photon that takes part in any given process therefore has
the following form :
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One more iteration of the SDe for the fermions (judiciously chosen) allows us
to write this as
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(7.17)

The application of Eqns.(7.13) and (7.14) shows that all terms on the right-hand
side either vanish or cancel in pairs ; and this proves that, indeed, the single
vertex (7.2.1) ensures current conservation in QED.

Before finishing this section it may be useful to point out how the diagram-
matics of this proof can be streamlined considerably by the use of semi-connected
graphs, introduced in chapter 1. We can then condense the proof as follows :
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= −

+ −

+ −

= 0 . (7.18)

The two graphs with semi-connected blobs take on the rôle of 10 of the graphs
in Eq.(7.17) ; and to put the finishing touch on the proof we have even included
in the last line the single case where there was no further iteration of the SDe.

7.2.5 The charged Dirac equation

We still have to determine the precise relation between the coupling constant Q
in the Feynman rule, and the classical electric charge q of the particle. We shall
do this by establishing a relation with classical electrodynamics. The classical
(i.e. non-loop) SDe for ψ in the presence of a photon field A is given by
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in other words

ψ(x) =

∫

d4y
1

(2π)4

∫

d4k e−ik·(x−y)

ih̄
/k +m

k2 −m2 + iǫ

(

i
Q

h̄

)

γµψ(y)A
µ(y) , (7.20)

whence
(

i/∂ −m+Q/A(x)
)

ψ(x) = 0 , (7.21)

which is the Dirac equation in the presence of an electromagnetic field. Let us
work this expression towards classical physics. In the first place, the derivative
is, by the standard assignment rules for quantum mechanics, related to the
momentum operator :

pµ = ih̄ ∂µ , (7.22)

and the mass m to the mechanical mass M by (as we have seen)

m =
Mc

h̄
. (7.23)
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The Dirac equation can therefore be written as

(

(pµ + h̄QA(x)µ)γµ −Mc
)

ψ(x) = 0 , (7.24)

which is to be compared with the standard expression for the electromagnetic
momentum if a charged particle in classical electrodynamics:

pem
µ = pµ − q

c
Aµ . (7.25)

where q is the classical charge of the particle and Ac the classical electromagnetic
field. In the Gaussian system of units, the charges have dimensionality dim

[

q2
]

= kg m3/sec2 and the Coulomb field strength E therefore obeys dim[E] =
dim[q] /m2. Since this is the gradient of the classical e.m. vector potential Ac we
have dim[Ac] = dim[q] /m, and because the photon field A has dimensionality
dim

[

A2
]

= kg/sec, it follows the correct relation between the photon field and
the classical e.m. field must read

Ac
2 = c A2 . (7.26)

From this it follows that the coupling Q and the charge q are related by

Q = −q/(h̄
√
c) , (7.27)

which implies the correct dimensionality dim[Q] = dim
[

1/
√
h̄
]

; moreover, we

find immediately that, for particles with unit electric charge,

Q2 =
4π

h̄
α , (7.28)

where α stands for the electromagnetic fine structure constant :

α ≈ 1 / 137.036 . (7.29)

Since in QED every next loop order contains two extra powers of Q and one
(effective) power of h̄, the loop expansion is in QED equivalent to an expansion
in powers of α.

7.2.6 Furry’s theorem

An interesting observation concerns closed fermion loops in QED. Let us con-
sider a fermion loop that is attached by three QED vertices to the rest of a
Feynman diagram:

D− ≡ p

p
p

1

2

3
µ

ν

λ

k
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Here, we have indicated the Lorentz indices on the photon lines, and the mo-
menta across the photon lines are considered incoming into the loop. In addition
to this diagram, there is also a similar diagram in which the orientation of the
loop is reversed :

D+ ≡ p

p
p

1

2

3
µ

ν

λ

k

Note that these graphs cannot be twisted into one another. For loops with only
one or two vertices they can be so twisted, and then do not count as separate
diagrams ; for three or more vertices, there are two distinct ones. Without
pretending to evaluate the whole loop, let us concentrate on the Dirac structure
of their numerators. The first diagram contains the trace5

D− → Tr
(

(/k +m) γµ (/k − /p1 +m) γλ (/k + /p2 +m) γν
)

≡ T− , (7.30)

whereas the corresponding trace for the other diagram reads

D+ → Tr
(

(−/k +m) γν (−/k − /p2 +m) γλ (−/k + /p1 +m) γµ
)

≡ T+ .
(7.31)

Note that the rest of the loops, and in particular the propagator denominators,
are identical for both graphs. By using the reversibility inside traces of Clifford
algebra elements, we can write

T+ = − Tr
(

(/k −m) γν (/k + /p2 −m) γλ (/k − /p1 −m) γµ
)

= − Tr
(

(/k −m) γµ (/k − /p1 −m) γλ (/k + /p2 −m) γν
)

= − T− , (7.32)

since no terms with an odd power of m survives the trace. We see that the
two loops cancel each other precisely! This can obviously be extended to loops
with more vertices, and we find Furry’s theorem : fermion loops with an
odd number of vector vertices6 and opposite orientation cancel each
other ; with an even number of vector vertices, they are identical7.
Furry’s theorem does not hold if one or more of the vertices are of axial-vector
type, and so it is not generally valid for the weak interactions. For QCD, in
which the quark-gluon couplings have the Dirac-matrix form as in QED, Furry’s
theorem holds in a more restricted form : the spacetime part of the two quark
loops with even(odd) number of vertices are equal(opposite), but the additional
colour structures of the diagrams are different. This implies, for instance, that
the two quark loops with three gluon vertices do not cancel completely. We
shall come back to that case later on.

5By the rules of Dirac particles, closed loops automatically evaluate to traces.
6That is, vertices consisting of a single Dirac matrix, such as in QED.
7Furry’s theorem is usually proved by invoking the charge-conjugation matrix, discussed

in section 10.8.2. However, this is not strictly necessary as we see.
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7.3 Some QED processes

7.3.1 Muon pair production

We are now in a position to compute, for the first time, a realistic cross secttion.
The simplest calculation is that of the cross section for muon pair production
in e+e− collisions:

e−(p1) e+(p2) → µ−(q1) µ+(q2) .

The single lowest-order Feynman diagram is given by

p

p q

q

11

2

2

Both the electron and muon are Dirac particles. We shall denote the electron
charge by Qe, and the muon charge by Qµ, and their masses by me and mµ,
respectively. The total invariant mass squared is conventionally denoted by s,
and of course momentum is conserved :

p1
α + p2

α = q1
α + q2

α , s = (p1 + p2)
2 = (q1 + q2)

2 . (7.33)

The amplitude corresponding to the Feynman diagram is

M = i
h̄QeQµ

s
v(p2) γ

α u(p1) u(q1) γα v(q2) , (7.34)

and is strictly dimensionless: dim[M] = dim[1], as it ought to be for a 2 → 2
process at tree order. The amplitude, squared and averaged over the incoming
electron and positron spins8, can be evaluated using the Casimir trick :

〈

|M|2
〉

=
1

4

∑

spins

|M|2

=
h̄2Qe

2Qµ
2

4s2

∑

spins

v(p2)γ
αu(p1) u(p1)γ

βv(p2)

×
∑

spins

u(q1)γαv(q2) v(q2)γβu(q1)

=
h̄2Qe

2Qµ
2

4s2
Tr
(

(/p2 −me)γ
α(/p1 +me)γ

β
)

Tr ((/q1 +mµ)γα(/q2 −mµ)γβ)

8Leading to a factor 1/4. This assumes the usual situation where the electron and positron
beams in a collider are unpolarized.
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=
4h̄2Qe

2Qµ
2

s2
(

p2
αp1

β + p1
αp2

β − (p1 · p2)gαβ −me
2gαβ

)

(

q1αq2β + q2αq2β − (q1 · q2)gαβ −mµ
2gαβ

)

=
4h̄2Qe

2Qµ
2

s2
(

2(p1 · q1)(p2 · q2) + 2(p1 · q2)(p2 · q1)

− s(p1 · p2)− s(q1 · q2) + s2
)

(7.35)

We shall work in the centre-of-mass frame of the colliding electron-positron
pairs. In that frame, we have

p1,2
0 = q1,2

0 = E , |~p1,2| = p , |~q1,2| = q , (7.36)

where
s = 4E2 , p2 = E2 −me

2 , q2 = E2 −mµ
2 . (7.37)

The various vector products are therefore given by

(p1 · p2) = s/2−me
2 , (q1 · q2) = s/2−mµ

2 ,

(p1 · q1) = (p2 · q2) = s/4− pq cos(θ)

(p1 · q2) = (p2 · q1) = s/4 + pq cos(θ) , (7.38)

where θ is the polar scattering angle, that is, the angle between ~p1 and ~q1. We
also use the fact that Qµ and Qe are the negative of the unit charge, so that
QµQe = 4πα/h̄.This leads to

〈

|M|2
〉

=
16π2α2

s2

(

s2(1 + cos(θ)2) + 4s(me
2 +mµ

2) sin(θ)2

+ 16me
2mµ

2 cos(θ)2
)

(7.39)

Using what we have already learned about the flux factor and the two-body
phase space, we can write the differential cross sction as

dσ =
1

64π2s

[

s− 4mµ
2

s− 4me
2

]1/2
〈

|M|2
〉

dΩ . (7.40)

This cross section therefore only depends on s and the polar scattering angle:
there is, for unpolarized incoming beams, no azimuthal direction singled out
and there is therefore no azimuthal angle dependence9. The total cross section
is obtained by simple angular integration, and reads

σ =
4π α2

3 s

(

1 + 2
me

2

s

) (

1 + 2
mµ

2

s

) [

s− 4mµ
2

s− 4me
2

]1/2

. (7.41)

9This could be different, e.g. in the case of transversely polarized beams.
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The cross section is only nonzero above the muon pair-production threshold,
s > 4mµ

2. Since the muon mass mµ is much larger than the electron mass me,
we may accurately approximate by putting me ≈ 0 :

σ ≈ 4π α2

3 s

(

1 + 2
mµ

2

s

) (

1− 4
mµ

2

s

)1/2

. (7.42)

For large s, furthermore, we have

σ ≈ 4π α2

3 s

(

1− 6
mµ

4

s2
+ · · ·

)

. (7.43)

By accidental cancellation of the leading mµ
2/s terms, the large-s limit is

reached quite rapidly.

7.3.2 Compton and Thomson scattering

We next consider the Compton scattering process, an elastic collision between
a photon and an elecron :

e−(p) γ(k1) → e−(q) γ(k2)

Now, there are two Feynman diagrams,

p q

k2
k1

p

q

k

k

2

1

The amplitude is given by

M = M1 +M2 ,

M1 = −ih̄Qe
2 A1

2(p · k1)
,

M2 = −ih̄Qe
2 A2

−2(q · k1)
,

A1 = u(q) /ǫ2 (/p+ /k1 +m) /ǫ1 u(p) ,

A2 = u(q) /ǫ1 (/q − /k1 +m) /ǫ2 u(p) , (7.44)

where ǫ1,2 are the polarization vectors of the respective photons. Taking into
account the averaging factor 1/4, we find10 (with m for me)

〈

|A1|2
〉

=
1

4
Tr
(

(/q +m) γα (/p+ /k1 +m) γβ (/p+m) γβ (/p+ /k1 +m) γα
)

= 16m4 − 8(pq)m2 + 8(pk1)(qk1) + 16(pk1)m
2 − 8(qk1)m

2 ,

10Both the incoming electron and the incoming photon have 2 degrees of freedom, hence
(1/2)(1/2)=1/4.
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〈

|A2|2
〉

=
1

4
Tr
(

(/q +m) γβ (/q − /k1 +m) γα (/p+m) γα (/q − /k1 +m) γβ
)

= 16m4 − 8(pq)m2 + 8(pk1)(qk1) + 8(pk1)m
2 − 16(qk1)m

2 ,

〈A1A∗2〉 = 〈A2A∗1〉

=
1

4
Tr
(

(/q +m) γα (/p+ /k1 +m) γβ (/p+m) γα (/q − /k1 +m) γβ
)

= 8(pq)(pk1)− 8(pq)(qk1) + 16(pq)m2 − 8(pq)2

−4(pk1)m2 + 4(qk1)m
2 . (7.45)

We can most easily evaluate this in the photon-electron centre-of-mass frame11.
In this frame, we have

p0 = q0 =
s+m2

2
√
s

, |~p| = |~q| = |~k1| = |~k2| =
K

2
√
s
, (7.46)

where K = s −m2 : and the angle between ~q and ~k1 is denoted by θ. Putting
everyhting together, we find

〈

|M|2
〉

= 16π2 α2

(

8
m2

K
+ 8

m4

K2
+ 2

m4

(qk1)2
− 4

m2

(qk1)

− 8
m4

(qk1)K
+

K

(qk1)
+ 4

(qk1)

K

)

. (7.47)

The phase space integration element is given by

dV (p+ k1; q, k2) =
1

(2π)2
1

8

K

s
dΩ , (7.48)

where Ω is the solid angle of the emitted electron. The flux factor is

1

2λ(s,m2, 0)1/2
=

1

2K
. (7.49)

The only nontrivial quantity in the computation is

(qk1) = k1
0

(

q0 − |~q| cos θ
)

=
K

4s

(

(s+m2)−K cos θ

)

, (7.50)

and we can find the angular averages

1

4π

∫

dΩ (qk1) =
K(s+m2)

4s
,

1

4π

∫

dΩ
1

(qk1)
=

2s

K2
log

(

1 +
K

m2

)

,

1

4π

∫

dΩ
1

(qk1)2
=

4s

m2K2
. (7.51)

11In the actual experiment, the photon will of course be impingeing on the stationary

electron ; but since the cross section is invariant we may choose any frame we want.
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We therefore have for the transition rate, now also averaged over the scattering
angle :

〈〈

|M|2
〉〉

= 16π2 α2

{

1 +
m2

s
+ 16

m2s

K2

+

(

−8m
2s

K2
− 16

m4s

K3
+ 2

s

K

)

log

(

1 +
K

m2

)}

(7.52)

The total cross section

σ =
1

16πs

〈〈

|M|2
〉〉

. (7.53)

It is interesting12 to note that the ‘static’ limit K → 0 is well-defined :

lim
K→0

σ =
8π α2

3m2
. (7.54)

This is called the Thomson cross section. It may serve as the ‘measurement’
prediction by which the electric charge of the electron is defined.

7.3.3 Electron-positron annihilation

The process
e+(p1) e

−(p2) → γ(k1) γ(k2)

is related by crossing to Compton scattering, and is described at the tree level
by the two Feynman diagrams

p

p

k

k
1

2
1

2

p

p

k

k
1

2

1

2

.

We shall study it in the context of the way it is actually observed at high-energy
e+e− colliders, that is, in the centre-of-mass frame with the photons emerging
an nonnegligible angles with respect to the electron and positron beams. In that
case, no invariant vector products are small, and we may neglect the electron
mass. We then have an example of a process in which spinor techniques can be
usefully employed. The amplitude is given by

M = ih̄Qe
2

( A1

2(p2k1)
+

A2

2(p2k2)

)

,

A1(λe, λ1, λ2) = uλe
(p1) /ǫλ2(k2) (/p2 − /k1) /ǫλ1(k1) uλe

(p2) ,

A2(λe, λ1, λ2) = uλe
(p1) /ǫλ1(k1) (/p2 − /k2) /ǫλ2(k2) uλe

(p2) . (7.55)

Since me = 0 we may as well employ the symbol u for both the positron and
the electron. Also, the helicity of the electron fixes that of the positron, and

12And comforting.
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both are indicated by λe. The helicities of the two photons are denoted by λ1,2.
We shall use the following spinorial representation of the polarization vectors
given in Eq.(6.64), without bothering overmuch about the complex phase of the
polarization vector13 :

ǫ(kj)λ
µ
=

1

2
√

(kjrj)
uλ(kj) γ

µ uλ(rj) , (7.56)

with rj
α the gauge vector as discussed before. It is important to note that

the choice of rj can be made for different photons, and for different helicity
configurations, independently14. We shall usefully employ also Eq.(6.67) :

ωλ /ǫ(k)λ =
uλ(r)uλ(k)
√

(kr)
, ω−λ /ǫ(k)λ =

u−λ(k)u−λ(r)
√

(kr)
. (7.57)

Let us first take the case where the two photon polarizations are equal. With
N = 1/

√

(k1r1)(k2r2), we have

A1(+,+,+) = N u+(p1)u−(k2)u−(r2)(/p2 − /k1)u−(k1)u−(r1)u+(p2) ,

A2(+,+,+) = N u+(p1)u−(k1)u−(r1)(/p2 − /k2)u−(k2)u−(r2)u+(p2) ,

A1(+,−,−) = N u+(p1)u−(r2)u−(k2)(/p2 − /k1)u−(r1)u−(k1)u+(p2) ,

A2(+,−,−) = N u+(p1)u−(r1)u−(k1)(/p2 − /k2)u−(r2)u−(k2)u+(p2) .

(7.58)

If, now, we choose r1 = r2 = p2 for the (+,+,+) configuration and r1 = r2 = p1
for the (+,−,−) configuration, the amplitude is seen to vanish identically in
either case15 ! We also see that the same must happen for electron-positron
annihilation into any number of photons : if they all have the same helicity, the
amplitude vanishes. Next, we have the (+,+,−) configuration :

A1(+,+,−) = N u+(p1)u−(r2)u−(k2)(/p2 − /k1)u−(k1)u−(r1)u+(p2) ,

A2(+,+,−) = N u+(p1)u−(k1)u−(r1)(/p2 − /k2)u−(r2)u−(k2)u+(p2) .

(7.59)

We can now choose, say, r1 = p2 and r2 = p1. Then A1 is again zero, and

A2(+,+,−) = N u+(p1)u−(k1)u−(p2)(/p2 − /k2)u−(p1)u−(k2)u+(p2)
= −s+(p1, k1)s−(p2, k2)2s+(k2, p1)/

√

(k1p2)(k2p1) , (7.60)

13Because the process is described by only one single current-conserving object. For more
complicated processes we do have to ensure the correct complex phase ; this is however
greatly helped by the observation of section 6.3.8, that the complex phase of the polarization
is independent of the choice of gauge vector.

14But of course we have better choose the same r for all diagrams in the amplitude, or at
least in each of its current-conserving subsets.

15This is of course independent of our using the standard-spinor techniques ; these just
make it simpler to see the vanishing.
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so that up to an irrelevant overall phase we have

M(+,+,−) = 8π α

[

(p1k1)

(p2k1)

]1/2

. (7.61)

By symmetry, the configuration (+,−,+) is obtained by replacing k1 by k2.
The configurations with λe = − follow from complex conjugation. The final
result is, therefore,

〈

|M|2
〉

= 32π2 α2

(

(p1k1)

(p2k1)
+

(p1k2)

(p2k2)

)

. (7.62)

The computation of the cross section is left as an excercise. We have discussed
this process, rather, to show how spinor techniques may be usefully employed
to compute amplitudes for massless-particle processes in a fast and efficient
manner ; moreover, we can gain results (such as the vanishing of the amplitude
when the photons helicities are equal) that are not so easily obtained by more
traditional approaches16.

7.3.4 Bhabha scattering

Our final 2→ 2 QED process is that of Bhabha scattering:

e+(p1) e
−(p2) → e+(q1) e

−(q2) ,

described by the two following Feynman graphs:

p

p

q

q

1

2

1

2

p

p

q1

2 q
2

1

We shall use, in addition to s, the following conventional invariants :

t = (p1 − q1)2 = (p2 − q2)2 , u = (p1 − q2)2 = (p2 − q1)2 . (7.63)

Forme = 0 we have s+t+u = 0 by momentum conservation. As before, we shall
work in the high-energy limit so that me is neglected. The helicity-dependent
amplitude is

M(λ1, λ2, ρ1, ρ2) = ih̄Qe
2 A(λ1, λ2, ρ1, ρ2) ,

A(λ1, λ2, ρ1, ρ2) =
1

s
uλ1(p1) γ

µ uλ2(p2) uρ2(q2) γµ uρ1(q1)

− 1

t
uλ1(p1) γ

µ uρ1(q1) uρ2(q2) γµ uλ2(p2) . (7.64)

16A word of caution is in order here. The Minkowski products (pikj) can become small
if the photons are emitted collinearly. In that case these products are of order m2 rather
than of order s. It is therefore not adviseable to blindly put m = 0 in any process in which
photons are emitted, since then we might miss terms looking like m2/(pikj)2. As can be
seen from the matrix element for Compton scattering, in this case the double-pole term is
actually suppressed by m4 rather than by m2, and therefore at high energies we do not have
to worry about double poles for this process. For other Bremsstrahlung processes such as
e+e− → µ+µ−γ, the double poles are important : see section 7.3.5.
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Note the relative minus sign between the two diagrams ! By the Chisholm
identity, we can now evaluate the various helicity configurations :

A(+,+,+,+) =
2

s
s+(p1, q2)s−(q1, p2)−

2

t
s+(p1, q2)s−(p2, q1)

∼ 2 u

(

1

s
+

1

t

)

∼ 2
u2

st
,

A(+,+,−,−) =
2

s
s+(p1, q1)s−(q2, p2) ∼ 2

t

s
,

A(+,−,+,−) = −2

t
s+(p1, p2)s−(q2, q1) ∼ 2

s

t
, (7.65)

where the symbol ∼ denotes our throwing away unimportant complex phases.
The other helicity configurations with λ1 = + give zero, and those with λ1 = −
follow again trivially by conjugation. We find

〈

|M|2
〉

= 2h̄2Qe
4 s

4 + t4 + u4

s2t2
= 16π2 α2

(

3 + cos2 θ

1− cos θ

)2

, (7.66)

where θ is the angle between ~p1 and ~q1 in the centre-of-mass frame in which
most e+e− scattering experiments are performed. Note that, in this case, the
singularity is not due to our neglecting the electron mass ; indeed, for nonzero
mass we have

t = (p1 − q1)2 = 2m2 − 2(p1
0)2 + 2|~p1|2 cos θ

= −2|~p1|2(1− cos θ) . (7.67)

To this order in perturbation theory, the total cross section for Bhabha scatter-
ing is therefore indeed divergent17.

7.3.5 Bremsstrahlung in Mœller scattering

The nonradiative process

Mœller scattering is the mutual scattering of two electrons :

e−(p1) e
−(p2) → e−(q1) e

−(q2)

and is just a crossed version of Bhabha scattering. The relevant expression is
therefore, for negligible electron mass,

〈

|M|2
〉

= 2h̄2Qe
4 s

4 + t4 + u4

s2u2
(7.68)

17The importance of the Fermi minus sign is very visible here. If inadvertently we would
forget it, the cross section would be overestimated by as much as 50 % for cos θ = −2 +

√
5,

i.e. a scattering angle θ = 76.345 degrees.
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The radiative process

We shall now consider the so-called Bremsstrahlung18 process :

e−(p1) e
−(p2) → e−(q1) e

−(q2) γ(k)

At the tree level, it is described by the eight Feynman diagrams
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2
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k
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k
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which we may conveniently put in four groups of two diagrams each :

M =

4
∑

i=1

Mi ,

M1 = −i(Qe

√
h̄)3 u(q1)

[

/ǫ
/q1 + /k +me

2q1 · k
γα − γα /p1 − /k +me

2p1 · k
/ǫ

]

u(p1)

× 1

(p2 − q2)2
u(q2)γαu(p2) ,

M2 = M1⌋p1↔p2 , q1↔q2
,

M3 = −M1⌋p1↔p2
, M4 = −M2⌋p1↔p2

. (7.69)

Note the Fermi minus sign betweenM1,2 andM3,4. The four pairs of diagrams
are separately current-conserving, i.e.

Mi⌋ǫ→k = 0 , i = 1, 2, 3, 4 . (7.70)

The soft-photon approximation

Since the emitted photon is a massless particle, its energy can be arbitrarily low.
A useful result can be obtained if we take this limit, that is, the photon energy
is taken to be negligible with respect to the other particle energies. Consider an
arbitrary process in which a fermion with momentum q and mass m is produced
during a scattering :
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A
q

(7.71)

18The term originated in studies of the motion of charged particles through a medium ; they
may lose energy by emitting photons, and slow down, or ‘brake’, or – in the language of early-
twentieth-century physics, which was German rather than American English – ‘Bremsen’.
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this amplitude can be written as

M0 ≡ u(q) A(q) , (7.72)

where A denotes the rest of the diagram(s). The corresponding radiative process
will (amongst others) contain diagrams in which the photon is emitted by this
particular fermion :
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A
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q

(7.73)

which evaluates to

Ms ≡ −(Qe

√
h̄) u(q)/ǫ

/q + /k +m

2q · k A(q + k) . (7.74)

Notice that the denominator q · k goes to zero as the photon energy vanishes,
and hence the diagram diverges in the soft-photon limit. In the soft-photon
approximation ( and assuming that the object A does not depend on q in too
drastic a manner19) we have

Ms ≈ −(Qe

√
h̄) u(q)/ǫ

/q +m

2q · k A(q) . (7.75)

Anticommuting /ǫ and /q, and using the property of the Dirac spinor, which tells
us that u(q)/(q) = mu(q), we then find

Ms ≈ −(Qe

√
h̄)
q · ǫ
q · ku(q)A(q) , (7.76)

that is, the diagrams factorizes into the nonradiative result and an ‘infrared
factor’20. We can repeat this procedure for those diagrams in which the photon
is emitted by the other external particles. There are, of course, also (possibly)
diagrams in which the photon is emitted from internal lines ; but, as can easily
be checked, such diagrams do not diverge as k0 → 0. In the soft-photon approx-
imation, they do therefore not contribute. For radiative Mœller scattering, we
therefore have the nicely factorized form

M = −(Qe

√
h̄)

(

q1 · ǫ
q1 · k

+
q2 · ǫ
q2 · k

− p1 · ǫ
p1 · k

− p1 · ǫ
p1 · k

)

M0 , (7.77)

whereM0 is the amplitude for the nonradiative process ; and, using the polar-
ization sum rule Σǫµǫν = −gµν, we find

〈

|M|2
〉

= −2Qe
6h̄3

s4 + t4 + u4

t2u2
(VIR · VIR) ,

VIR
µ =

p1
µ

k · p1
+

p2
µ

k · p2
− q1

µ

k · q1
− q2

µ

k · q2
. (7.78)

As has already been intimated, the double poles are indeed suppressed by a
factor me

2.
19This assumption fails, for instance, close to a resonance. However, since every resonance

has a finite width, the soft-photon approximation is formally correct for infinitesimal photon
energies.

20Since infrared light has low energy compared to visible light.
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Hard Bremsstrahlung: massless case

Next, we consider ‘hard Bremsstrahlung’ (i.e. any photon emission which is not
soft) in the limit of vanishing electron mass. It is then most useful to assign
definite helicities to the electrons, so that the scattering process is

e−(p1, µ1) e
−(p2, µ2) → e−(q1, ν1) e

−(q2, ν2) γ(k, λ)

with µ1,2, ν1,2, λ = ±. The amplitude is then a function of the helicities, and we
writeM(µ1, µ2; ν1, ν2;λ). We first considerM1(+,+;+,+;+). Using Eq.(6.67)
this can be written as

M1(+,+;+,+;+) = i
(Qe

√
h̄)3
√
2

2(p2 · q2)s−(k, r)

× u+(q1)
[

u−(k)u−(r)
/q1 + /k

2k · q1
γα − γα /p1 − /k

2k · p1
u−(k)u−(r)

]

u+(p1)

× u+(q2)γαu+(p2) , (7.79)

and since M1 is current-conserving by itself we may choose r at will ; in this
case r = p1 appears to be optimal since it kills the second term. Applying
standard (hopefully, by now) spinor techniques we arrive at

M1(+,+;+,+;+) =

i(Qe

√
h̄)3
√
8
s+(q1, k)u−(p1)(/q1 + /k)u−(q2)s−(p2, p1)

(2p2 · q2)(2k · q1)s−(k, p1)
. (7.80)

We may employ momentum conservation and masslessness for a further manip-
ulation :

u−(p1)(/q1 + /k)u−(q2) = u−(p1)(/q1 + /k + /q2)u−(q2)

= u−(p1)(/p1 + /p2)u−(q2)

= u−(p1) /p2 u−(q2)

= s−(p1, p2)s+(p2, q2) , (7.81)

so that

M(+,+;+,+;+) = i(Qe

√
h̄)3
√
8

s−(p1, p2)
2

s−(p2, q2)s−(k, p1)s−(k, q1)
. (7.82)

Note the fact that in this expression no s+’s occur, but only s−’s. This is a
quite general feature of such processes. Finally, we can make use of the identity
of Eq.(6.74) to arrive at the form

M1(+,+;+,+;+) = −2i(Qe

√
h̄)3

s−(p1, p2)
2

s−(p1, q1)s−(p2, q2)

(

ǫ+ · p1
k · p1

− ǫ+ · q1
k · q1

)

.

(7.83)
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The infrared factor also appears in this case ! Performing the appropriate sub-
titutions we can write the complete amplitude as

M(+,+;+,+;+) = −2i(Qe

√
h̄)3 s−(p1, p2)

2 (VIR · ǫ+)

×
(

1

s−(p1, q1)s−(p2, q2)
− 1

s−(p1, q2)s−(p2, q1)

)

. (7.84)

The minus sign in the last term is the Fermi sign ; it helps us to simplify our
expression even further using the Schouten identity, and the final form for the
amplitude is

M(+,+;+,+;+) = 2i(Qe

√
h̄)3

s−(p1, p2)
3s−(q1, q2) (VIR · ǫ+)

s−(p1, q1)s−(p2, q2)s−(p1, q2)s−(p2, q1)
.

(7.85)
For the other helicity configurations, the above treatment can be repeated
straightforwardly. We simply list the final results :

M(µ1, µ2; ν1, ν2;λ) =

2i(Qe

√
h̄)3

(VIR · ǫλ) K(µ1, µ2; ν1, ν2;λ)

s−λ(p1, q1)s−λ(p2, q2)s−λ(p1, q2)s−λ(p2, q1)
,

K(+,+;+,+;+) = +s−(p1, p2)
3 s−(q1, q2) ,

K(+,+;+,+;−) = +s+(q1, q2)
3 s+(p1, p2) ,

K(+,−; +,−; +) = −s−(p1, q2)3 s−(p2, q1) ,

K(+,−; +,−;−) = −s+(p2, q1)3 s+(p1, q2) ,

K(+,−;−,+;+) = +s−(p1, q1)
3 s−(p2, q2) ,

K(+,−;−,+;−) = +s+(p2, q2)
3 s+(p1, q1) ,

K(−,−;−,−; +) = +s−(q1, q2)
3 s−(p1, p2) ,

K(−,−;−,−;−) = +s+(p1, p2)
3 s+(q1, q2) ,

K(−,+;−,+;+) = −s−(p2, q1)3 s−(p1, q2) ,

K(−,+;−,+;−) = −s+(p1, q2)3 s+(p2, q1) ,

K(−,+;+,−; +) = +s−(p2, q2)
3 s−(p1, q1) ,

K(−,+;+,−;−) = +s+(p1, q1)
3 s+(p2, q2) . (7.86)

No other helicity configurations contribute. The spin-averaged matrix element
squared therefore has the following form in the strictly massless case :

〈

|M|2
〉

me=0
= −2Qe

6 h̄3 (VIR · VIR)

× ss′(s2 + s′2) + uu′(u2 + u′2) + tt′(t2 + t′2)

uu′tt′
, (7.87)

with s = (p1+p2)
2, s′ = (q1+q2)

2, t = (p1−q1)2, t′ = (p2−q2)2, u = (p1−q2)2,
and u′ = (p2 − q1)2. The final result is surprisingly simple. It consists of the
‘soft-photon’ factor VIR

2 (evaluated for non-soft photon momenta), multiplying
a ‘symmetrized’ form of the nonradiative cross section.
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Double-pole terms at high energy

We have already mentioned that putting me = 0 strictly may be too strict since
there are invariant products of momenta that may become equally small. To
see how this works, let us again inspect the radiation emitted from a produced
fermion, as given in figure 7.73, that can be written as

Mc ≡ −(Qe

√
h̄) u(q)/ǫ

/q + /k +m

2q · k A(q + k) (7.88)

where, as before, A stands for the rest of the diagram(s). We shall not assume
the soft-photon limit, however. Let us assume that the photon is emitted as
small angle θ with respect to the fermion momentum. We then find, assuming
the fermion energy to be large compared to its mass m :

(k · q) = k0
(

q0 − |~q| cos θ
)

≈ k0
(

(q0 − |~q|) + |~q|θ2/2
)

≈ 1

2
k0q0

(

θ2 +

(

me

q0

)2
)

, (7.89)

where we have used the fact that q0 − |~q| = me
2/(q0 + |~q|) ≈ me

2/(2q0). we
conclude that as soon as θ is of order me/q

0 or smaller, the product (k · q)
becomes of order m2

e ; and this means that is that case the ‘single pole’ (k · q)−1
and the ‘double pole’ me

2(k · q)−2 are of the same order21. The squared matrix
element (summed over fermion and photon spins) contains of course

〈

|Mc|2
〉

= − Qe
2h̄

4(k · q)2
× A(q + k)(/q + /k +m)γα(/q +m)γα(/q + /k +m)A(q + k) (7.90)

Using standard Dirac algebra we can write

(/q + /k +m)γα(/q +m)γα(/q + /k +m)

= 4m2(/q + /k +m) + 4(k · q)(m− /k) . (7.91)

The second term in this expression enters into the ‘massless’ result since it
will give rise only to single-pole terms, whereas the first term tells us that the
double-pole term coming from thisMc must read

〈

|Mc|2
〉

= −Qe
2h̄

m2

(k · q)2 A(q + k)(/q + /k)A(q + k) , (7.92)

where we have again discarded terms of order m. The nonradiative transition
rate was given by (A)/qA(q), and in this expression we have now substituted
q + k for q. We can, by momentum conservation, always express the invariants
s, t and u in Eq.(7.68) into a form that does not contain q, and this then gives

21For this reason we use the subscript c which stands for ‘collinear’.
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us the double-pole terms : keeping all four collinear situations in sight, we can
write the transition rate including the double-pole terms as

〈

|M|2
〉

= Qe
6 h̄2

(

ss′(s2 + s′2) + tt′(t2 + t′2) + uu′(u2 + u′2)

tt′uu′

×
[

− 2(p1 · p2)
(k · p1)(k · p2)

− 2(q1 · q2)
(k · q1)(k · q2)

+
2(p1 · q1)

(k · p1)(k · q1)

+
2(p2 · q2)

(k · p2)(k · q2)
− 2(p1 · q2)

(k · p1)(k · q2)
− 2(p2 · q1)

(k · p2)(k · q1)

]

− me
2

(k · p1)2
s′4 + t4 + u′4

t′2u′2
− me

2

(k · p2)2
s′4 + t4 + u4

t2u2

− me
2

(k · q1)2
s4 + t′4 + u2

t′2u2
− me

2

(k · q2)2
s4 + t4 + u′2

t2u′2

)

(7.93)

This is the final expression for unpolarized Mœller scattering ; it is accurate in
the limit of small me even for collinear photon emission.

7.4 Scalar electrodynamics

7.4.1 The vertices

We can also consider the possibility of interactions between photons and charged
scalar particles22. The simplest vertex is then given by

p

q
µ

where the charge flow is indicated by the arrow. The photon index is µ. The
momenta p and q are counted along the arrow. Note that the propagator of scalar
particles may be unoriented, but the vertices do not have to, in particular if there
is a quantum number, such as charge, that distinguishes between particle and
antiparticle. In the absence of Dirac indices, the only quantities in this vertex
that carry a Lorentz index are the momenta p and q (and of course the photon’s
own momentum, but that is fixed by p and q). We therefore propose a Feynman
rule of the form

p

q
µ ↔ i

Q

h̄
(c1p

µ + c2q
µ) ,

22Elementary charged scalar particles have to date not been observed, although they are
predicted in extensions of the standard model. We here include threm since they will provide
indications on how to treat charged vector particles.
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with constants c1,2 to be determined. This is simple, since we can study the
annihilation of the charged scalar-antiscalar pair into an off-shell photon : under
the handlebar operation, the amplitude becomes

p

p
2

1

k
= iQ

√
h̄ (c2p2

µ − c1p1µ) kµ

= iQ
√
h̄ (c2p2

µ − c1p1µ)
(

p1µ + p2µ
)

=
iQ
√
h̄

2
(c2 − c1)s . (7.94)

We see that c1 = c2 is required, and therefore the first Feynman rule for scalar
electrodynamics (sQED) reads

p

q
µ ↔ i

Q

h̄
(p+ q)µ

sQED vertex

sQED Feynman rules, version 7.1 (7.95)

Let us now consider the more complicated process of annihilation into two on-
shell photons. With the above vertex two diagrams are involved :

p

p

k

2k

11

2

p

p

k

k

1

2

2

1

The amplitude is then given, with m indicating the scalar’s mass, by

M = −ih̄Q2 (p1 + (p1 − k)) · ǫ1 ((p1 − k) + (−p2)) · ǫ2
(p1 − k1)2 −m2

+ (k1 ↔ k2)

= −2ih̄Q2

(

(p1 · ǫ1)(p2 · ǫ2)
(p1 · k1)

+
(p1 · ǫ2)(p2 · ǫ1)

(p2 · k1)

)

(7.96)

The test of current conservation now fails, since

M⌋ǫ1→k1
= −2ih̄Q2((p2 · ǫ2) + (p1 · ǫ2)) = −2ih̄Q2 (k1 · ǫ2) . (7.97)

The solution is to introduce a four-point vertex into the Feynman rules23 :

23For reasons lost in the mists of time, such a vertex is called a sea-gull vertex, although to
me it does not look very gully nor even particularly birdy.
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p

q
µ ↔ i

Q

h̄
(p+ q)µ

sQED 3-vertex

ν

µ
↔ 2i

Q2

h̄
gµν

sQED 4-vertex

sQED Feynman rules, version 7.2 (7.98)

Now we find immediately the desired current conservation :

+ + = 0 . (7.99)

It might be supposed that annihiliation into three photons would necessitate a
five-point vertex, and so on. Fortunately, the above two vertices are sufficient
to guarantee current conservation in all sQED processes, as we shall now show
using some more handlebar diagrammatics.

7.4.2 Proof of current conservation in sQED

Consider a charged scalar propagator somewhere in a Feynman diagram, and
assume a photon attached to it :

k
µ

p q =
ih̄

p2 −m2

(

i
Q

h̄
(p+ q)µ

)

ih̄

q2 −m2
.

As in our proof of regular QED, none of these lines is necessarily on-shell. .
Momentum conservation again fixes the photon momentum to be k = p− q. In
analogy to regular QED we can now invent some handlebar diagrammatics as
follows :

= −iQh̄ (p− q) · (p+ q)

(p2 −m2)(q2 −m2)

=
ih̄

q2 −m2

(

i
Q

h̄

)

(ih̄) + (ih̄)

(

i
Q

h̄

)

ih̄

p2 −m2

= − , (7.100)
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with the trivial auxilliary rules

= ih̄ , = i
Q

h̄
. (7.101)

These rules are very similar to those we adopted in regular QED : however, in
general we have

6= (7.102)

since the scalar-scalar-photon vertex still depends on the various momenta. We
now turn to the second vertex, with two photon lines. Not denoting the two
scalar propagators, we have

µ

p q
k = 2i

Q2

h̄
(p− q − k)sµ

=

(

i
Q

h̄

)

(ih̄)

(

i
Q

h̄
(2q + k)µ

)

−
(

i
Q

h̄
(2p− k)µ

)

(ih̄)

(

i
Q

h̄

)

,

(7.103)

in other words,

= − . (7.104)

The proof of current conservation again relies on the SDe’s for this model :

= + + ,

= + + ,

= + + ,

(7.105)

where again we have used semi-connected graphs. The handlebar operation is
now seen to lead to

= +

= −

+ −

(7.106)
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If we now iterate the SDe cleverly for the first two of these four diagrams, we
obtain

= +

− −

+ −

= 0 , (7.107)

since we do have

= , (7.108)

owing to the simple, momentum-independent structure of the seagull vertex.
Comparing the lines of the proof for sQED with that of regular QED, the general
proof strategy becomes clear : if in a diagram a slashed propagator occurs as
one of the indicated lines of a (semi-)connected graph, we must iterate de SDe
for that line, and then we can collect the various canceling contributions.

7.4.3 The Gordon decomposition

Consider a charged Dirac particle that scatters by emitting (or absorbing) a
single photon. The corresponding current reads

Jµ =
iQ

h̄
u(q) γµ u(p) , (7.109)

where p is the incoming, and q the outgoing momentum. By the properties of
the Dirac spinors we can write this as

Jµ =
iQ

2mh̄
u(q)

(

/qγµ + γµ/p
)

u(p) . (7.110)

Now,

/qγµ = qµ +
1

2
qα[γ

α, γµ] = qµ − iqα σαµ ,

γµ/p = pµ +
1

2
pα[γ

µ, γα] = pµ + ipα σ
αµ , (7.111)

and the current takes the form

Jµ =
iQ

2mh̄
u(q)

(

(p+ q)µ + i(p− q)α σαµ
)

u(p) . (7.112)

This is called the Gordon decomposition : the vertex is split up into a piece that
we recognize as the sQED vertex, which is called the convection term, and a
tensorial part, called the spin term. Both terms vanish individually under the
handlebar operation.
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7.4.4 The charged Klein-Gordon equation

Just like the case of a Dirac particle in an e.m. field, that of a charged scalar in
such a field allows us to write down a tree-level SDe for the scalar field, based
on
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(7.113)

or, by explicitly use of the Fourier transforms of the fields :

φ(x) =

∫

d4y
1

(2π)4

∫

d4k e−ik·(x−y)
ih̄

k2 −m2 + iǫ
((

i
Q

h̄

)

1

(2π)8

∫

d4pd4qe−ip·y−iq·y(p+ q)µA
µ(q) φ(p)

+
1

2

(

2i
Q2

h̄

)

Aµ(y)A
µ(y)φ(y)

)

. (7.114)

Note the occurence of the symmetry factor 1/2 in the last line. We can therefore
arrive at the following classical field equation, where we have used the Lorenz
condition ∂ · A = 0 :

(

− ∂2 −m2
)

φ(x) = −iQAµ(x)∂µφ(x) −Q2Aµ(x)Aµ(x)φ(x) , (7.115)

or
(

(i∂ +QA(x))2 −m2

)

φ(x) = 0 . (7.116)

This is de Klein-Gordon equation for charged scalar fields. We see that the same
‘minimal substitution rule’ pµ → pµ+QAµ as in the Dirac case is employed to
account for the presence of the e.m. field ; and we see that the charge coupling
constant Q is defined in the same way for both scalar and Dirac particles.

7.5 The Landau-Yang theorem

7.5.1 The photon polarisation revisited

As stated above, any good amplitude for processes in which a photon is absorbed
or produced must vanish under the handlebar operation. That means that,
provided the amplitude is acceptable, we may add to any photon polarisation
a piece of photon momentum. Let us consider a process with several photons
present, with momenta qi

µ and polarisation vectors ǫi
µ. We have, obviously,

(qi · qi) = (qi · ǫi) = 0 and (ǫi · ǫi) = −1. From the above, we see that, if we
wish, we may employ instead of ǫi the more complicated object

ηi
µ = ǫi

µ − (p · ǫi)
(p · qi)

qi
µ , (7.117)
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where p is any vector not proportional to qi. This has the properties

(ηi · qi) = (ηi · p) = 0 , ηi
2 = −1 . (7.118)

In numerous applications, η is actually more profitable to use than ǫ. But we
should note that, in any amplitude described by more than one Feynman dia-
gram, the shift from ǫ to η simply means that parts of some Feynman diagrams
are ‘transferred’ to other diagrams : the total result must, of course, be the
same. The most important difference between ǫ and η is in the handlebar, since
η then vanishes :

ηi⌋ǫi→qi
= 0 ; (7.119)

therefore, any expression written in terms of η’s vanishes automatically under
the handlebar.

7.5.2 The Landau-Yang result

Although this may seem to fall somewhat outside the province of QED, we can
consider the decay of a spin-1 particle into photons. But even within QED this
can be envisaged, since we may have a bound state of electron and positron
(positronium) that may, of course, have some angular momentum. Such a
positronium state can, unless we look really closely, be considered a single par-
ticle. In its ground state, positronium comes in two varieties : para-positronium
in which the electron and positron’s spin are antiparallel and hence has total
spin zero, and ortho-positronium in which the spins are parallel, leading to a
total spin of one.

Without knowing anything much about the bound-state structure of positro-
nium, let us consider the amplitude for its decay into a pair of photons. Let us
denote by Pµ the positronium momentum (in its rest frame), and by q1,2 and
ǫ1,2 the photon momenta and polarizations. We shall define qµ = (qµ1 − qµ2 )/2.
In addition, the positronium being a spin-1 particle, we need its polarisation
vector ǫ0. Any amplitude for the decay must necessarily be linear in ǫ0, ǫ1 and
ǫ2 ; and to have current conservation we can, rather, take η1,2 instead of ǫ1,2,
where here ηi = ǫi − (P · ηi)/(P · qi)qi. Since also (P · ǫ0) = 0, the three polar-
isations (as well as the vector q) have no timelike component. Noting that, in
this case, (q ·η1,2) = 0 as well, we see that to build an amplitudeM we actually
have but a very few structures that we can use24 :

M = A1 (q · ǫ0)(η1 · η2) +A2 ε(P, ǫ0, η1, η2) +A3 ε(P, q, η1, η2)(q · ǫ0) . (7.120)

The coefficients A are of course undetermined, but they can only depend on P 2,
q2 and (P · q). This last product is zero, and P 2 = −4q2 =M2 where M is the
positronium mass, so the A’s are effectively just constants. We now come to the
main observation : under interchange of the two photons we have η1 ↔ η2 and

24You might be tempted to write down a term like ε(q, ǫ0, η1, η2) but since all these vectors
have vanishing zeroth component, this Levi-Civita product is simply zero.
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q → −q. It is immediately seen that all possible terms inM are antisymmetric
under this operation, and hence cannot occur if we are to have Bose statistics.
It is obvious that this results holds to all orders of perturbation theory, nor is
restricted to the case of positronium. We conclude that a spin-1 particle cannot
decay into two photons, which is the Landau-Yang theorem. And so it is : para-
positronium has a lifetime of 1.25 × 10−10 seconds, while ortho-positronium,
having to perform the much more cumbersome decay into three photons, lives
for as long as 1.39× 10−7 seconds.

In the literature and most textbooks, the Landau-Yang theorem, especially
when applied to positronium, appears to be based on fairly complicated reason-
ings having to do with the charge-conjugation properties of the various states.
In our more simple-minded approach, we see that it is simply a consequence of
the relative paucity of building blocks available when you start to imagine what
a decay amplitude could look like. Indeed, as soon as you envisage three-photon
decay, a host of terms can be written down that respect Bose symmetry, so that
it is easily understood why three-photon decay is not forbidden25.

25In the words of Feynman, ‘everything that is not explicitly forbidden is allowed’.



Chapter 8

Quantum Chromodynamics

8.1 Introduction: coloured quarks and gluons

In chapter 7 we have studied the behaviour of electrically charged particles and
the electromagnetic field embodied by photons. Notwithstanding the fact that
particles can have different charges, all these charges are of the same type in the
sense that they can be added. For instance, atoms are electrically neutral when
studied from the ‘outside’, since the positive charge of the nucleus is cancelled
out by the negative charge of the electron cloud. It is interesting to see what
happens if we enlarge our view to the possibility of ‘different types of charge’,
that cannot be meaningfully added in a simple way. In that case, a bound state
of particles with a different charge type might not look ‘neutral’ when seen from
the outside : the charges of the constituents would show through. To avoid
confusion with the electric charge we shall let the ‘new charges’ go by the name
of colours, and the dynamical theory of their interactions is called Quantum
Chromodynamics, or QCD.

We shall start our investigation with coloured fermions, called quarks1. The
number of colours is denoted by N , where of course N ≥ 2. The quarks are
described by Dirac spinors for given momentum and spin, and also by a colour
label which we shall denote by a, b, c, . . .. All these labels (or indices) run from
1 to N . A conjugate fermion (u or v) will carry an upper, a regular fermion (u
or v) a lower index.

In addition we expect vector particles to be present, that carry the colour
force. These we call gluons . In analogy to QED, we shall assume the gluons to
be massless, but since we have different colour types there must also be different
gluon types. The gluon type will be denoted by j, k, l,m, . . ., and it is up to us
to determine2 how many gluon type occur for given N .

1Historically, the notion of quark predates that of colour, and the colouring of quarks was
invented to explain the possibility of the existence of curious particles such as the ∆++ or
the Ω−. In this chapter, we are less interested in describing the world of hadrons than in
constructing an internally consistent theory, hence the unhistorical line of reasoning.

2The usual approch is simply to postulate a local SU(N) gauge symmetry, from which the

205
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We now postulate a few properties that we want our world of colour to
possess:

1. Colour is conserved in interactions, just like electric charge. This must
hold for every type of colour charge separately.

2. All colours are equal and none are ‘more equal than others’, which means
that particles that only differ by their colours propagate through spacetime
in the same way.

8.2 Quark-gluon couplings

8.2.1 The T matrices

We start by defining the quark-gluon vertex, as a close analogue of the QED
fermion-photon vertex :

a

b

j
↔ i

h̄
g γµ (T j)ab , (8.1)

where we have explicitly indicated the quark and gluon colour types. Here, g
is the coupling constant, and (T j)ab is recognized as an element of an N × N
matrix, the properties of which we still need to derive. Allowing for complex
matrices, we see that the number of different gluon colours cannot exceed 2N2.
It is clear that an overall factor in the matrices T can always be absorbed in a
redefinition of g, and we shall use this to normalize the T matrices.

We require the structure of the colour part of the interactions to take care
of colour conservation and colour equality. Consider the following diagram :

j
abc

The colour part of this diagram reads

∑

j,b

(T j)ab(T
j)bc

and colour conservation/equality hence demands that

∑

j

(

T j2
)a

b
= k δab (8.2)

number of gluons immediately follows ; but our (or rather my) interest is to see how we can
arrive at that result from simpler, or rather physical, requirements.
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for some constant k. Similarly, the diagram

k
b

a

j

contains the colour factor
∑

a,b

(T j)ab(T
k)ba

and, using the normalization freedom, we therefore find

Tr
(

T jT k
)

=
1

2
δjk (8.3)

Since colour must be conserved, a gluon cannot lose its colour charge and there-
fore gluons and photons cannot mix : all diagrams of the form

j
photon

a

a

must vanish, and therefore we must have

Tr
(

T j
)

= 0 for all gluon colours j . (8.4)

Finally, we consider the following two-loop self-energy diagram of the photon :

j

Here, the fermions are quarks and the internal line labelled j is a gluon of colour
type j (of course, we have to sum over all j values. If we compare this diagram
to the corresponding QED one, we see that apart from the overall charges (g2

instead of Q2) the only difference is the colour factor, in this case
∑

j

Tr
(

T j T j
)

Now, if our theory is to be unitary, it must obey the Cutkoski rules, and therefore
we demand that

j + j + j = 0 . (8.5)
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For the QED diagram, this indeeds holds. In the coloured case, however, the
colour structures of the diagram cut in the various ways are no longer the same
: respectively, they are

∑

j

Tr
(

T jT j
)

,
∑

j

Tr
(

T jT j†
)

, and
∑

j

Tr
(

T j†T j†
)

.

Unitarity can therefore only be safe if these three different traces are, in fact,
equal to one another. We may therefore write

∑

j

Tr
(

AjAj
)

= 0 , Aj = i
(

T j − T j†
)

. (8.6)

The matrices Aj are obviously Hermitean, so that Eq.(8.6) can also be written
as

∑

j

Tr
(

AjAj†
)

=
∑

j

N
∑

a,b=1

∣

∣(Aj)ab
∣

∣

2
= 0 , (8.7)

hence all Aj are actually identically zero, and the matrices T j must be Her-
mitean. The number of different gluon colours type is therefore N2− 1, and the
constant k of Eq.(8.2) is equal to (N2 − 1)/2N .

8.2.2 The Fierz identity for T matrices

We have now zoomed in quite efficiently on the matrices T j. On the other
hand, like in the case of Dirac particles we would prefer if predictions for cross
sections and the like dit not depend on the particular choice of the matrices3.
We can, in fact, derive a relation between the T ’s that holds independently of
any representation : it goes under the name of the Fierz identity4. Any N ×N
matrix M can be written5 as

M = a01 +
∑

j

ajT
j . (8.8)

By taking traces we can determine the coefficients :

Tr (M) = a0N , Tr
(

MT k
)

= ak/2 . (8.9)

Therefore we have

M = 2
∑

j

Tr
(

T jM
)

T j +Tr (M) /N , (8.10)

3In the Dirac case this was indispensable since any dependence would destroy Lorentz
invariance. In the present case one might argue that the T j could, in principle, just be
measured. Nevertheless having a representation-independent theory just sound, you know,
kind of more comfy.

4Same guy, different identity.
5You might be tempted to think that this holds only for Hermitean matrices. But since

iT j is antiHermitean we can accomodate any M provided the a’s can be complex.
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or, in terms of the matrix components,

Md
c δ

c
b δ

a
d = 2

∑

j

Md
c (T

j)cd(T
j)ab +

1

N
Md

c δ
c
d δ

a
b , (8.11)

whence the following, representation-independent identity :

(T j)ab(T
j)cd =

1

2

(

δad δ
c
b −

1

N
δab δ

c
d

)

. (8.12)

Since6 the colour of quarks and gluons cannot be observed, any cross section
will involve a summation over all colours, and therefore every cross section is
expressed as (a product of) traces of strings of T matrices, in which every matrix
T k occurs exactly twice, and the index k is summed over. The Fierz identity
comes in useful here, since we can write (with summation implied)

Tr
(

T jA
)

Tr
(

T jB
)

=
1

2

(

Tr (AB)− 1

N
Tr (A)Tr (B)

)

,

Tr
(

T jAT jB
)

=
1

2

(

Tr (A) Tr (B)− 1

N
Tr (AB)

)

. (8.13)

With these trace identities we can simplify and compute any set of colour
traces without recourse to any explicit representation, especially if we recall
that Tr (1) = N, Tr

(

T j
)

= 0 and T jT j = (N2 − 1)/2N times unity. For
instance,

Tr
(

T jT kT l
)

Tr
(

T jT kT l
)

=
1

2

(

Tr
(

T kT lT kT l
)

− 1

N
Tr
(

T kT l
)

Tr
(

T kT l
)

)

=
1

4

(

Tr
(

T l
)

Tr
(

T l
)

− 2

N
Tr
(

T lT l
)

+
1

N2
Tr
(

T l
)

Tr
(

T l
)

)

= − 1

2N
Tr
(

T lT l
)

=
N2 − 1

4N
, (8.14)

and

Tr
(

T jT kT l
)

Tr
(

T jT lT k
)

=
1

2

(

Tr
(

T kT lT lT k
)

− 1

N
Tr
(

T kT l
)

Tr
(

T lT k
)

)

=
1

2

(

(

N2 − 1

2N

)2

Tr (1)− 1

2N
Tr
(

T lT l
)

+
1

2N2
Tr
(

T l
)

Tr
(

T l
)

)

=
(N2 − 1)(N2 − 2)

8N
. (8.15)

6Empirically.
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8.3 The three-gluon interaction

8.3.1 The need for three-gluon vertices

It is now time to investigate our theory using handlebars. In the first place, in
the process g → qq̄ the current is conserved in the same way as in QED, since
there is only a single Feynman diagram and the colour structure is therefore
irrelevant to any cancellation. The situation becomes more delicate in the case
of more complicated interactions, so let’s consider qq̄ → gg. Then, we have at
least the following two diagrams :

k

p
1

p
2 b

a
q

1

q
2

j

and

kp
1

p
2 b

a
q

q

2

1

j

,

where we have indicate the colours explicitly. From these two graphs we form
the two expressions

M1 = −ih̄g2 v(p1)/ǫ1
/q1 − /p1 +m

−2(q1 · p1)
/ǫ2u(p2) (T

jT k)ab ,

M2 = −ih̄g2 v(p1)/ǫ2
/p2 − /q1 +m

−2(q1 · p2)
/ǫ1u(p2) (T

kT j)ab . (8.16)

Let us now put the handlebar on gluon 1, so that we replace ǫµ1 by qµ1 . We find
that

v(p1)/q1
(

/q1 − /p1 +m
)

= v(p1)/q1
(

− /p1 +m
)

= v(p1)
(

− 2(p1 · q1) + (/p1 +m)/q1
)

= −2(p1 · q1) v(p1) (8.17)

and

(

/p2 − /q1 +m
)

/q1u(p2) =
(

/p2 +m
)

u(p2)

=
(

2(p2 · q1)− (/p2 −m)
)

u(p2) = 2(p2 · q1)u(p2) , (8.18)

so that

M1⌋ = − ih̄g2 v(p1)/ǫ2u(p2) (T jT k)ab ,

M2⌋ = + ih̄g2 v(p1)/ǫ2u(p2) (T
kT j)ab . (8.19)

Combining, we may write

M1+2⌋ = − ih̄g2 v(p1)/ǫ2u(p2) [T j, T k]ab , (8.20)

where the square brackets denote, of course, the commutator of the matrices T j

and T k. Because of the colour structure we have a non vanishing result, and
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current conservation is in trouble ! The remedy must be to introduce a third
diagram, with a nontrivial ggg vertex :

n

p
1

p
2

q
1

q
2

a

b

j

k

It is now our job to determine the form of the new three-gluon vertex. We shall
do this by investigating loop diagrams.

8.3.2 Furry’s failure

Consider the Feynman diagram de-
picted on the right, in which three glu-
ons are effectively coupled by a quark
loop. We have explicitly indicated the
momentum flows. Note especially that
the gluon momenta are all counted flow-
ing out of the vertex, so that we have

q1 + q2 + q3 = 0 . (8.21)

q

q

q

1

2

3

j

k
l

p p+q
1

q 2−p
ν

ρ

µ

Apart from overall coupling constants and the like, the loop diagram is given
by

T =

∫

d4p
Tr ((/p+m)γµ(/p+ /q1 +m)γρ(/p− /q2 +m)γν)

(p2 −m2)((p+ q1)2 −m2)((p− q2)2 −m2)
Tr
(

T jT lT k
)

.

(8.22)
There is also a loop diagram in which the quark runs counterclockwise instead
of clockwise. In our discussion of Furry’s theorem in sect. 7.2.6, we have seen
that the space-time part of the second diagram is exactly opposite to the one
of the first, so that in QED these two diagrams cancel. In QCD, however, they
do not since the second diagram contains the colour matrices in the opposite
order, that is to say it contains Tr

(

T jT kT l
)

instead of Tr
(

T jT lT k
)

. The sum
of the two diagrams must, if we take into account the Lorentz-covariant nature
of the loop integral, and the fact that out of q1, q2 and q3 only two momenta
are independent, be of the form

T = Y (q1, µ; q2, ν; q3, ρ)Tr
(

T j[T k, T l]
)

,

Y (q1, µ; q2, ν; q3, ρ) = {(a1q1 + a2q2)
ρgµν + (a3q2 + a4q3)

µgνρ

+(a5q3 + a6q1)
νgρµ} , (8.23)

for some numbers a1, . . . , a6. For large p, each of the three propagators goes
as 1/p, and the loop integral is therefore divergent. We see that indeed there
has to be a three-gluon coupling in the action, otherwise the theory would not



212 July 24, 2013

be renormalizable ; and the form of the three-gluon vertex must be that of
Eq.(8.23).

Without evaluating the loop integral completely, we can glean all the infor-
mation we need. Consider the following transformation on T :

q1 ↔ −q2 , q3 → −q3 , µ ↔ ν . (8.24)

This transformation leaves the momentum conservation law (8.21) intact, and
also preserves the value of T (by the reversal property (5.28) of Dirac traces).
The same holds, of course, for the transformations

q1 ↔ −q3 , q2 → −q2 , µ ↔ ρ ,

q2 ↔ −q3 , q1 → −q1 , ν ↔ ρ . (8.25)

The function Y must therefore satisfy

Y (q1, µ; q2, ν; q3, ρ) = Y (−q2, ν;−q1, µ;−q3, ρ) =
= Y (−q3, ρ;−q2, ν;−q1, µ) = Y (−q1, µ;−q3, ρ;−q2, ν) ; (8.26)

and by inspection we then find that c1 = c3 = c5 = −c2 = −c4 = −c6. We shall
therefore from now on use the definition

Y (q1, µ; q2, ν; q3, ρ)

≡ (q1 − q2)ρgµν + (q2 − q3)µgνρ + (q3 − q1)νgρµ . (8.27)

Note that this form is antisymmetric in the interchange of any two gluons, and
therefore invariant under a cyclic permutation.

A final remark is in order here. If one of the couplings were not of vector type
(with γµ) but of axial-vector type (with γ5γµ), then the integral would change
sign under the above transformations. In that case the function Y would read

(q1 + q2)
ρgµν + (q2 + q3)

µgνρ + (q3 + q1)
νgρµ

= −qρ3gµν − qµ1 gνρ − qν2 gρµ

and hence be completely transverse to any external polarisation vector7.

8.3.3 Determination of the ggg vertex

On the basis of the previous section, we see that the only reasonable form of
the three-gluon vertex Feynman rule is

ρ

q
1

j

q
2

k

q
3

l

µν

↔ i

h̄
g3 Y (q1, µ; q2, ν; q3, ρ)h

jkl (8.28)

7This effect forbids, for example, the decay of a Z0 boson into two photons or two gluons.
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Note that the gluon momenta are counted outgoing from the vertex. The value
of g3 must be determined, as well as the colour factor hjkl. Since the Y function
is totally antisymmetric, we may take

hjkl = hklj = hljk = −hkjl = −hlkj = −hjlk . (8.29)

Before we start, it is useful to introduce the object

∆(q)αβ ≡ qαqβ − q2gαβ , (8.30)

for which

∆(q)αβ = ∆(q)βα , ∆(q)αβ qβ = 0 . (8.31)

Also,

∆(q)αβ ǫβ = qα(q · ǫ)− q2ǫα = 0 (8.32)

if ǫ is the polarisation vector of an on-shell gluon with momentum q.

For the propagator of a gluon we shall take the Feynman rule

µ ν
q

= ih̄Π(q)µν , (8.33)

with

Π(q)µν =
1

q2

(

−gµν + qµnν + nµqν

(q · n) − n2 qµqν

(q · n)2
)

, (8.34)

where n is an arbitrary vector, called the gauge vector. If n2 = 0 we have the
axial gauge of section 6.3.7. The propagator is constructed to be orthogonal to
the gauge vector :

Π(q)µν = Π(q)νµ , Π(q)µν nν = 0 . (8.35)

We now come to an important result. Let us consider the vertex of Eq.(8.28),
and let us put a handlebar on gluon q3. We find, using momentum conservation
in the form q3 = −q1 − q2,

Y (q1, µ; q2, ν; q3, q3) = (q1 − q2 · q3)gµν + (q2 − q3)µq3ν + (q3 − q1)νq3µ

= (q2 − q1 · q2 + q1)g
µν − q2µ(q1 + q2)

ν + q1
ν(q1 + q2)

µ

= ∆(q1)
µν −∆(q2)

µν . (8.36)

If gluons 1 and 2 are on-shell (and hence coupled to their polarisation vectors),
we thus find

2

1

= 0 . (8.37)
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Also, in the annihilation of an on-shell quark-antiquark pair, we have seen that

= 0 . (8.38)

Taking all this into account, we see that in the now newly available Feynman
diagram for qq̄ → gg :

n
p

p

1

2

q
1

q
2

a

b
k

j

the gluon propagator effectively reduces to just its gµν term, and the corre-
sponding expression reads

M3 = ih̄gg3v(p1)γµu(p2)
gµν

(p1 + p2)2
Y (q1, ǫ1; q2, ǫ2;−q1 − q2, ν)hjkn(T n)ab .

(8.39)
with summation over the colour n implied. Note that the lowering of indices
in the h symbol does not have any significance, I do it simply to make the
typography looks nicer. Putting the handlebar on gluon 1 as before, we get

Y (q1, q1; q2, ǫ2,−q1 − q2, ν) =
(

∆(q2)
νλ −∆(q1 + q2)

νλ
)

ǫ2λ

= −(p1 + p2)
ν(p1 + p2 · ǫ2) + (p1 + p2)

2ǫ2
ν , (8.40)

so that
M3⌋ = ih̄gg3 v(p1)/ǫ2u(p2)h

jk
n(T

n)ab . (8.41)

The total handlebarred amplitude thus becomes

M1+2+3⌋ = ih̄g v(p1)/ǫ2u(p2)
(

g3h
jk

nT
n − g[T j, T k]

)a

b
(8.42)

The colour current will therefore be conserved if we choose

g3 = g (8.43)

and
[T j, T k] = hjkn T

n . (8.44)

Note that since the matrices T are hermitean, the constants h must be purely
imaginary8. Moreover, we can compute them, using Eq.(8.3), as

hjkl = 2Tr
(

T jT kT l − T lT kT j
)

. (8.45)

8It is customary to write [T j , T k] = i fjknT
n. The f ’s are then called the structure

constants, and the set of T matrices are then the generators of the Lie algebra of the group
SU(N). The i is then combined with the overall i of the vertex to give a Feynman rule without
any i. This is of course a matter of taste.
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Since the h symbols are related to commutators, we can use the Jacobi
identity to find relations between them :

0 = [[T j, T k], T l] + [[T k, T l], T j] + [[T l, T j], T k]

= hjkn[T
n, T l] + hkln[T

n, T j] + hljn[T
n, T k]

= hjknh
nl

mT
m + hklnh

nj
mT

m + hljnh
nk

mT
n , (8.46)

which after a few interchanges of indices leads to

hjknh
lm

n + hjlnh
mk

n + hjmnh
kl

n = 0 . (8.47)

More information comes from colour conservation/equality in the diagram

m
kj

n

from which we find the requirement that
∑

m,n

hmnj hmnk = C δjk , (8.48)

with some constant C. Eq.(8.48) is the gluonic æequivalent of the property (8.2)
of the T matrices. It does not follow from the Jacobi identity. But since we
have already defined the h symbols by Eq.(8.45), it is not an extra condition
bur rather has to be proven. To this end, we use Eq.(8.45)

hmnjhmnk = 4Tr
(

TmT nT j − T jT nTm
)

Tr
(

TmT nT k − T kT nTm
)

= 8

(

Tr
(

TmT nT j
)

Tr
(

TmT nT k
)

− Tr
(

TmT nT j
)

Tr
(

TmT kT n
)

)

(8.49)

and the reduction formulæ(8.13) then give us, for instance,

Tr
(

TmT nT j
)

Tr
(

TmT nT k
)

=
1

2
Tr
(

T nT jT nT k
)

− 1

2N
Tr
(

T nT j
)

Tr
(

T nT k
)

=

(

1

4
+

1

4N2

)

Tr
(

T j
)

Tr
(

T k
)

− 1

2N
Tr
(

T jT k
)

= − 1

4N
δjk , (8.50)

and similarly we find

Tr
(

TmT nT j
)

Tr
(

TmT kT n
)

=

(

N

8
− 1

4N

)

δjk . (8.51)

Thus we arrive at the desired property :

hmnjhmnk = −N δjk . (8.52)
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8.4 Four-gluon interactions

We have now constructed a three-gluon vertex. From our discussion of sQED
we know, however, that there may be more than just three-particle vertices.
Therefore we consider the process g(q1) g(q2) → g(q3) g(q4). With our three-
gluon vertex there are now three tree graphs, one of which we depict here:

M1 =
n

ε ε

q

q

q

q

εε
1

2

4

2 3

3

41

k l

mj

We have also indicated the gluon polarizations and colours. Contrary to what
we are used to, we shall taken all momenta outgoing, so that

q1 + q2 + q3 + q4 = 0 . (8.53)

This allows us to write the other two diagrams by the simple transformations

M2 =M1

(

k ↔ l
2 ↔ 3

)

, M3 =M1

(

k ↔ m
2 ↔ 4

)

.

Applying the Feynman rules for the gluons, we come to

M1 = −ig2 Y (q1, ǫ1; q2, ǫ2,−q1 − q2, µ) Π(q1 + q2)
µν

× Y (q3, ǫ3; q4, ǫ4,−q3 − q4, ν) hjkn hlmn . (8.54)

From the identity (8.37) we see that only the gµν part of the gluon propagator
survives here. Let us introduce the shorthand notation

[jklm] ≡ hjkn h
lm

n . (8.55)

This has the symmetries

[jklm] = −[kjlm] = −[jkml] = [lmjk] (8.56)

and the Jacobi identity reads

[jklm] + [jlmk] + [jmkl] = 0 . (8.57)

We can thus writeM1 as

M1 = i
g2

(q1 + q2)2
Y (q1, ǫ1; q2, ǫ2,−q1 − q2, µ)

× Y (q3, ǫ3; q4, ǫ4,−q3 − q4, µ) [jklm] . (8.58)
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Let us now place a handlebar on gluon 1. This gives us

Y (q1, q1; q2, ǫ2;−q1 − q2, µ) = ǫ2
λ (∆(q2)λµ −∆(q1 + q2)λµ) , (8.59)

and then Eqs.(8.32) and (8.37) then tell us that the only surviving term is

Y (q1, q1; q2, ǫ2;−q1 − q2, µ) ∼ (q1 + q2)
2 gλµ . (8.60)

The handlebarred diagram thus becomes

M1⌋ = ig2 Y (q3, ǫ3; q4, ǫ4;−q3 − q4, ǫ2) [jklm]

= ig2 [jklm]

(

(q3 − q4 · ǫ2)(ǫ3 · ǫ4) + 2(q4 · ǫ3)(ǫ2 · ǫ4)− 2(q3 · ǫ4)(ǫ2 · ǫ3)
)

.

(8.61)

The total amplitude will thus be

M1+2+3⌋ = ig2
{

[jklm]

(

(q3 − q4 · ǫ2)(ǫ3 · ǫ4) + 2(q4 · ǫ3)(ǫ2 · ǫ4)− 2(q3 · ǫ4)(ǫ2 · ǫ3)
)

+ [jlkm]

(

(q2 − q4 · ǫ3)(ǫ2 · ǫ4) + 2(q4 · ǫ2)(ǫ3 · ǫ4)− 2(q2 · ǫ4)(ǫ2 · ǫ3)
)

+ [jmlk]

(

(q3 − q2 · ǫ4)(ǫ2 · ǫ3) + 2(q2 · ǫ3)(ǫ2 · ǫ4)− 2(q3 · ǫ2)(ǫ3 · ǫ4)
) }

.

(8.62)

We can simplify this expression into something useful at the price of some al-
gebra. Of the expression inside the curly brackets, let us concentrate on those
terms that multiply (ǫ3 · ǫ4). These are

A34 = (q3 − q4 · ǫ2)[jklm] + 2(q4 · ǫ2)[jlkm]− 2(q3 · ǫ2)[jmlk] . (8.63)

First, we apply the Jacobi identity to the first term. This gives

A34 = −(q3 − q4 · ǫ2)[jlmk]− (q3 − q4 · ǫ2)[jmkl]
+ 2(q4 · ǫ2)[jlkm]− 2(q3 · ǫ2)[jmlk] . (8.64)

The antisymmetry of the [ ] symbols allow us to write this as

A34 = −(q3 − q4 · ǫ2)[jlmk] + (q3 − q4 · ǫ2)[jmlk]
− 2(q4 · ǫ2)[jlmk]− 2(q3 · ǫ2)[jmlk]

= −(q3 + q4 · ǫ2)[jlmk]− (q3 + q4 · ǫ2)[jmlk] . (8.65)

Now, the fact that q2 · ǫ2 = 0, and momentum conservation, allow us to write

(q3 + q4 · ǫ2) = (q2 + q3 + q4 · ǫ2) = −(q1ǫ2) , (8.66)
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so that A34 takes on the ‘very simple’9 form

A34 = (q1 · ǫ2)
(

[jlmk] + [jmlk]

)

. (8.67)

Note the form of the colour structure : the colours that ‘belong together’, in
this case l and m of gluons 3 and 4, occur in the middle of the [ ] symbols, and
in a symmetric way. The other terms of Eq.(8.62) can be treated in exactly the
same way, so that we find

M1+2+3⌋ = ig2
{

(q1 · ǫ2)(ǫ3 · ǫ4)
(

[jlmk] + [jmlk]

)

+ (q1 · ǫ3)(ǫ2 · ǫ4)
(

[jkml] + [jmkl]

)

+ (q1 · ǫ4)(ǫ2 · ǫ3)
(

[jlkm] + [jklm]

)}

. (8.68)

Unless something very peculiar is occurring10 with the [ ] symbols, this expres-
sion is not zero. We are therefore moved to introduce a compensating four-gluon
vertex :

mµ

ν ρ

σj

k l

with the corresponding Feynman rule

− i
h̄
g2
{

gµνgρσ ([jlmk] + [jmlk])

+ gµρgνσ ([jkml] + [jmkl])

+ gµσgρν ([jlkm] + [jklm])

}

. (8.69)

9Like beauty, simplicity is in the eye of the beholder.
10It isn’t.



Chapter 9

Electroweak theory

In this chapter we shall introduce the electroweak interactions of the Minimal
Standard Model. We will not use the gauge principle to do this, but rather
build up the theory by introducing new particles and/or vertices as the need
arises. This is more or less the exact opposite of the usual exposition, but is
(hopefully) rather closer to physics than to mathematics.

9.1 Muon decay

9.1.1 The Fermi coupling constant

Let us return to the Fermi model of muon decay as discussed in chapter 5.
There, the (phenomenological) amplitude for this decay was proposed to be of
the form of Eq.(5.151). The resulting width was

Γµ ≡ Γ(µ− → e− νeνµ) =
GF

2 h̄2mµ
5

192π3
. (9.1)

The measured values of the mechanical massMµ and the lifetime τµ of the muon
are

Mµ ≈ 1.88353 10−28 kg , τµ ≈ 2.19703 10−6 sec ; (9.2)

the muon mass may be more familiar under its appellation ofMµc
2 ≈ 0.106 GeV.

From these we can construct the more useful quantities

mµ =
Mµc

h̄
≈ 5.35446 1014 m−1 , Γµ =

1

cτµ
≈ 1.51825 10−3 m−1 . (9.3)

From Eq.(9.1) we then find

GF h̄ ≈ 4.53167 10−37 m2 , (9.4)

or
GF

h̄c2
≈ 1.16383 10−5 GeV−2 . (9.5)
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We can therefore derive the ‘energy scale’ of the interaction responsible for muon
decay1 :

ΛW =

√

h̄c2

GF
≈ 292.5 GeV . (9.6)

9.1.2 Failure of the Fermi model in µ− νµ → e− νe

If the phenomenologically motivated Fermi interaction is to have any claim on
global validity, it must also describe the process

µ−(p1) νµ(p2) → e−(q1) νe(q2) , (9.7)

which amounts to the previous process, only with the outgoing muon neutrino
moved to an incoming anti-muon neutrino. No matter that we cannot, at
present, build µνµ colliders ; the very, very, very early universe did provide
such processes, and their description must be correct. By the rules of the Fermi
model, the amplitude is given by

M = i
GF h̄√

2
v(p2)(1 + γ5)γµu(p1) u(q1)(1 + γ5)γµv(q2)

= i
4√
2
GF h̄ v−(p2)γ

µu−(p1) u−(q1)γµv−(q2)

= i
8√
2
GF h̄ s−(p2, q1) s+(q2, p1) (9.8)

Here, we have neglected both the muon and the electron mass since the scat-
tering takes place at high energy, and we have applied the Chisholm identity
in order to remove the contracted Lorentz index. Disregarding overall complex
phases and using momentum conservation, we then find

M≈ i16 GF h̄√
2

(p1 · q2) . (9.9)

Neutrinos2 have only one helicity state, and therefore the averaged matrix ele-
ment square is given, in the centre-of-mass system, by

〈

|M|2
〉

= 64 GF
2 h̄2 (p1 · q2)2 = 4 GF

2 h̄2 s2 (1 + cos θ)2 , (9.10)

where θ is the angle between the muon and electron momenta. By taking also
the angular average we obtain

〈〈

|M|2
〉〉

=
16

3
GF

2 h̄2 s2 . (9.11)

1What precisely constitutes the scale is of course to some extent a matter of taste. If we
include a factor

√
2 in GF the scale is reduced by a factor (

√
2)1/2 to 246 GeV, which is the

more commonly used number.
2We shall assume, in this section, that neutrinos are strictly massless.
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The total cross section is therefore given by

σ(µ− νµ → e− νe) =
GF

2 h̄2

3π
s (9.12)

As we have seen before, only the factor 1/3 cannot be established straightaway
in this expression, but has to be computed from the Feynman diagrams.

The scattering cross section rises linearly with s, and will therefore violate
the unitarity bound at sufficiently high energy. Since the the muon and its
antineutrino couple with a Dirac matrix, we may conclude that they must be
in a J = 1 state. The unitarity bound on this cross section is therefore

σ(µ− νµ → e− νe) ≤
1

2

16π

s
(2J + 1) =

24π

s
, (9.13)

which leads to a fundamental failure of the Fermi model (at least, at the tree
level) at a scattering energy of

√
s ≈ 1.5 TeV.

9.2 The W particle

9.2.1 The IVB strategy

We are faced with the task of modifying the Fermi model in such a way that its
success in the low-energy description of muon decay is preserved, while at high
energies unitarity remains inviolate. One possible way out might be to simply
make GF depend on the energy scale of the process so that it decreases at high
energies, making the µ− νµ → e− νe cross section well-behaved. We see that
this would necessitate a modification that leads to a 1/s behaviour at high values
of s. Such energy-dependent couplings, called form factors, are employed in for
instance ‘low-energy’ hadronic physics ; in such cases, however, this approach is
generally viewed as an admission of ignorance of, and an attempt to cope with,
some underlying and simpler physics at a smaller distance scale3.

The more elegant, and (as it turns out) the correct way to go is to make the
Fermi model look more ‘QED-like’: instead of using a contact interaction be-
tween four fermions, we postulate the existence of a new particle, the so-called
W boson. This couples to fermion-antifermion pairs in a way reminiscent of the
photon. The four-fermion interaction then resolves into two f f̄W interactions,
with theW boson mediating between the two vertices ; the corresponding Feyn-
man diagram for the process µ−(p) to e−(q) νµ(k1) νe(k2) is therefore given

3This is particularly evident in some modifications of QED where the ‘dimensionless’ cou-
pling Q is replaced by an s-dependent form Q(s/Λ2) which equals Q at low s but deviates
from it at high s. With the commissioning of each higher-energy accelerator, such deviations
are always looked for (and have, so far, not been found). Note that in this case the quantity
Λ for which search limits are obtained establishes an energy scale (or 1/Λ establishes a length
scale) at which ‘new physics’ sets in. In the present case, GF , being dimensionful, sets such
a scale by itself.
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by
p

q

k1

k2

Q

At the time this model was first seriously discussed, it went under the name
of Intermediate Vector-Boson (IVB) hypothesis. We take the W to couple to
the fermion pairs eνe and µνµ, so that (as we shall check!) the W must be
electrically charged, and assume that the coupling is in both cases of equal
strength4 (for now). We therefore postulate the following Feynman rules :

kµ ν ↔ ih̄
−gµν + kµkν/mW

2

k2 −mW
2 + iǫ

internal W lines

µ ↔ i

h̄
gW

(

(1 + γ5)
)

γµ ff ′W vertices

EW Feynman rules, part 9.1 (9.14)

The W propagator is the standard one for a vector particle. Note that the
occurrence of the (1 + γ5) in the vertex is suggested by the form of the Fermi
interaction ; and, that the two fermions meeting in the vertex must be of different
type. The values of mW and gW are to be determined. Another attractive
property of this model is that here the coupling constant, gW, has the same
dimensionality as the QED one, and does not formally contain a length scale.

With the above Feynman rules, the muon decay amplitude can now be writ-
ten as

M =
ih̄gW

2

Q2 −mW
2

[

u(k1)(1 + γ5)γαu(p) u(q)(1 + γ5)γαv(k2)

− 1

mW
2
u(k1)(1 + γ5)/Qu(p) u(q)(1 + γ5)/Qv(k2)

]

, (9.15)

where the momentum of the internal W is given by

Qµ = (p− k1)µ = (q + k2)
µ . (9.16)

4At this point, these are of course just assumptions. Since 1983, when the W boson was
first freely produced, they have been tested with great accuracy. The alternative scenario
of the ‘charge-retention’ form in which an electrically neutral W couples to eµ and νeνµ is
for instance completely ruled out by the fact that the decay W → e+µ− is never seen. The
equality of the couplings is verified by the fact that the branching ratios for W → eνe and
W → µνµ are the same up to computable mass effects.
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The last term in Eq.(9.15) appears to deviate significantly from the spinorial
structure of the first term, which coincides with the Fermi model. Hoewever,
notice that

u(k1)(1 + γ5)/Qu(p) = u(k1)(1 + γ5)(/p− /k1)u(p)
= u(k1)

(

− /k1(1− γ5) + (1 + γ5)/p
)

u(p)

= mµ u(k1)(1 + γ5)u(p) (9.17)

upon application of the Dirac equation to the external spinors ; and since, in
the same way,

u(q)(1 + γ5)/Qv(k2) = me u(q)(1− γ5)v(k2) , (9.18)

the second term in Eq.(9.15) is actually suppressed by a factor (memµ)/mW
2,

which is small if mW is sufficiently large5. Neglecting this term, we see that the
Fermi-model amplitude is recovered with the single replacement of the coupling
constant GF /

√
2 by gW

2/(Q2 −mW
2). Now, the maximum value that Q2 can

take in this process is mµ
2, which is attained in the improbable case that the

muon neutrino emerges with zero momentum from the decay. If, therefore, we
assume that mW is large compared to mµ, we see that the successes of the Fermi
model in describing muon decay will be completely reproduced provided6

gW
2

mW
2
=
GF√
2
, (9.19)

which we may also write in purely dimensionless terms as
(

gW

c
√
h̄

)

=
1

21/4

(

mWc
2

ΛW

)

. (9.20)

9.2.2 The cross section for µ−νµ → e−νe revisited

We can now study the modification that the IVB hypothesis makes in the cross
section for the process µ−νµ → e−νe, where the Fermi model fails. In this case
the total invariant mass is (assumed to be) much larger than the W mass, so
that the modified prediction can immediately be seen to be

σ(µ− νµ → e− νe) =
2h̄2gW

4

3π

s

(s−mW
2)2

=
h̄2GF

2s

3π

(

mW
2

s−mW
2

)2

, (9.21)

and this cross section does decrease as 1/s for large s.
Of course, the unitarity limit (9.13) still has to be observed, which puts an

upper limit7 on the useful values of mW :

mWc
2 ≤ (72π2)1/4 ΛW ≈ 1.5 TeV . (9.22)

5In fact, for the actual values of the masses the suppression factor is about 10−7.
6We disregard the overall sign difference between the two forms as Q2/mW

2 → 0.
7This value is close to the value of

√
s at which unitairy breaks down in the unmodified

Fermi model, see Eq.(9.13). This is not a coincidence. Whatever we do to the electroweak
interactions, 1.5 TeV appears to be the energy régime where things get tricky.
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However, from Eq.(9.20) we see that for such large values the dimensionless
coupling constant is so large that the tree-level approximation for the cross
section is questionable.

One may wonder what happens at s = mW
2. There, the cross section would

seem to diverge ! We must realize, however, that at that energy we are, in fact,
producing an on-shell W that decays into a fermion-antifermion pair : that is to
say, the W is an unstable particle, and has a decay width. We ought, therefore,
to include the decay width into the propagator, so that in the neighbourhood
of the resonance at s ≈ mW

2 the cross section reads

σ(µ− νµ → e− νe) =
2h̄2gW

4

3π

s

(s−mW
2)2 +mW

2ΓW
2 . (9.23)

As excercise ?? shows, this is well below the unitarity limit. The IVB hypothesis
therefore indeed cures the unitarity problem in this process.

Because of these successes, we shall adopt the notion of an existing W par-
ticle of spin 1 (and hence obeying the lines laid out in chapter 6), coupling to
pairs of fermions separated by one unit of charge8.

9.2.3 The WWγ vertex

Minimal coupling

Since the W particle couples to fermion pairs of unequal charge, it must itself
also be charged9, which means that it must couple to the photon in (at least !)
a WWγ vertex. It is our aim now to find the form of such a vertex.

Both W ’s and photons are characterised by the fact that, in addition to
their momentum, they carry also a polarization vector, i.e. a Lorentz index:
the WWγ vertex must therefore carry no fewer than 3 Lorentz indices. As a
first attempt, we can simply view the W particles as a kind of funny scalars,
and adopt the sQED vertex dressed up with a metric tensor to take care of the
W indices. That is, the Feynman rule for the vertex

(p )
(p )

(p )

W
γ

µ

ν

ρ
1

+  

W 2

3

_

is taken to be
i

h̄
QW (p1 − p2)ρ γµν

where the coupling constant (the W charge) is to be determined, and the parti-
cles are considered to be outgoing from the vertex. To this end, let us examine
the process

D(q1) U(q2) → γ(k1, ǫ)W
+(k2, ǫ+) .

8Note that this automatically rules out couplings between a W , a lepton, and a quark.
9At pain of charge nonconservation, i.e. at pain of pain.
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ǫ and ǫW denote the polarization vectors of the photon and the W , respectively,
and we have indicated the particle momenta. Here, and in the following, we
shall denote by U and D two fermions of which the U has an electric charge one
unit higher than the D: for instance, U = νe and D = e, or U = u and D = d.
Their respective charges are QU and QD. At the tree level, we then have three
Feynman diagrams :

q1

q2

k1

k2

q1

q2

k2

k1

q1

q2

k2

k1

The three diagrams correspond to the three partial matrix elements

M1 = −ih̄gWQD v(q1)/ǫ
/k1 − /q1 +mD

(k1 − q1)2 −mD
2

(

(1 + γ5)
)

/ǫWu(q2) ,

M2 = −ih̄gWQU v(q1)
(

(1 + γ5)
)

/ǫW
/q2 − /k1 +mU

(q2 − k1)2 −mU
2
/ǫu(q2) ,

M3 = +ih̄gWQW v(q1)
(

(1 + γ5)
)

γαu(q2)

gαβ − PαP β/mW
2

s−mW
2

ǫWβ ((2k2 + k1) · ǫ) , (9.24)

where s = P 2, P = q1 + q2 = k1 + k2.
Since this process involves a produced photon, the handlebar identity must

hold : if we replace ǫµ by k1
µ the amplitude must vanish. We shall investigate

this is some detail. In the first place, we perform some simple Dirac algebra to
note that

v(q1)/ǫ(/k1 − /q1 +mD)
⌋

ǫ→k1
= v(q1)/k1(/k1 − /q1 +mD)

= v(q1)
(

k1
2 − 2(q1 · k1) + (/q1 +mD)/k1

)

=
(

(k1 − q1)2 −mD
2
)

v(q1) , (9.25)

where in the second line we have used anticommutation between /k1 and /q1, and
in the third line the Dirac equation for v(q1). This kind of operation will occuur
very frequently in what follows. We see that

M1⌋ǫ→k1
= −ih̄gWQD v(q1)(1 + γ5)/ǫWu(q2) , (9.26)

and similarly (see excercise ??)

M2⌋ǫ→k1
= +ih̄gWQU v(q1)(1 + γ5)/ǫWu(q2) . (9.27)

For the third diagram we find

M3⌋ǫ→k1
= +ih̄gWQW v(q1)

(

(1 + γ5)
)

/ǫWu(q2)

−ih̄gWQW (k1 · ǫW )

× v(q1)
(

mU

(

(1 + γ5)
)

−mD

(

1− γ5
))

u(q2) . (9.28)
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If we were allowed to consider only the first of the two terms of the result (9.28),
we could obtain the desired cancellation :

3
∑

j=1

Mj









ǫ→k1

= 0 ⇒ QW = QD −QU : (9.29)

but the second term in Eq.(9.28) spoils this idea by having a quite different
algebraic structure ; no tuning of coupling constants is going to ensure that a
WWγ vertex of the form (9.2.3) can do the job.

Yang-Mills coupling

Treating the WWγ vertex as a prettified sQED vertex does not work. It means
that the photon-W interactions cannot be obtained by the minimal-substitution
rule. This should not come as a surprize since the vertex (9.2.3) is only designed
for graceful behaviour towards longitudinal photons, not towards longitudinal
W ’s. We therefore propose to replace Eq.(9.2.3) by a vertex of the form

i
QW

h̄

(

(a1p1 + a2p2)
ρgµν + (a3p2 + a4p3)

µgνρ + (a5p3 + a6p1)
νgρµ

)

. (9.30)

Note that because of momentum conservation each of the three terms need
contain only two of the momenta; the constants a1,...,6 are to be determined.
This we shall do by considering several situations.

First, we condier the process of decay of a photon in a W+W− pair :

γ∗(q) → W+(k+, ǫ+)W
−(k−, ǫ−) .

Kinematically this is only possible if the photon is quite off-shell, and therefore
we do not give it a polarization vector but leave its Lorentz index µ free. The
matrix element is given by

M = ih̄1/2QW Aµ ,

Aµ = (a1k+ + a2k−)
µ(ǫ+ · ǫ−)

+((a3k− − a4q) · ǫ+)ǫ−µ + ((−a5q + a6k+) · ǫ−)ǫ+µ

= (a1k+ + a2k−)
µ(ǫ+ · ǫ−)

+(a3 − a4)(q · ǫ+)ǫ−µ ++(a6 − a5)(q · ǫ−)ǫ+µ , (9.31)

where in the last line we have used q = k+ + k− and (k± · ǫ±) = 0. Since even
for off-shell photons the current must be strictly conserved we require that

Aµqµ =
1

2
q2(a1 + a2)(ǫ+ · ǫ−) + (a3 − a4 − a5 + a6)(q · ǫ+)(q · ǫ−) = 0, (9.32)

which leads to the following relations between the six constants :

a1 + a2 = 0 , a3 − a4 = a5 − a6 . (9.33)



July 24, 2013 227

In the second place, we return to the process DU → γW+ discussed in the
previous section. The third Feynman diagram now reads differently :

M3 = +ih̄gWQW v(q1)
(

(1 + γ5)
)

γαu(q2)
1

2(k1 · k2)
Zα ,

Zα =
(

δαβ − PαPβ/mW
2
)

{

((a1k2 − a2P ) · ǫ)ǫ+β + ((−a3P + a4k1) · ǫ+)ǫβ

+(a5k1 + a6k2)
β(ǫ+ · ǫ)

}

=
(

δαβ − PαPβ/mW
2
)

{

(a1 − a2)(k2 · ǫ)ǫ+β + (a4 − a3)(k1 · ǫ+)ǫβ

+(a5k1 + a6k2)
β(ǫ+ · ǫ)

}

. (9.34)

The replacement ǫ → k1 now leads, after some simple algebra (and use of
momentum conservation !) to the form

Zα⌋ǫ→k1
= (a1 − a2)(k1 · k2)ǫ+α + T α ,

T α = (−a3 + a4 + a5 − a6)k1α

− (k1 · k2)
mW

2
(a1 − a2 − a3 + a4 + a5 + a6)P

α . (9.35)

Now a complete cancellation of all diagrams in this case is only possible if only
the first term in Zα⌋ survives. Using the assignment10 QW = QD−QU, we then
come to the following additional relations between the a’s :

a1 − a2 = 2 , a1 − a2 = a3 − a4 − a5 − a6 = 0 . (9.36)

A third result is obtained by considering the process UD → γW−. Because
of the symmetry between this amplitude and the previous one, we can establish
(see excercise ??) that also

a1 − a2 = a5 − a6 + a3 + a4 . (9.37)

For the last necessary piece of information we must turn to the handlebar
operation for the producedW rather than the photon. We can rewrite the three
Feynman diagrams as

M1 = −i h̄gWQD

(q2 − k2)2 −mD
2
v(q1)/ǫ (/q2 − /k2 +mD)

(

(1 + γ5)
)

/ǫ+u(q2) ,

M2 = −i h̄gWQU

(k2 − q1)2 −mU
2
v(q1)

(

(1 + γ5)
)

/ǫ+ (/k2 − /q1 +mU) /ǫu(q2) ,

M3 = +i
h̄gWQW

s−mW
2
v(q1)

(

(1 + γ5)
)

γαu(q2) Z
α, (9.38)

10Any common factor in the a’s is always absorbed in the value of QW so this is no loss of
generality.
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with Zα as in Eq.(9.34). The handlebar operation on ǫ+ now gives the slightly
more complicated result

v(q1)/ǫ (/q2 − /k2 +mD)
(

(1 + γ5)
)

/ǫ+u(q2)
⌋

ǫ+→k2
=

= −
(

(q2 − k2)2 −mD
2
)

v(q1)
(

(1 + γ5)
)

/ǫu(q2)

− v(q1)
(

mU

(

(1 + γ5)
)

−mD

(

1− γ5
))

/ǫ/k2u(q2)

+
(

mU
2 −mD

2
)

v(q1)
(

(1 + γ5)
)

/ǫu(q2) . (9.39)

Of these three lines, the second is suppressed with respect to the first one by a
factor (mass/energy), and the third line even by (mass/energy)2. In the high-
energy limit, therefore, the second and third line will not contribute to any
unwanted high-energy behaviour of the amplitude : we shall call such terms
safe terms11. We can therefore write

M1⌋ǫ+→k2
= +ih̄gWQD v(q1)

(

(1 + γ5)
)

/ǫu(q2) + · · · , (9.40)

where the ellipsis denotes safe terms. For the second diagram, we find in a
similar way (see excercise ??) :

M2⌋ǫ+→k2
= −ih̄gWQU v(q1)

(

(1 + γ5)
)

/ǫu(q2) + · · · , (9.41)

For the third graph we find, after some algebra,

Zα⌋ǫ+→k2
= (a4 − a3)(k1 · k2)ǫα − a3mW

2ǫα

− (k2 · ǫ)(k1 · k2)
mW

2
(a1 − a2 − a3 + a4 + a5 + a6)P

α

+ (k2 · ǫ)(−a1 + a2 + a5 − a6)k1α . (9.42)

RequiringM3 to cancel againstM1 +M2 up to safe terms therefore leads to
yet more relations between the a’s :

a3 − a4 = 2 , a1 − a2 = a5 − a6 . (9.43)

Combining the requirements (9.33), (9.36), (9.37) and (9.43) we find the unique
solution

a1 = a3 = a5 = 1 , a2 = a4 = a6 = −1 . (9.44)

This leads us to introduce the Yang-Mills form of the three-boson vertex :

Y (p1, µ; p2, ν; p3, ρ) ≡
(p1 − p2)ρgµν + (p2 − p3)µgνρ + (p3 − p1)νgρµ . (9.45)

Note that this is antisymmetric in the interchange of any two of its pairs of
arguments. It is therefore invariant under cyclic permutations of the argument
pairs12.

We have thus established the WWγ vertex to be

11Which is not to say that they are negligible ! The point here is that they do not contribute
to any condition on the coupling constants.

12I have adopted the notation ‘Y ’ for this vertex since it reminds us both of the name
Yang(-Mills), and of the fact that in such a vertex three bosons meet.
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p )γ (W (p )

W (p )

µ

ν

ρ
1

2

3

+

_
↔ i

h̄
QW Y (p1, µ; p2, ν; p3, ρ)

WWγ vertex

All particles and momenta counted outgoing

EW Feynman rules, part 9.2 (9.46)

A very important identity for the Yang-Mills vertex is the following :

Y (p1, p1; p2, ν; p3, ρ) =
(

p2
νp2

ρ − p22gνρ
)

−
(

p3
νp3

ρ − p32gνρ
)

, (9.47)

and its cyclic permutations. This identity, which follows directly from momen-
tum conservation, is very important whenever we decide to put a handlebar on
any of the three boson lines.

9.3 The Z particle

9.3.1 W pair production

Unitarization from extra fermions

In the previous section we have investigated how the possible coupling between
W ’s and photons are restricted by the requirements of the handlebar. We shall
now pursue the same strategy for different processes. Since we shall be interested
in the high-energy behaviour of amplitudes we shall allow ourselves to neglect
particle masses wherever possible.

Let us consider the process

U(p1) U(p2) → W+(q+, ǫ+)W
−(q−, ǫ−)

With the vertices available so far, we have the following two Feynman diagrams

W

W
D

U

U

_

+

_ U

U

_
+

W

W
_γ

which contribute to the amplitude as follows :

M1 = −2i h̄gW
2

(p2 − q+)2
v(p1)

(

(1 + γ5)
)

/ǫ− (/p2 − /q+) /ǫ+u(p2) ,
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M2 = i
h̄QUQW

(q+ + q−)2
v(p1)γµu(p2) Y (q+, ǫ+; q−, ǫ−,−q+ − q−, µ) .(9.48)

Here we have neglected the masses as announced. The high-energy behaviour
can be investigated by putting a handlebar on the W+, say ; we then obtain

M1⌋ǫ+→q+
= 2ih̄gW

2 v(p1)(1 + γ5)/ǫ−u(p2) ,

M2⌋ǫ+→q+
= ih̄QUQW v(p1)/ǫ−u(p2) , (9.49)

and we see that these two diagrams cannot possibly cancel one another. We must
therefore introduce an additional ingredient in the model. A possible approach
is the following. In the analogous process UU → γγ the handlebar requirement
is satisfied because there are two diagrams, with the photons interchanged. We
might do the same for the W by postulating the existence of another fermion
type U ′, with charge one unit higher than QU, and the existence, in addition
to the UDW vertex, of a U ′UW vertex with vector and axial-vector couplings.
We then have a third diagram at hand :

W

W
U

U

_

_

+

U’

with its own contribution

M3 = −i h̄

(p1 − q+)2
v(p1)ω/ǫ+ (/q+ − /p1)ω/ǫ−u(p2) ,

ω = g1 + g2γ
5 . (9.50)

The mass of the U ′ is also neglected, and g1,2 are to be determined. We have

M3⌋ǫ+→q+
= −ih̄ v(p1)ω2/ǫ−u(p2) , (9.51)

so that

3
∑

j=1

Mj









ǫ+→q+

= 0 ⇒
(

g1 + g2γ
5
)2

= 2gW
2(1 + γ5) +QUQW . (9.52)

We see that it is in principle possible to attain good high-energy behaviour in
the process UU →W+W−, at the cost of introducing new fermion types ; and
the same is possible for DD → W+W− (note, however, the problem raised
in excercise ??). But a very serious conundrum immediately arises. Having
postulated the existence of the U ′, we of course also have to consider high-

energy behaviour in the process U ′U
′ → W+W−. It is easy to see that that

can only be cured by postulating also a fermion U”, of again one unit of charge
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higher . . . An infinite tower of fermions with higher and higher charge becomes
unavoidable. Not only is this extremely unattractive13, but as the charges grow
without bound perturbation theory is bound to break down since it is based on
the assumption that the interactions are not large.

The Z boson to the rescue

Since introducing additional Dirac particles does not seem a viable way to en-
sure good high-energy behaviour in UU → W+W−, we shall investigate the
alternative of an additional boson. That is, we shall postulate the existence of
a neutral spin-1 particle, coupling to W+W− pairs and to fermion-antifermion
pairs. This particle, denoted by Z (or Z0) is supposed to cure the high-energy
behaviour in both UU → W+W− and DD → W+W− simultaneously14. For
the WWZ vertex it stands to reason to employ the useful Yang-Mills form
(9.45), with a coupling constant to be determined. Since the diagram with the
Z must cancel against a combination of the purely vectorial photon diagram
and the D-exchange diagram with its (1 + γ5) structure, the Z must couple
to the fermions with a mixture of vector and axial-vector terms. We therefore
arrive at the following putative Feynman rules :

µ

ν

ρ
W  Z(   )

(   )
_

W p2

p
1 (   )p

3

+

→ i

h̄
gWWZ Y (p1, µ; p2, ν; p3, ρ) ,

U

U

Z
µ
→ i

h̄

(

vU + aUγ
5
)

γµ ,

Z
µ

D

D

→ i

h̄

(

vD + aDγ
5
)

γµ ,

where as before in the Yang-Mills vertex every participant is counted in the
outgoing manner. With these vertices a new Feynman diagram is available in

13Even leaving aside the fact that no higher-charge fermions have been found to date.
14This is the simplest scenario. Other possibilities could be explored, in which there is more

than one type of Z, perhaps one type for the U fermions and one type for the D fermions.
Experiment, however, has taught us that the simplest option appears, as usual, to be the one
chosen by nature.
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the process UU →W+W− :

U

U

Z

_
W

W
_

+

,

which evaluates to

M3 = i
h̄ gWWZ

(q+ + q−)2 −mZ
2
v(p1)

(

vU + aUγ
5
)

γµu(p2)

Y (q+, ǫ+; q−, ǫ−;−q+ − q−, µ) . (9.53)

Note that nothing has been neglected in this expression ; the second term in
the massive-boson propagator drops out when we multiply it into the Yang-
Mills vertex. Since this diagram is so similar to M2 it is easy to perform the
handlebar operation :

M3⌋ǫ+→q+
≈ ih̄ gWWZ v(p1)

(

vU + aUγ
5
)

/ǫ−u(p2) , (9.54)

where we have assumed that s = (q+ + q−)
2 is also much larger than mZ

2, and
neglected safe terms. We now see that the high-energy behaviour is acceptable
provided that the non-safe terms cancel under the relations

0 = vUgWWZ + 2gW
2 +QUQW ,

0 = aUgWWZ + 2gW
2 . (9.55)

We can perform precisely the same procedure for the process DD → W+W−

and obtain (see excercise ??)

0 = vDgWWZ − 2gW
2 +QDQW ,

0 = aDgWWZ − 2gW
2 . (9.56)

A final piece of information is obtained if we realize that, the Z being a massive
spin-1 particle, it must obey its own handlebar relations ; we can therefore
investigate the process UD→W+Z, which gives a single extra condition

0 = vD + aD − vU − aU − gWWZ . (9.57)

9.3.2 The weak mixing angle for couplings

We can handle (if not completely solve) the system of constraints as follows.
Let us subtract Eqs.(9.55) from Eqs.(9.56). We then obtain

(vD + aD − vU − aU)gWWZ + (QD −QU)QW = 8gW
2 . (9.58)

Using Eq.(9.57) and the definition of QW, we find a relation between three
couplings :

gWWZ
2 +QW

2 = 8gW
2 . (9.59)
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There must, therefore, exist an angle θW such that

QW =
√
8 gW sin θW , gWWZ =

√
8 gW cos θW . (9.60)

In the following we shall use the notation sW = sin θW and cW = cos θW . This
angle is called the weak mixing angle, and it parametrizes essentially all of the
minimal model of electroweak interactions we are constructing here. In the first
place, we know that the charge of the W must be equal to the charge of the
electron (since neutrinos are neutral) and therefore we might prefer to write

gW =
QW√
8 sW

(9.61)

which leads to a parametrization of the W mass itself15 :

(h̄ c mW)
2
=

π α√
2 1.16 10−5

1

sW2
GeV2 , (9.62)

or

h̄ c mW =
37.3

sW
GeV . (9.63)

As we see, the assumption of the existence of a single, neutral Z boson imme-
diately implies that the W has a mass of at least 37.3 GeV. Notice that no
prediction for the mass of the Z is obtained, however.

The other unknowns in our treatment can now be expressed in terms of θW .
Adopting the usual convention of denoting by e the positive unit charge, we find
by straightforward algebra

QW = −e , gWWZ = −e cW
sW

,

aU = −aD =
e

4sWcW
,

vU = aU

(

1− 4sW
2QU

e

)

,

vD = aD

(

1 + 4sW
2QD

e

)

. (9.64)

We note here that θW is defined at this stage as a relation between coupling
constants ; later on we shall encounter it in another guise !

9.3.3 W,Z and γ four-point interactions

The 2 → 2 processes involving either four fermions or two fermions and two
bosons have led us to postulate W and Z particles and their interactions with
fermions, as well as their mutual three-point vertices. Since as excercise ?? shows

15To arrive at this experession we have used the definition (9.5) for GF , and the result
(7.28) of α.
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we have pretty much quarried all possible information16 about this sector, we
now turn to the 2 → 2 processes involving four bosons. First we consider the
process

W+(p1, ǫ1) γ(p2, ǫ2) → W+(p3, ǫ3) γ(p4, ǫ4)

With the available vertices we have two Feynman diagrams for this process :

W +

W +γ

γ
W+

W+

γ
γ

with the respective contributions

M1 = i
h̄QW

2

(p2 − p3)2 −mW
2
Y (p3, ǫ3; p2 − p3, ν;−p2, ǫ2)

×
(

gµν + (p1 − p4)µ(p2 − p3)ν/mW
2
)

× Y (p1 − p4, µ;−p1, ǫ1; p4, ǫ4)

= −i h̄QW
2

2(p2 · p3)
(

−mW
2(ǫ2 · ǫ3)(ǫ1 · ǫ4)

+Y (p3, ǫ3; p2 − p3, µ;−p2, ǫ2)Y (p1 − p4, µ;−p1, ǫ1; p4, ǫ4)
)

,

M2 = i
h̄QW

2

(p3 + p4)2 −mW
2
Y (p3, ǫ3;−p3 − p4, ν; p4, ǫ4)

×
(

gµν + (p1 + p2)
µ(−p3 − p4)ν/mW

2
)

× Y (p1 + p2, µ;−p1, ǫ1;−p2, ǫ2)

= i
h̄QW

2

2(p3 · p4)
(

−mW
2(ǫ3 · ǫ4)(ǫ1 · ǫ2)

+Y (p3, ǫ3;−p3 − p4, µ; p4, ǫ4)Y (p1 + p2, µ;−p1, ǫ1;−p2, ǫ2)
)

,

(9.65)

where we have already used Eq.(9.47) in the internalW lines, as well as the fact
that (pj ·ǫj) = 0, j = 1, 2, 3, 4. Let us now proceed to check current conservation
for the outgoing photon. The following algebra applies toM1 :

Y (p3, ǫ3; p2 − p3, µ;−p2, ǫ2)Y (p1 − p4, µ;−p1, ǫ1; p4, ǫ4)⌋ǫ4→p4
=

= Y (p3, ǫ3; p2 − p3, µ;−p2, ǫ2)
(

(p4 · ǫ1)(p2 − p3)µ + 2(p2 · p3)ǫ1µ
)

= 2(p2 · p3)Y (p3, ǫ3; p2 − p3, ǫ1;−p2, ǫ2)
+ mW

2(p4 · ǫ1)(ǫ2 · ǫ3) , (9.66)

so that

M1⌋ǫ4→p4
= −ih̄QW

2 Y (p3, ǫ3; p2 − p3, ǫ1;−p2, ǫ2) (9.67)

16As long as the fermion masses are neglected, see later.
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In the same manner we arrive at

M2⌋ǫ4→p4
= ih̄QW

2 Y (p1 + p2, ǫ3;−p1, ǫ1;−p2, ǫ2) (9.68)

Adding these last two results we obtain

2
∑

j=1

Mj









ǫ4→p4

=

= ih̄QW
2 (2(ǫ1 · ǫ3)(ǫ2 · p4)− (ǫ1 · ǫ2)(ǫ3 · p4)− (ǫ2 · ǫ3)(ǫ1 · p4)) .

(9.69)

We might also have chosen choose to put the handlebar on ǫ2 instead ; the result
would then have been

2
∑

j=1

Mj









ǫ2→p2

=

= ih̄QW
2 (2(ǫ1 · ǫ3)(p2 · ǫ4)− (ǫ1 · p2)(ǫ3 · ǫ4)− (p2 · ǫ3)(ǫ1 · ǫ4)) .

(9.70)

Going to the limit of large energies, we can also envisage putting a handlebar
on ǫ1 or ǫ3. Neglecting safe terms leads to

2
∑

j=1

Mj









ǫ1→p1

=

= ih̄QW
2 (2(p1 · ǫ3)(ǫ2 · ǫ4)− (p1 · ǫ2)(ǫ3 · ǫ4)− (ǫ2 · ǫ3)(p1 · ǫ4)) ,

(9.71)

and

2
∑

j=1

Mj









ǫ3→p3

=

= ih̄QW
2 (2(ǫ1 · p3)(ǫ2 · ǫ4)− (ǫ1 · ǫ2)(p3 · ǫ4)− (ǫ2 · p3)(ǫ1 · ǫ4)) .

(9.72)

We can repair the high-energy behaviour of the amplitude, for all these cases at
once, by introducing a four-boson vertex :

W W
_+

µ ν

βα
γ γ

↔ − i
h̄
QW

2 Xµναβ
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where
Xµναβ = 2 gµνgαβ − gµαgνβ − gµβgνα . (9.73)

The occurrence of such a four-point vertex should not surprise us, with our
experience of a similar vertex in sQED. Its precise algebraic structure can, of
course, not be inferref from that example17.

From the similarity between the WWγ and WWZ vertices we can also
immediately conclude that the analogous processes WZ → Wγ and WZ →
WZ will necessitate the existence of the following four-point vertices :

W W
_+

µ ν

βα
γZ

↔ − i
h̄
QW

2 cW
sW

Xµναβ

W W
_+

µ ν

βα
Z Z

↔ − i
h̄
QW

2 cW
2

sW2
Xµναβ

fFinally, we consider the process

W+(p1, ǫ1);W
−(p2, ǫ2) → W+(p3, ǫ3) W

−(p4, ǫ4) ,

for which we have, so far, the four diagrams

W +

W
_

W +

W
_

Ζ,γ

,

W +

W
_

W +

W
_

Z,γ

.

It will turn out to be useful to take the γ and Z exchanges together so that we
have two contributions :

M1 = ih̄QW
2 Y (p3, ǫ3,−p1, ǫ1, p1 − p3, µ)

(

gµν

(p1 − p3)2
+
cW

2

sW2

gµν − (p1 − p3)µ(p1 − p3)ν/mZ
2

(p1 − p3)2 −mZ
2

)

Y (−p2, ǫ2, p4, ǫ4, p2 − p4, ν) ,

M2 = ih̄QW
2 Y (−p2, ǫ2,−p1, ǫ1, p1 + p2, µ)

(

gµν

(p1 − p3)2
+
cW

2

sW2

gµν − (p1 + p2)
µ(p1 + p2)

ν/mZ
2

(p1 + p2)2 −mZ
2

)

Y (p3, ǫ3, p4, ǫ4, p2 − p4, ν) . (9.74)

17Except, perhaps, the idea that it contains only the metric tensor, and not any of the
momenta.
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Because the masses of the external particles are all equal, the second term in the
Z propagator can be seen to drop out exactly. We can therefore afford to take
the limit s≫ mZ

2 without more ado, and combine the γ and Z propagators to
arrive at the following high-energy form of the contributions :

M1 = i
h̄QW

2

sW2

1

(p1 − p3)2
Y (p3, ǫ3,−p1, ǫ1, p1 − p3, µ)

Y (−p2, ǫ2, p4, ǫ4, p2 − p4, µ) ,

M2 = i
h̄QW

2

sW2

1

(p1 + p2)2
Y (−p2, ǫ2,−p1, ǫ1, p1 + p2, µ)

Y (p3, ǫ3, p4, ǫ4, p2 − p4, µ) . (9.75)

Let us now take the outgoing W− longitudinal, i.e apply the handlebar on ǫ4,
and drop safe terms :

Y (p3, ǫ3,−p1, ǫ1, p1 − p3, µ)Y (−p2, ǫ2, p4, ǫ4, p2 − p4, µ)⌋ǫ4→p4

= Y (p3, ǫ3,−p1, ǫ1, p1 − p3, µ)
×
(

(p1 − p3)µ((p1 − p3) · ǫ2)− ((p1 − p3)2 −mW
2)ǫ2

µ
)

≈ −(p1 − p3)2 Y (p3, ǫ3,−p1, ǫ1, p1 − p3, ǫ2) (9.76)

so that

M1⌋ǫ4→p4
= −i h̄QW

2

sW2
Y (p3, ǫ3,−p1, ǫ1, p1 − p3, ǫ2) ; (9.77)

and the exactly analogous treatment gives

M2⌋ǫ4→p4
= −i h̄QW

2

sW2
Y (−p2, ǫ2,−p1, ǫ1, p1 + p2, ǫ3) . (9.78)

The total result of the handlebar operation is given by

M1 +M2⌋ǫ4→p4
=

−i h̄QW
2

sW2
(2(p4 · ǫ1)(ǫ2 · ǫ3)− (p4 · ǫ2)(ǫ1 · ǫ3)− (p4 · ǫ3)(ǫ1 · ǫ2)) :

(9.79)

we arrive at precisely the same algebraical structure as before, and we can
immediately conclude that, in addition to the WWγγ, WWZγ and WWZZ
couplings there must also be a WWWW coupling :

W

W
_

W
_

W+
µ ν

βα

+

↔ i

h̄

QW
2

sW2
Xµναβ

Note, however, a slight difference of this vertex as compared to the previous
ones. There, the term that couples the twoW Lorentz indices carries the factor
2 ; here, it is the term that couples the two W+’s that is ‘special’.
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9.4 The Higgs sector

9.4.1 The Higgs hypothesis

Fully longitudinal scattering

Having pursued the consequences of unitarity in processes where a single exter-
nal spin-1 particle is longitudinally polarized, we must of course also face the
more taxing case in which, perhaps, all external spin-1 particles are longitudi-
nally polarized : surely this is the most dangerous case from the point of view
of unitarity. In doing so, we must however take into account the fact that the
notion of longitudinal polarization is not strictly a Lorentz-invariant one since a
generic Lorentz boost will mix longitudinal and transverse degrees of freedom.
It therefore behooves us to specify in which particular Lorentz frame the par-
ticles are assumed to be longitudinally polarized. To this end we introduce a
vector cµ with

c · c = 1 ;

the frame in which ~c = 0 is defines the appropriate Lorentz frame. In these
notes we shall take cµ to be proportional to the total momentum involved in the
scattering process, that is, the external vector particles are assumed to be purely
longitudinal in the centre-of-mass frame of the scattering18. The longitudinal
polarization of an on-shell vector particle with momentum pµ and mass m is
then given by

ǫL
µ =

NL

m

(

pµ − m2

c · pc
µ

)

, NL
−2 = 1− m2

(c · p)2 , (9.80)

which expression is well-defined as long as ~p 6= 0. We see that, as before,
ǫL = p/m+O

(

m/p0
)

. In the cases studied so far, the subleading terms in ǫL
have only led to safe terms so that they could be neglected19 ; now, this is no
longer automatically the case.

WW → ZZ

The first Gedanken process20 is

W+(p1, ǫ1)W
−(p2, ǫ2) → Z0(p3, ǫ3)Z

0(p4, ǫ4)

18That this is not a trivial point becomes clear when we realize that in ‘WW scattering’ at
the LHC, say, the centre-of-mass frame of the scattering does not coincide with the laboratory
frame, in which the detector is at rest, and in which the polarization analysis of the produced
bosons is presumably performed.

19From the point of view of restoring unitarity, not that of actually getting the cross section
right!

20As I write these notes, this is still a true Gedanken process. As usual, with improving tech-
nology and the commissioning of higher-energy machines, Gedanken processes are gradually
turned into actual ones...



July 24, 2013 239

So far, we have the following three Feynman graphs available at the tree level :

3

4

W

1

2

Z

ZW

W

W

1

2

Z

ZW

W

4

3

1

2 3

4Z

Z

W

W
,

and the following contributions :

Mj = −ih̄gWWZ
2Nj

∆j
, j = 1, 2 ,

N1 = Y (p1 − p3, µ;−p1, ǫ1; p3, ǫ3)

×
(

−gµν + 1

mW
2
(p1 − p3)µ(p1 − p3)ν

)

× Y (−p2, ǫ2; p2 − p4, ν; p4, ǫ4) ,

∆1 = (p1 − p3)2 −mW
2 = mZ

2 − 2(p1 · p3) ,

N2 = Y (p1 − p4, µ;−p1, ǫ1; p4, ǫ4)

×
(

−gµν + 1

mW
2
(p1 − p4)µ(p1 − p4)ν

)

× Y (−p2, ǫ2; p2 − p3, ν; p3, ǫ3) ,

∆2 = (p1 − p4)2 −mW
2 = mZ

2 − 2(p1 · p4) ,

M3 = −ih̄gWWZ
2N3 ,

N3 = X(ǫ1, ǫ2, ǫ3, ǫ4) . (9.81)

Owing to the work we have done so far, we may already anticipate some can-
cellations between the diagrams when we make all bosons longitudinal and the
safe terms are therefore not the subleading ones, but rather the sub-subleading
ones. We have to proceed carefully21. Denoting by the subscript L the ‘fully
longitudinal’ case, it appears best to write the result as

3
∑

j=1

Mj









L

= −ih̄gWWZ
2 N123

∆12
,

N123 = N1∆2 +N2∆1 +∆12N3 = −4E6 mZ
2

mW
4
(sin θ)2 + · · · ,

∆12 = ∆1∆2 = 4E4 (sin θ)2 + · · · , (9.82)

where E = p1
0 = p2

0 = p3
0 = p4

0 and θ = 6 (~p1, ~p3), all evaluated in the centre-
of-mass frame. As before, the ellipses denote contributions that can only give
rise to safe terms, and that therefore do not interest us here. Note that we have
disregarded also the normalization factors NL ; since the polarization vectors
are overall factors in the scattering amplitude, the NL can never play a rôle

21This is most safely done using computer algebra, using e.g. FORM.
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in any dynamical cancellation, and their subleading terms are therefore always
safe. The non-safe contribution from our three Feynman graphs is therefore

3
∑

j=1

Mj









L

= ih̄ gWWZ
2 E2 mZ

2

mW
4
+ · · · , (9.83)

and it violates unitarity at sufficiently large E. Note that each individual Mj

will go as E4 at high energy so, as already anticipated, some cancellation has
already taken place, but not enough ; and since the vertices have already been
fixed before, we have to introduce a new ingredient into the theory.

The Minimal Higgs approach

We shall assume that, in addition to the three graphs used so far, there is a
fourth one available, mediated by a new particle type. We assume this to be
a neutral, scalar particle, denoted by H , that couples to W+W− and ZZ as
follows:

H
µ

ν W

W
↔ i

h̄
gWWH g

µν

H
µ

ν

Ζ

Ζ

↔ i

h̄
gZZH g

µν

A fourth Feynman diagram is now possible :

2 4

31
H

,

given by

M = −ih̄ gWWHgZZH (ǫ1 · ǫ2) (ǫ3 · ǫ4)
1

4E2 −mH
2
. (9.84)

Its contribution to the fully longitudinal scattering reads

M4⌋L = −ih̄ E2 gWWHgZZH

1

mW
2 mZ

2
(9.85)

and good high-energy behaviour will be restored in the process WW → ZZ
provided that

gWWH gZZH = gWWZ
2 mZ

4

mW
2
. (9.86)

Before we proceed to the next Gedanken process, a few remarks are in order. In
the first place, the choice for a scalar Higgs particle is almost unavoidable. It
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certainly cannot be a fermion ; if it were a vector particle, its propagator would
contain unwanted higher powers of the energy E, the WWH and ZZH would
presumably be of Yang-Mills type hence also E-dependent. The vertices given
above are essentially the only ones possible for the interactions between two
vectors and a scalar if we want them to be energy-independent. Note that gWWH

and gZZH may both be expected to contain a mass, that is, they are of dimension
L−1/

√
h̄. The assumption that there is just one type of neutral scalar involved

is, of course, based on nothing but a prejudice in favour of simplicity. Finally,
at high energy all contributions from mH end up in safe terms, and we do not
expect to glean any information on the Higgs mass from our considerations.

WW →WW scattering

Another four-boson scattering process of interest is

W+(p1, ǫ1)W
+(p2, ǫ2) → W+(p3, ǫ3)W

+(p4, ǫ4)

for which we have five purely vector-boson diagrams :

γ,Ζ
1

2 4

3
γ,Ζ

1

2 3

4 1

2

3

4

whose contributions can be conviently written as

M1 = −ih̄ Y (p3, ǫ3;−p1, ǫ1; p1 − p3, µ)

×
(

QW
2 −gµν
(p1 − p3)2

+ gWWZ
2−gµν + (p1 − p3)µ(p1 − p3)ν/mW

2

(p1 − p3)2 −mZ
2

)

× Y (p4, ǫ4;−p2, ǫ2; p2 − p4, ν) ,

M2 = M1⌋p3,ǫ3 ↔ p4,ǫ4
,

M3 = ih̄
QW

2

sW2
X(ǫ3, ǫ4, ǫ1, ǫ2) . (9.87)

By the same methods as used in the previous section we arrive at

3
∑

j=1

Mj









L

= i
h̄ E2 QW

2

mW
4 sW2

(

−4mW
2 + 3mZ

2 cW
2
)

+ · · · (9.88)

The Higgs hypothesis now provides for two additional diagrams :

1

2

H
3

4

1

2

H
3

4
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with the contributions

M4 = −ih̄ gWWH
2 (ǫ1 · ǫ3)(ǫ2 · ǫ4)
(p1 − p3)2 −mH

2
,

M5 = −ih̄ gWWH
2 (ǫ1 · ǫ4)(ǫ2 · ǫ3)
(p1 − p4)2 −mH

2
, (9.89)

so that
5
∑

j=4

Mj









L

= ih̄ E2 gWWH
2

mW
4

+ · · · (9.90)

In this process, then, good high-energy behaviour is obtained under the condi-
tion

gWWH
2 =

QW
2

sW2

(

4mW
2 − 3mZ

2 cW
2
)

. (9.91)

Again, no restrictions on mH occur.

HZ →WW scattering

We have now run out of four-vector Gedanken processes. ZZ → ZZ scattering
has no Yang-Mills contributions22, and any four-vector process involving pho-
tons will have vanishing amplitudes under a handlebar on any photon. However,
in the same spirit by which we boldly proposed the process UD →WZ as soon
as the Z was hypothesized, we can consider the process

H(p1)Z
0(p2, ǫ2) → W+(p3, ǫ3)W

−(p4, ǫ
4)

Since only three out of four particles can become longitudinal here, the unitarity
violations are not so bad, and the safe terms are of sub- rather than of sub-sub-
leading type. We have three diagrams,

3

4
2

1 3

4
2

1

3

4
2

1

that contribute as

M1 = −ih̄ gWWZgWWH Y (p3, ǫ3; p2 − p3, µ;−p2, ǫ2)

× −g
µν + (p2 − p3)µ(p2 − p3)ν

(p2 − p3)2 −mW
2

(ǫ4)ν ,

M2 = −ih̄ gWWZgWWH Y (p2 − p4, µ; p4, ǫ4;−p2, ǫ2)
22Under the Higgs hypothesis ZZ → ZZ scattering is described by three diagrams con-

taining Higgs exchange. Their sum, however, is safe by itself and hence does not lead to any
constraints.
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× −g
µν + (p2 − p4)µ(p2 − p4)ν

(p2 − p4)2 −mW
2

(ǫ3)ν ,

M3 = −ih̄ gWWZgZZH Y (p3, ǫ3; p4, ǫ4;−p3 − p4, µ)

× −g
µν + (p1 + p2)

µ(p1 + p2)
ν

(p1 + p2)2 −mZ
2

(ǫ2)ν . (9.92)

The kinematics of this process is a little different from that of the two pervious
ones, since mH and mZ cannot be assumed to be equal. Still, at high energy we
may apply massless kinematics since we only have to cancel the leading non-safe
terms. Neglecting, therefore, mW, mZ and mH in the kinematics23 we find

3
∑

j=1

Mj









L

= ih̄ E2 cos θ gWWZ

(

gWWH

mZ

mW
4
− gZZH

1

mZ mW
2

)

+ · · · (9.93)

and find the final requirement

gWWH

mZ

mW
4
= gZZH

1

mZ mW
2

(9.94)

if good high-energy behaviour is to emerge.

9.4.2 Predictions from the Higgs hypothesis

The Higgs hypothesis has given us the three conditions of Eqs.(9.86), (9.91) and
(9.94). If we consider gWWH and gZZH as the two unknowns, this system is over-
constrained, and we obtain additional information. The system of conditions
can easily be solved and we find the two couplings

gWWH =
QW mW

sW
, gZZH =

QW mZ

sW cW
, (9.95)

and, in addition, the interesting relation

mW = mZ cW . (9.96)

It is apposite to dwell on this last result. The weak mixing angle θW was
introduced to parametrize the system of coupling constants , as discussed in
section 9.3.2 : we now see it come back here as a relation between masses
instead ! From the treatment of the Electroweak Standard Model presented
in these notes, it also becomes clear that the mixing angle as a description of
coupling constants is, in a logical sense, prior to that as a description of masses.
The assumption of a single Z0 particle determines the couplings as described
in section 9.3.2 : but it takes the supposition of a single, neutral Higgs particle
to obtain Eq.(9.96). If the Higgs sector of the Standard Model turns out to
be different, with more Higgs-like particles, say, the W and Z mass become
uncorrelated ; but the couplings of W and Z with the fermions and each other

23But not, of course, in the longitudinal polarizations!
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remain unaffected. In the usual textbook derivation of the model this distinction
tends to be obscured by the simultaneous obtention of all couplings at once after
symmetry breaking.

As a final comment we remark that, if unitarity is restored bywhatever Higgs-
like phenomenon, the weak mixing angle must always obey the bound

cW
2 <

4

3

mW
2

mZ
2

(9.97)

as can be seen from Eq.(9.91)24.

9.4.3 W,Z and H four-point interactions

The class of bosonic four-particle scattering amplitudes is not yet completely
exhausted. We can consider the process

Z0(p1, ǫ1)Z
0(p2, ǫ2) → H(p3)H(p4)

given by two diagrams so far,

31

2 4

1

2

4

3

and the following amplitude :

M1+2 = −ih̄ gZZH
2 (ǫ1)µ (ǫ2)ν

(−gµν + (p1 − p3)µ(p1 − p3)ν/mZ
2

(p1 − p3)2 −mZ
2

+
−gµν + (p1 − p4)µ(p1 − p4)ν/mZ

2

(p1 − p4)2 −mZ
2

)

. (9.98)

In the fully longitudinal case the non-safe terms are

M1+2⌋L = −ih̄ E2 gZZH
2

mZ
4

+ · · · (9.99)

and the remedy ought to be straightforward by now. We introduce yet another
vertex, involving two Z’s and two H ’s :

Z

H

ν

µ

H

Z
↔ i

h̄
gZZHH g

µν

24For the actually observed values of W and Z mass this bound is itself somewhat larger
than unity, and therefore not so significant; but it is nice to have it even so.
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upon which we have a third diagram, whose nonsafe part is trivial :

M3⌋L = 2ih̄ E2 gZZHH

mZ
2

+ · · · (9.100)

We see that the four-point coupling constant must be given by

gZZHH =
gZZH

2

2mZ
2
=

QW
2

2sW2cW2
. (9.101)

As in the case of sQED and YM, this four-point coupling does not contain a
length scale, in contrast to the ZZH coupling. For the case of WW → HH
scattering, exactly the same treatment holds. It suffices to replace mZ by mW

and gZZH by gWWH. We find that also a WWHH vertex is required :

H

ν

µ

H

W

W

↔ i

h̄
gWWHH g

µν ,

with

gWWHH =
gWWH

2

2mW
2
=
QW

2

2sW2
. (9.102)

9.4.4 Higgs-fermion couplings

Let us return to the process

U(p1)U(p2) → W+(q+, ǫ+)W
−(q−, ǫ−)

which was used in section 9.3.1 to argue the existence of the Z boson. This time,
however, we shall not neglect the fermion masses ; and we shall take both W ’s
longitudinal. It can be seen that each individual diagram will go as E2 when the
energy E of the W ’s in their centre-of-mass frame becomes large. This means
that, in the longitudinal polarization of Eq.(9.80), the second term will only
contribute to the safe terms, and we may simply write (ǫ±)L = q±/mW, so that

Y (q+, ǫ+; q−, ǫ−;−q+ − q−, µ)
⌋

L

≈ − s

2mW
2
(q+ − q−)µ + · · · (9.103)

where once more the ellipsis denotes safe terms. In fact, the restriction to
nonsafe terms in our treatment means that we may neglect the boson masses
in the kinematics : every occurrence of boson masses from the kinematics is
quadratic and hence gives safe terms. For the fermions this is not the case as
we shall see.

Let us revisit the diagrams of our process. The first one now reads

M1 = −ih̄gW
2 v(p1)(1 + γ5)/ǫ−

/q− − /p1 +mD

(q− − p1)2 −mD
2
(1 + γ5)/ǫ+u(p2) . (9.104)
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Note that the mD in the numerator drops out by virtue of the (1 + γ5)’s. We
can now perform some Diracology, using the Dirac equation and dropping safe
contributions wherever opportune :

M1⌋L = −i 2h̄gW
2

mW
2((q− − p1)2 −mD

2)
v(p1) A u(p2) ,

A = (1 + γ5) /q− (/q− − /p1) (1 + γ5) /q+

→ 2(1 + γ5) /q− (/q− − /p1) (/q+ − /p2 +mU)

= 2(1 + γ5) /q− (/q− − /p1) (/p1 − /q− +mU)

→ 2(1 + γ5)
(

−(q− − p1)2/q− + (/q− − /p1 −mU)(/q− − /p1)mU

)

→ 2(1 + γ5) (mU − /q−) (q− − p1)2 ; (9.105)

so that the fully longitudinal case gives for this diagram

M1⌋L = 2ih̄gW
2 v(p1)(1 + γ5)(/q− −mU)u(p2) + · · · (9.106)

For the third diagram we can perform a similar analysis :

M3⌋L = i
h̄ gWWZ

s−mZ
2

−s
2mW

2
v(p1) B u(p2) ,

B = (vU + aUγ
5)(/q+ − /q−)

→ (vU + aUγ
5)(/q+ − /q− − /p2 +mU − /p1)−mU(vU − aUγ

5)

= −2(vU + aUγ
5)/q− + 2mUaUγ

5 ; (9.107)

and up to safe terms, we therefore have

M3⌋L = i
h̄gWWZ

mW
2
v(p1)

(

(vU + aUγ
5)/q− −mUaUγ

5
)

u(p2) + · · · (9.108)

To obtain the contribution from the second diagram, we simply put gWWZ → QW,
vU → QU, and aU → 0 in the third diagram :

M2⌋L = i
h̄QW QU

mW
2

v(p1) /q− u(p2) + · · · (9.109)

If we add the three diagrams, the contributions with v/q−u cancel precisely, as
they should since that was what we imposed in section 9.3.1. We are left with
terms proportional to mU :

M1+2+3⌋L = i
h̄mU

mW
2
v(p1)

(

−2gW
2(1 + γ5)− gWWZaUγ

5
)

u(p2) + · · ·

= −i h̄

mW
2

QW
2mU

4sW2
v(p1)u(p2) + · · · (9.110)

so that an energy behaviour of E1 at high energy is still uncompensated. The
Higgs boson is usefully applied here as well. We simply assume the UUH vertex

H

U

U
↔ i

h̄
gUUH 1 ,
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where we must realize that the Dirac unit matrix is involved25. For the process
UU →WW we then have a fourth available diagram :

which contributes to the amplitude the amount

M4 = −ih̄ gUUHgWWH v(p1)u(p2)
1

s−mH
2
(ǫ+.ǫ−) . (9.111)

In the fully longitudinal case we therefore have

M4⌋= − i
h̄ gUUHgWWH

2mW
2

v(p1)u(p2) + · · · , (9.112)

and the following requirement on gUUH is obtained :

QW
2mU

4sW2
+
h̄ gUUHgWWH

2mW
2

= 0 , (9.113)

or

gUUH = −QW

2sW

mU

mW

. (9.114)

This discussion can of course be applied to any fermion type26, and we find the
general Feynman rule

H

f

f
↔ i

h̄

e

2sW

mf

mW

1

9.4.5 Higgs self-interactions

The triple H coupling

There remains the issue of possible self-interactions of the Higgs particle. To
this end we examine not a 2→ 2 but a 2→ 3 process, namely

Z(p1, ǫ1) Z(p2, ǫ2) → Z(p3, ǫ3) Z(p4, ǫ4) H(p5) .

At the tree level, this process is described by 21 Feynman diagrams provided we
allow for three-point couplings between H ’s. These belong to one of the three

25In fact, the observation that the nonsafe part in this process is proportional to vu is the
strongest argument in favour of a scalar Higgs.

26Note that for D-type fermions, aD has opposite sign ; but also the W+ and W− are
interchanged in the first diagram.
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following types :

where as usual the dotted lines denotes Z’s and the solid lines stand for H
particles, and we have to take into account the appropriate permutations of
the external Z particles. The amplitude is given by the three corresponding
contributions :

M1 = A1(1, 2, 3, 4, 5) +A1(2, 1, 3, 4, 5) +A1(3, 4, 1, 2, 5)

+ A1(4, 3, 1, 2, 5) +A1(1, 3, 2, 4, 5) +A1(3, 1, 2, 4, 5)

+ A1(2, 4, 1, 3, 5) +A1(4, 2, 1, 3, 5) +A1(1, 4, 3, 2, 5)

+ A1(4, 1, 3, 2, 5) +A1(3, 2, 1, 4, 5) +A1(2, 3, 1, 4, 5) ,

A1(i1, i2, i3, i4, i5) = ih̄3/2 gZZH
3 ǫi1

µ Πµν(pi1 + pi3) ǫi2
ν (ǫi3 · ǫi4)

× ∆Z(pi1 + pi3)∆H(pi3 + pi4) ,

M2 = A2(1, 2, 3, 4, 5) +A2(3, 4, 1, 2, 5) +A2(1, 3, 2, 4, 5)

+ A2(2, 4, 1, 3, 5) +A2(1, 4, 3, 2, 5) +A2(3, 2, 1, 4, 5) .

A2(i1, i2, i3, i4, i5) = −ih̄3/2 gZZH gZZHH (ǫi1 · ǫi2)(ǫi3 · ǫi4)
× ∆H(pi3 + pi4) ,

M3 = A3(1, 2, 3, 4, 5) +A3(1, 3, 2, 4, 5) +A3(1, 4, 2, 3, 5) ,

A3(i1, i2, i3, i4, i5) = ih̄3/2 gZZH
2 gHHH (ǫi1 · ǫi2)(ǫi3 · ǫi4)

× ∆H(pi3 + pi4) ∆H(pi3 + pi4) ,

Πµν(q) = −gµν +
1

mZ
2
qµqν ,

∆Z(q) =
(

q2 −mZ
2
)−1

, ∆H(q) =
(

q2 −mH
2
)−1

. (9.115)

Here we have, for once, taken all momenta outgoing, which means that the
momenta of the incoming Z’s have negative zeroth component. In view of the
more complicated phase space structure, this amplitude is best studied numeri-
cally27. Although näıvely each diagram A1 and A2 grow quadratically with the
energy in the fully longitudinal case, bothM1 andM2 actualy become energy-
independent at sufficiently high energy E. But this is not safe : a 2→ 3 ampli-
tude must go at most as E−1, and therefore cancellations between (M1 +M2)

27A short description of how this is done follows. We first define an energy scale E. The
1,2, and 3-components of the momenta ~p3,4 are chosen as random values, uniformly dis-
tributed between −E and E, and the corresponding momentum components of ~p5 are given
by ~p5 = −~p3 − ~p4. We then compute the energy components p3,4,50 from the mass-shell
condition. The energy components p1,20 are then given by p1,20 = −(p3 + p4 + p5)0/2, and
their momenta are computed from their mass-shell condition. We take these to be along the
z axis, say, and oppositely pointed. This is a crude but efficient way of obtaining momentum
configurations satisfying all kinematical conditions, and the various polarization vectors are
then easily obtained using Eq.(9.80). Repeating this procedure a number of times, we can
map out the phase space for a given energy scale.
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andM3 are still necessary. We find that the required HHH coupling is given
by

↔ i
gHHH

h̄
, gHHH =

3

2

QW
2 mH

2

mW sW

if the necessary cancellations are to arise. In the figure below we have, some-
what arbitrarily, chosen mWc

2 = 80 GeV, mZc
2 = 90 GeV, mHc

2 = 250 GeV.
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We plot −M3⌋L /M1+2⌋L for
various energy scales E. The
sampling is performed as de-
scribed inthe footnote. The two
contributions to the amplitude
are seen to balance one another
precisely, and the combined am-
plitude goes as E−2, provided
the right choice of gHHH is made.
Note that the amplitudes are
heavily dependent on the various
scattering angles: but their ratio
is not.

A word of caution is in order on the interpretation of this picture. The high-
energy limit is, strictly speaking, only obtained if all products of momenta
grow large with respect to all masses involved. In a sampling over phase space
it can always happen that some momentum products are comparable to squared
masses ; these cases are responsible for the ‘outlying’ dots in the plot at large
values of the energy scale.

The quartic H coupling

The last Gedanken process needed is

Z(p1, ǫ1) Z(p2, ǫ2) → H(p3) H(p4) H(p5)

which is described by 25 Feynman diagrams in six types:

where we have already anticipated a quartic Higgs coupling in the last diagram.
The contributions to the amplitude are

M1 = B1(1, 2, 3, 4, 5) + B1(1, 2, 4, 5, 3) + B1(1, 2, 5, 3, 4)
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+ B1(1, 2, 5, 4, 3) + B1(1, 2, 3, 5, 4) + B1(1, 2, 4, 3, 5) ,
B1(1, 2, i3, i4, i5) = ih̄3/2 gZZH

3 ǫ1
µ Πµ

λ(p1 + pi3) Πλν(p2 + pi5) ǫ2
ν

× ∆Z(p1 + pi3) ∆Z(p2 + pi5) ,

M2 = B2(1, 2, 3, 4, 5) + B2(1, 2, 4, 5, 3) + B2(1, 2, 5, 3, 4)
+ B2(2, 1, 3, 4, 5) + B2(1, 2, 4, 5, 3) + B2(1, 2, 5, 3, 4) ,

B2(i1, i2, i3, i4, i5) = ih̄3/2 gZZH
2 gHHH ǫi1

µ Πµν(pi2 + pi5) ǫi2
ν

× ∆Z(pi2 + pi5) ∆H(pi3 + pi4) ,

M3 = B3(1, 2, 3, 4, 5) + B3(1, 2, 4, 5, 3) + B3(1, 2, 5, 3, 4) ,
B3(1, 2, i3, i4, i5) = ih̄3/2 gZZH gHHH

2 (ǫ1 · ǫ2) ∆H(p1 + p2) ∆H(pi4 + pi5) ,

M4 = B4(1, 2, 3, 4, 5) + B4(1, 2, 4, 5, 3) + B4(1, 2, 5, 3, 4)
+ B4(2, 1, 3, 4, 5) + B4(1, 2, 4, 5, 3) + B4(1, 2, 5, 3, 4) ,

B4(i1, i2, i3, i4, i5) = −ih̄3/2 gZZHH gZZH ǫi1
µ Πµν(pi2 + pi5) ǫi2

ν

× ∆Z(pi2 + pi5) ,

M5 = B5(1, 2, 3, 4, 5) + B5(1, 2, 4, 5, 3) + B5(1, 2, 5, 3, 4) ,
B5(1, 2, i3, i4, i5) = −ih̄3/2 gZZHH gHHH (ǫ1 · ǫ2) ∆H(pi3 + pi4) ,

M6 = −ih̄3/2 gZZH gHHHH (ǫ1 · ǫ2) ∆H(p1 + p2) . (9.116)

A treatment analogous to that of the previous paragraph leads to the following,
final Feynman rule :

↔ i

h̄
gHHHH , gHHHH =

3

4

QW
2 mH

2

mW
2 sW2

as indicated by the picture below.
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We plot the ratio

−M6⌋L /M1+·+5⌋L

obtained in the same manner
as in the previous paragraph.
Again, the choice of the factor
3/4 in gHHHH is justified by the
fact that the ratio geos to 1 with
great accuracy as the scale in-
creases.
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9.5 Conclusions and remarks

We have now derived all vertices of the electroweak Standard Model. That is to
say, the more usual textbook derivations arrive at precisely the set of Feynman
rules that we have also obtained. There are, however, a number of differences
between the treatment given here and the usual one.

• We have not invoked any symmetry principle, but rather the (underlying)
SU(2)× U(1) symmetry has spontaneously emerged from our choices for
the ‘minimal’ solution, for instance by insisting on only a single Z particle
while we could have opted for more.

• Since we have not invoked any symmetry, there is also no need to explain
its ‘breaking’ in order to arrive at massive W ’s and Z’s. Instead, we have
simply faced the observed fact of their massiveness and come to grips with
it with the help of a Higgs sector.

• There is, as we have already discussed, a logical distinction between the
two uses of the weak mixing angle, in which the ratio of coupling constants
is logically ‘prior’ to the ratio mW/mZ.

• We have not needed to introduce any Higgs doublet, but rather only a sin-
gle, physically observable H particle. This approach elegantly sidesteps
the question whether , and if so how the Higgs field configuration is ‘spon-
taneously broken’. This would indicate that the Higgs particle is also, in
a sense, logically prior to a complete Higgs doublet.
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Chapter 10

Appendices

10.1 Convergence issues in perturbation theory

Let us reinspect Eq.(1.25), taking µ = 1 for simplicity :

G2n = H2n/H0 ,

H2n =
∑

k≥0

(4k + 2n)!

25k+n 3k (2k + n)! k!
(−λ4)k ,

H0 =
∑

k≥0

(4k)!

25k 3k (2k)! k!
(−λ4)k . (10.1)

Although we have treated the expressions for the H ’s as if they were well-defined
objects, in fact these series do not converge ! For large k and fixed n the kth

term in H2n contains the numerical coefficient

(4k + 2n)!

25k+n 3k (2k + n)! k!

which increases superexponentially1 with k : which implies that the series has a
radius of convergence equal to zero. The procedure of taking the ratio H2n/H0,
while it mixes terms of different order in λ4, does not help to repair this ; a
simple numerical study shows that

G2 =
∑

k≥0

σk(−λ4)k , σk ∼ k! (2/3)k , (10.2)

so that also G2 (and, it can be checked, the higher G’s) are described by series
with vanishing radius of convergence. This should not come as a surprise. For,
in the discussion of the perturbation expansion we have assumed the coupling

1This means that the coefficient increases with k faster than Ak for any A : roughly
speaking, it grows like (k!) .
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constant λ4 to be small, but positive. If, on the other hand, it was small but
negative, perturbation theory would look very different ; in fact it would look
like nothing at all since for negative λ4 the path integral is completely undefined.
Therefore, the perturbative expansion is not regular around λ4 = 0, and in the
set of all ϕ4 theories the point λ4 = 0 constitutes an essential singularity.

All may not be lost, however. The method of Borel summation sometimes2

enables us to assign a value to a sum with vanishing radius of convergence.
Suppose that a function of a positive variable x is given by the sum

f(x) =
∑

k≥0

ck x
k , (10.3)

where the coefficients ck grow superexponentially. Clearly it is difficult to make
sense of such a sum ; but it may be possible to make sense of a related sum :

g(x) =
∑

k≥0

ck
k!
xk , (10.4)

simply because the coefficients do not grow as rapidly. Let us suppose that this
is indeed the case. We then may employ the formula

∞
∫

0

dy exp(−y) (xy)n = n! xn , n = 0, 1, 2, . . . (10.5)

to arrive at the rule

f(x) =

∞
∫

0

dy e−y g(xy) . (10.6)

Notice that here, we have again interchanged summation and integration, thus
in a sense repairing the damage done when we arrived at the perturbation
expansion in the first place. This approach is called Borel summation. We can
illustrate this in a simple example. Let us take ck = 1, that is

f(x) =
∑

k≥0

xk =
1

1− x : (10.7)

we immediately find that

g(x) =
∑

k≥0

xk

k!
= ex , (10.8)

and indeed
∞
∫

0

dy e−y exy =
1

1− x . (10.9)

2In zero dimensions this will work. In four-dimensional Minkowski space things are not
nearly as simple. . .
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However, an important observation is to be made here. The sum for f(x) con-
verges (conditionally) for the region |x| ≤ 1, whereas the sum for g(x) converges
everywhere, and the Borel integral converges in this case as long as ℜ(x) < 1,
thus immeasurably enlarging the region of x values where the Borel-summed
version makes sense.

We now turn to a more challenging example : the sum

F (x) =
∑

k≥0

n! (−x)k , (10.10)

with x positive. In that case we find

G(x) =
∑

k≥0

(−x)k =
1

1 + x
(10.11)

and the Borel sum reads

F (x) =

∞
∫

0

dy e−y
1

1 + xy
=
e1/x

x
E1

(

1

x

)

(10.12)

where the function E1, the exponential integral, given by

E1(z) =

∞
∫

z

dt
exp(−t)

t
, (10.13)

is a little-known but perfectly well-defined function. F (x) is a function that
starts (obviously) at F (0) = 1 and then gently decreases. Borel summation
works ! But how do we actually compute the series F (x) ? The theory of
asymptotic functions provides an answer. Let us consider not the infinite sum
F (x) as given in Eq.(10.10) but its truncated version

FK(x) =

K−1
∑

k=0

k! (−x)k (10.14)

It can be shown that the difference between f(x) and fK(x) is of the order3 of
the first neglected term :

∣

∣F (x) − FK(x)
∣

∣ = O
(

K! (−x)K
)

. (10.15)

Taking ‘order’ to mean ‘roughly equal in magnitude, barring accidents’4 we
might therefore conclude that the optimal value of K is that for which the error

3Also this statement needs interpretation. In the theory of asymptotic series it means that
the difference will go to zero at least as fast as the first neglected term goes to zero, not that
these two numbers must be necessarily comparable in magnitude. As an example, the object
1012/x2 is formally of the order of 1/x as x→ ∞, but x has to be really large for them to be
of equal size. Fortunately, it often happens that the difference and the necglected term are of
similar magnitude.

4Only to be justified by its succes.
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term is minimal, that is, we truncate around K ≈ 1/x. In that case

⌊

K!xK
⌋

x=1/K
= K! K−K ≈ e−K = e−1/x , (10.16)

so that the numerical error can be very small indeed for small x. As an illus-
tration we give here the actual and asymptotically-inspired-truncated result for
the function (10.10).

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

The exact and truncated results
for the function F (x) of (10.10).
The smooth curve is the exact, the
zigzagging one the truncated re-
sult. The approximate value oscil-
lates around the true one ; but for
small x the difference is negligible.
This shows that, even if a sum is di-
vergent, it may still be possible to
make sense out of it by Borel sum-
mation.

Note that in our example we have required x to be positive, so that (−x)n
oscillates in sign. That this is essential becomes clear when we try to Borel-sum

F (x) =
∑

n≥0

n! (x)n , x > 0 : (10.17)

the Borel integral reads

F (x) =

∞
∫

0

dy e−y
1

1− xy , (10.18)

and this integral runs into problems around y = 1/x. One may of course extend
the integral to complex y values, and then skirt around the singularity ; but
it is not clear whether we should pass the point y = 1/x above, or below, the
real axis. The ambiguity, that is, the difference between the results from the
alternative contours, is of course given by the number

∮

y∼1/x

dy
e−y

1− xy = 2πi
e−1/x ,

x

and, since during the integration we might decide to circle around the singularity
any number of times, arbitrary multiples of the ambiguity may be added. We
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see that the Borel integral becomes ambiguous : it may be some consolation
that the ambiguity is nonperturbative in nature, i.e. it has no series expansion
for infinitesimal but real and positive x. We conclude that the function F (x) is
given by

F (x) = −e
−1/x

x

(

Ei

(

1

x

)

+ (2n+ 1)iπ

)

, (10.19)

where n is an undetermined integer5.

5For the functions E1 and Ei, see e.g. M. Abramowitz and I.A. Stegun, Handbook of

Mathematical Functions, ch.5.
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10.2 Completely solvable models in zero dimen-

sions

10.2.1 A logarithmic action

The free theory is of course one in which we can calculate all Green’s functions
exactly to all orders – but that is because they are trivial. Are there less trivial
actions for which we can compute everything? Consider, for example, the action
given by

S(ϕ) = − µ

a2
log(1 − aϕ)− µ

a
ϕ

=
µ

2
ϕ2 +

aµ

3
ϕ3 +

a2µ

4
ϕ4 + · · · . (10.20)

Here, a is some dimensionful constant, and the field is supposed to take values
only on (−∞, 1/a). Since

S′(ϕ) =
µ

a

(

1

1− aϕ − 1

)

= µ
(

ϕ+ aϕ2 + a2ϕ3 + · · ·
)

, (10.21)

The SDe for the path integral reads

µ
(

h̄Z ′ + ah̄2Z ′′ + a2h̄3Z ′′′ + · · ·
)

= JZ . (10.22)

Differentiating this once more and multipying with ah̄ gives

µ
(

ah̄2Z ′′ + a2h̄3Z ′′′ + · · ·
)

= ah̄(Z + JZ ′) . (10.23)

By subtraction we therefore find

µh̄Z ′ = JZ − ah̄Z − ah̄JZ ′ , (10.24)

The solution to this differential equation is the path integral

Z(J) =
(

1 +
a

h̄
J
)−(1+µ/a2h̄)

exp

(

J

ah̄

)

; (10.25)

but, more importantly, we can simply read off φ(J) from Eq.(10.24) :

φ(J) = h̄
Z ′

Z
=
J − ah̄
µ+ aJ

. (10.26)

We have now completely solved the SDe. It appears that all loop corrections
beyond one loop vanish identically ! Moreover we can write Eq.(10.26) also as

J =
µφ+ ah̄

1− aφ , (10.27)

so that the effective action is

Γ(φ) = − µ

a2
log(1− aφ)− µ

a
φ− h̄ log(1− aφ) . (10.28)
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The effective action, also, is free of corrections beyond one loop. Results such
as this one can provide a powerful check on other calculations. For instance,
the results of Eq.(1.96) and Eq.(1.101) for the effective action can be applied
for this action, and indeed we find that, at one loop, Γ1(φ) = −h̄ log(1 − aφ),
and at two loops, Γ2(φ) = 0. Furthermore, the fact that if we (a) allow for all
possible vertices, (b) assign the Feynman rule −(n− 1)!/h̄ to an n-point vertex,
and h̄ to each propagator, then all connected Green’s functions (or their 1PI
parts only) must vanish beyond one loop, is very helpful in determining whether
we have forgotten some diagrams in a nontrivial calculation.

10.2.2 An exponential action

Next, we consider the action

S(ϕ) =
µ

a2
(

eaϕ − 1− aϕ
)

. (10.29)

From

S′(ϕ) =
µ

a

(

eaϕ − 1
)

=
µ

a

(

aϕ+
1

2!
a2ϕ2 +

1

3!
a3ϕ3 + · · ·

)

(10.30)

we obtain the SDe in the form

µ

a

(

ah̄Z ′ +
a2h̄2

2!
Z ′′ +

a3h̄3

3!
Z ′′′ + · · ·

)

=
µ

a

(

Z(J + ah̄)− Z(J)
)

= JZ(J) .

(10.31)
In other words,

Z(J + ah̄) =

(

1 +
J

ah̄

)

Z(J) , (10.32)

which functional equation has the solution6

Z(J) = Γ
( µ

a2h̄

)−1
(

a2h̄

µ

)J/ah̄

Γ

(

µ

a2h̄
+

J

ah̄

)

. (10.33)

The corresponding field function reads

φ(J) =
1

ah̄

[

log

(

a2h̄

µ

)

+ ψ

(

µ+ aJ

a2h̄

)]

, (10.34)

where ψ(z) = Γ′(z)/Γ(z). This function has an asymptotic expansion for large
z :

ψ(z) ∼ log(z)− 1

2z
−
∑

n≥2

Bn

n
z−n , z →∞ . (10.35)

6Here, Γ does of course not denote any effective action, but rather the ‘factorial’ Gamma
function.
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Here, the Bn are the Bernoulli numbers, defined by their generating function as
follows :

F (x) ≡ x ex

ex − 1
=
∑

n≥0

Bn
xn

n!
. (10.36)

It is easily seen that B0 = 1 and B1 = 1/2 ; but more significantly, from the fact
that F (x)−x/2 is actually7 even in x, we see that all Bn vanish for odd n ≥ 3 ;
which again means that all odd loop corrections beyond the first order vanish
for all Green’s functions ! The receipe is even simpler than in the previous
case : replacing each vertex by −1 and each propagator by 1, all odd-loop
Green’s functions must be identically zero ; yet another powerful check on our
computations.

7From the way it is written, this seems unlikely — but it is true.
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10.3 Alternative solutions to the Schwinger-Dyson

equation

10.3.1 Alternative contours in the complex plane

Alternative contours for general theories

In section 1.2.5, it was mentioned that ϕ3 theory is not well-dedfined for real
fields since the action will go to infinity whenever ϕ → +∞ or ϕ → −∞.
It is instructive to lift the requirement that ϕ be real. In that case, we see
that different integration contours become available for which the path integral
is well-defined (albeit not necessarily real). Let us consider a zero-diensional
theory with general action

S(ϕ) =

m
∑

p=1

λp
p!

ϕp . (10.37)

The requirement for the path integral to be defined is that at both endpoints
(still assumed to be at infinity in some complex direction) the real part of the
action goes to positive infinity. That is,

ℜ(ϕm) → +∞ ⇒

− π

2m
+

2π

m
k < arg(ϕ) <

π

2m
+

2π

m
k , k = 1, 2, . . . ,m . (10.38)

The argument of the endpoints are restricted to certain intervals. Inside each
interval the precise value of the argument is irrelevant since the path integral
will be precisely the same: we may therefore say that for a theory with highest

interaction term ϕm the admissible endpoints are∞(m)
n , with n = 0, 1, 2, . . . ,m−

1, where

∞(m)
n = lim

r→∞
reiφn , φn ∈

(

2π

m
(n− 1

4
),
2π

m
(n+

1

4
)

)

. (10.39)

Since the path integrand is analytic, the theory is completely determined by the
endpoints. We see that for a theory with highest interaction of the form ϕm

there are precisely m − 1 independent solutions to the SDe, as necessary since
the SDe is a linear differential equation of order m − 1. We may take these as

given by a contour running between ∞(m)
0 and any of the m − 1 other ∞(m)

n .
By suitably combining several integrals we can of course also obtain a theory

based on a contour running between any two distinct ∞(m)
n .

An interesting observation can be made on the limit of vanishing coupling.
Consider an action in which the highest coupling is λmϕ

m/m!, and the next
highest is λkϕ

k/k!. We can immediately see that the theory will remain well-
defined in the limit λm → 0, provided that its endpoints ∞(m) are chosen such
as to overlap with two distinct endpoints of the subleading coupling, ∞(k). If
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this is not the case the path integral will not be defined in the limit of vanishing
leading coupling constant.

Alternative contours for ϕ3 theory

As an example, let us look again at ϕ3 theory. There are three endpoints∞(3)
0,1,2.

Since the point −∞ is not inside one of the admissible edpoints, the real axis
is not a valid contour as we have remarked. An interesting well-defined choice

is the contour between ∞(3)
1 and ∞(3)

2 : by symmetry we see that, as long as
the action’s parameters and the source are real, the path integral and φ(J) are
well-defined and real. On the other hand, both endpoints overlap with the same

endpoint ∞(2)
1 , which means that in the limit λ3 the theory must become ill-

defined. A quick look at the tree-level form of the theory bears this out : for
the action

S(ϕ) =
λ

6
ϕ3 +

µ

2
ϕ2 (10.40)

the classical solution is given by

S′(φc(J)) = J ⇒ φc(J) =
µ

λ

(

−1±
√

1 +
2λJ

µ2

)

. (10.41)

Choosing the − sign we obtain a clasical tadpole φc(0) = −2µ/λ, which corre-
sponds to the contour discussed above8 ; and indeed it becomes ill-defined as
λ → 0. The choice of the + sign gives a classical solution that has a Taylor
series expansion around λ = 0. It corresponds to the contours running from

∞(3)
0 to either ∞(1) or ∞(2) ; it is not possible to tell which of the two contours

is intended. In fact the situation appears to be even worse. If λ, µ and J are all
real, the SDe can be iteratively solved starting from the classical solution, and
the perturbation series is completeley fixed as well as real ; whereas the fact
that the two integration contours are really distinct from the real axis tells us
that the path integral (and hence φ(J)) ought to be complex, with the results
from the two contours related by complex conjugation. We conclude that the
difference between the two alternative path integral must be non-perturbative
in nature.

Alternative contours for ϕ4 theory

For ϕ4 theory, with action

S(ϕ) =
1

4!
λϕ4 +

1

2
µϕ2 ,

8It should be observed that the classical SDe allows us to construct the full classical solution
from the tadpole φc(0), and that from the classical solution we can construct the full quantum
solution — all perturbatively, and some care has to be taken if the tadpole is nonzero.
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there are three independent contours. Since∞(4)
1,3 do not overlap with any∞(2),

we see that only the real axis gives a theory in which the limit λ4 → 0 is well-

defined. Another intersting contour is that running between ∞(4)
3 and ∞(4)

1 :
we may take this contour to be the imaginary axis. By the simple variable
transformation ϕ → iϕ′ we see that the theory we are actually investigating
here is that with real field ϕ′ but action

S(ϕ′) =
1

4!
λ4ϕ

′4 − 1

2
µϕ′

2
,

that is, a theory with the ‘wrong’ sign for the quadratic term. Such models are
regularly studied in connection with the phenomenon of spontaneous symme-
try breaking9. As we see, this theory does not have a standard perturbative
expansion around λ4 = 0 even though the tadpole vanishes.

10.3.2 Alternative endpoints

Fixed non-infinite endpoints

Those theories of ϕ3 or ϕ4 kind that show a regular behaviour as λ→ 0 have in
common that their contour may be drawn so as to include a part that crosses
the point ϕ = 0 along the real axis10. We can therefore envisage theories where
the contour crosses the origin (assumed to be where the minimum of the action
is) along the real axis, but where we keep the path integral wel-defined simply
by letting the contour end at finite distance from the origin. The value of the
path integral will then, of course, depend on where the endpoints are – but is
that a problem ? As an example, consider the free theory with for the contour
the real axis between, say, ϕ− < 0 and ϕ+ > 0. This contour includes ϕ = 0,
and we may trust perturbation theory insofar as it can be trusted at all. The
difference between this ‘restricted’ path integral and the one where the whole
real axis is included is given by the error function with arguments ϕ±, that is,
terms that are of order exp(−ϕ±2/(2h̄µ)). This will lead to a theory that differs
from the standard free one on a nonperturbative level only, as long as ϕ± is not
of order h̄. It is easy to see that this phenomenon will persist for interacting
theories as well. Our upshot is that finite endpoints are acceptable as long as
we are doing perturbation theory, and as long as the origin can be crossed along
the real axis in an unambiguous manner.

Moving endpoints

Finitely positioned endpoints of the integration contour will in general lead to
nonperturbative inhomogeneous terms in the SDe, as we have seen. There is,
however, another possibility : that of letting the contour endpoints depend on

9In zero dimensions, spontaneous symmetry breaking does not occur.
10The ϕ3 theory with endpoints ∞(3)

1 and ∞(3)2 can also be deformed to go over the origin
along the real axis — but then it has to go ‘forth’ and ‘back’ over that point, which rather
spoils the idea since the contributions will cancel one another.
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the source. To see how this is possible, let us consider the path integral over
the real axis, assuming that the action diiverges acceptably at ϕ = −∞, and
that the upper limit of the path integral resides at the source-dependent value
ϕ = c(J). Denoting11 by A(ϕ, J) the integrand exp(−S(ϕ)+Jϕ), we then have
the (unnormalized) path integral

Z(J) =

c(J)
∫

−∞

dϕ A(ϕ, J) , (10.42)

for which we can deduce the derivatives

Z ′(J) = c′(J)A(c(J), J) +

c(J)
∫

−∞

dϕ ϕ A(ϕ, J) ,

Z”(J) =

[

2c′(J)c(J) + c”(J) + c′(J)2(J − S′(c(J))
]

A(c(J), J)

+

c(J)
∫

−∞

dϕ ϕ2 A(ϕ, J) , (10.43)

and so on. By suitably choosing c(J) we can make sure that Z(J) obeys the
exact, homogeneous SDe. For the free theory, the SDe reads

0 = JZ(J)− µZ ′(J)

= −µc′(J)A(c(J), J) +
c(J)
∫

−∞

dϕ (J − µϕ)A(ϕ, J)

=

(

1− µc′(J)
)

A(c(J), J) : (10.44)

and we conclude that the theory with a restricted but J-dependent endpoint
will be completely indistinguishable from the standard free theory if

c(J) = c(0) + J/µ . (10.45)

By some poetic justice, the endpoint must move uniformly for the free theory
(in the sense in which J stands for ‘time’). We can of course also introduce a
moving lower endpoint, and in fact, for any theory, we can let the two endpoints
satisfy their own differential equation independently of one another. For the free
theory, we find that a contour over any finite interval leads to the correct SDe,
provided the interval moves along the real axis with the correct ‘speed’. The
extension to interacting theories we glibly leave as an excercise to the reader.

11We take h̄ = 1 for simplicity here.
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10.4 Concavity of the effective action

In the zero-dimensional case of a single field variable, the effective action is
concave. Let us now investigate whether this persists in case of more fields. Let
the collection of all fields be denoted by {ϕ} as before, and the collection of all
sources, one for each field, by {J}. We shall denote the combined probability
density of all fields, including the effects of the sources, by P ({ϕ}, {J}). The
effective action is now that function of the collection of all field functions {φ}
that has the correct classical equation :

∂

∂φn
Γ({φ}) = Jn . (10.46)

Concavity of the effective action in the many-field case means that the matrix

Γnm ≡
∂

∂φn

∂

∂φm
Γ({φ}) = ∂

∂φm
Jn (10.47)

has only positive eigenvalues. If this is the case, then also its inverse, the matrix

Hmn =
∂

∂Jm
φn (10.48)

must have only positive eigenvalues12. That is, for any eigenvector a of H the
eigenvalue λ must be positive :

∑

n

Hmn an = λam , λ > 0 . (10.49)

In turn, this is guaranteed if
∑

m,n

Hmn am an > 0 (10.50)

for any vector a. Now, we have

φm =

∫

(
∏

n dϕn) P ({ϕ}, {J}) ϕm
∫

(
∏

n dϕn) P ({ϕ}, {J})
, (10.51)

and therefore

1

h̄
Hmn =

∫

(
∏

n dϕn) P ({ϕ}, {J}) ϕmϕn
∫

(
∏

n dϕn) P ({ϕ}, {J})

−
∫

(
∏

n dϕn) P ({ϕ}, {J}) ϕm
∫

(
∏

n dϕn) P ({ϕ}, {J})

∫

(
∏

n dϕn) P ({ϕ}, {J}) ϕn
∫

(
∏

n dϕn) P ({ϕ}, {J})
.(10.52)

We now employ the following trick : duplicate the set of fields {ϕ} by the
addition of another set of fields, {ϕ̂}, with the combined probability density

P ({ϕ}, {ϕ̂}, {J}) = P ({ϕ}, {J})P ({ϕ̂}, {J}) . (10.53)

12Since Γmn is symmetric, so is Hmn although this is not obvious from the form it is written
here.
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By this construction, the random variables ϕ and ϕ̂ are statistically independent.
We can then write the matrix H as

1

h̄
Hmn = 〈ϕmϕn − ϕmϕ̂n〉 , (10.54)

with the average taken with respect to the new probability density. Using the
fact that this density is symmetric in ϕ↔ ϕ̂, we can write this as

1

h̄
Hmn =

1

2
〈ϕmϕn − ϕmϕ̂n − ϕ̂mϕn + ϕ̂mϕ̂n〉

=
1

2
〈(ϕm − ϕ̂m)(ϕn − ϕ̂n)〉 , (10.55)

and we arrive at

∑

m,n

Hmn am an =
h̄

2

〈(

∑

n

(ϕn − ϕ̂n)an

)2〉

, (10.56)

which is necessarily positive. The matrix H has, therefore, only positive eigen-
values, and the effective action is always concave. It is of course possible (and
even likely in the case of continuum theories that have a noncountable infinity
of field values) that the eigenvalue is actually infinite. In that case the effective
action contains flat directions. So perhaps the more careful statement is that
the effective action cannot be convex anywhere.

A final point to note is that our proof relies only on the fact that the ϕ
values are randomly distributed over some nonvanishing region, no matter how
small. Of course, by restricting the values that the ϕ are allowed to take we will
change the effective action ; but it will never be convex.
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10.5 Diagram counting

10.5.1 Tree graphs and asymptotics

Direct counting

An interesting and useful application of zero-dimensional field theory lies in the
topic of counting diagrams. To the extent that we may consider every diagram
as being of the same ‘order of magnitude’ this gives an idea, however crude,
of the amplitude to be expected. Of particular interest is the behaviour of the
number of graphs under extreme circumstances such as when the number of
external lines becomes very large. In this section we shall consider the simplest
case, that of tree-level Green’s functions of a single self-interacting field.

In order to count diagrams, we can simply consider the zero-dimensional
theory so that we are not bothered by summing diagrams over internal degrees
of freedom. Secondly, we replace every vertex, and every propagator by unity.
This reduces every Feynman diagram to just its symmetry factor. For tree
diagrams, the symmetry factor is unity; for loop graphs, the symmetry factors
are nontrivial and getting rid of them is quite cumbersome13. The appropriate
action reads

S(ϕ) =
1

2
ϕ2 − F (ϕ) , F (ϕ) =

∑

k≥3

ǫk
k!
ϕk , (10.57)

where ǫk is unity for every k-point interaction proposed in the theory, otherwise
zero. Since we only consider counting graphs, the fact that S may become
negative infinity for infinite ϕ does not bother us. The number-of-diagrams
generating function

Φ(J) =
∑

n≥0

Nn

n!
Jn , (10.58)

where Nn is the number of tree graphs with n+1 external lines, is given by the
classical version of the SDe :

Φ = J + F ′(Φ) . (10.59)

There are several ways of solving for Φ. We may directly solve Eq.(10.59) as an
algebraic equation and then expand in powers of J , but this is practical only in
the simplest cases such as the ϕ3/4 theory. Alternatively, we can approach the

13In the literature ‘counting diagrams’ is usually understood to mean ‘counting diagrams
with symmetry factors’.
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root of Φ = J + F ′(Φ) by Legendre expansion14 :

Φ = J +
∑

n≥1

1

n!

(

∂

∂J

)n−1(

F ′(J)

)n

. (10.60)

This is useful in theories with only a single coupling, such as pure ϕ4 theory. In
more complicated theories, the best approach for n not too large is simply to
iterate Eq.(10.59) by computer algebra. For pure ϕp theories we can explicitly
work out the result of the Legendre expansion. The counting equation is

φ = J +
1

m!
φm , m = p− 1 , (10.61)

so that Legendre’s formula gives

φ = J +
∑

n>0

1

n! (m!)n

(

∂

∂J

)n−1

Jmn

=
∑

n≥0

(mn)!

n!(m!)n(mn− n+ 1)!
Jmn−n+1 . (10.62)

The nonvanishing N ’s are therefore

Nn(m−1)+1 =
(mn)!

n!(m!)n
, n = 0, 1, 2 . . . (10.63)

As expected, for m > 2 some connected Green’s functions vanish identically at
the tree level since no diagrams contribute.

Asymptotic methods

For asymptotically large n, we can estimate the form of Nn by realizing that
these must be given by the behaviour of Φ(J) near that of its singularities that
lies closest to the origin in the complex-J plane. Now, if Φ(J) is singular,
then Φ′(J) is divergent15, so that dJ/dΦ must vanish. We therefore solve the
equation

∂

∂Φ
J = 1− V ′′(Φ) = 0 (10.64)

14Legendre expansion is what you get in solving the implicit equation for y that reads
y = x + f(y), where f(0) = 0. Assuming that we can Taylor-expand f and that x is small
enough, we can then use the successive approximations

y = x ;

y = x+ f(x) ;

y = x+ f(x+ f(x)) ≈ x+ f(x) + f ′(x)f(x) ,

and so on. Legendre expansion does of course not give all solutions, but only that solution
for y that goes to zero if x does so.

15The divergence might also show up in higher derivatives only, but in every actual case
that I have studied the divergence shows up in Φ′.
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for Φ. If the highest power of interaction in the theory is ϕm, this equation has
m− 2 complex roots Φ1,Φ2, . . . ,Φm−2, and

Jp = Φp − V ′(Φp) , p = 1, 2, . . . ,m− 2 . (10.65)

Now, single out that Jp that has the smallest absolute value16, which we shall
call J0, and its corresponding Φp will be writtten Φ0. For J and Φ very close
to the values J0 and Φ0, respectively, we may use Taylor expansion to write

J ≈ J0 −
1

2
F ′′′(Φ0)(Φ0 − Φ)2 , (10.66)

since the linear term vanishes by definition. Hence

Φ ≈ Φ0 −
(

1− J

J0

)1/2
√

2J0
F ′′′(Φ0)

(10.67)

close to the singularity. From the standard Taylor expansion17

1−
√
1− x =

∑

n≥0

(2n)!

(n+ 1)!n!22n+1
xn+1 (10.68)

we then recover the asymptotic form for Nn :

Nn ≈
(2n− 2)!

(n− 1)!

1

(4J0)n

√

8J0
F ′′′(Φ0)

. (10.69)

This estimate grows roughly as n!, as ought to have been immediately obvious
from the fact that Φ(J) has a finite radius of convergence ; the above, more
careful, treatment gives an estimate that is quite good even for non-huge n. As
an application, we may consider purely gluonic QCD. In this theory, the only
interactions are between 3 or 4 gluons, and the theory is equivalent, as far as
counting is concerned, to the ϕ3/4 theory, with

F (ϕ) =
1

3!
ϕ3 +

1

4!
ϕ4 . (10.70)

The solutions of Eq.(10.64) and the corresponding J values are

Φ1 = −1+
√
3 , J1 = −4

3
+
√
3 ; Φ2 = −1−

√
3 , J2 = −4

3
−
√
3 , (10.71)

so that J0 =
√
3 − 4/3, Φ0 =

√
3 − 1, and F ′′′(Φ0) =

√
3. In the table we

give the exact number Nn, and its asymptotic estimate. The approximation is
better than one per cent for n ≥ 3. The non-polynomial (that is, n!) growth of
the number of diagrams with n can be seen as an immediate indication of the
failure of perturbation theory as a convergent series, as discussed in Appendix
1.

16The case that there are several such values is discussed in the next paragraph.
17This can be proven by applying the Legendre expansion to the object u = y + u2/2 =

1−√
1− 2y, and putting y = x/2.
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n Nn (exact) Nn(asymptotic)
1 1 0.85
2 1 1.07
3 4 4.01
4 25 25.17
5 220 220.94
6 2485 2493.60
7 34300 34397.35
8 559405 560754.85
9 10525900 10547973.57

Coarse-graining effects

In the above we have assumed that there is only a single J0. This is indeed
usually the case ; for pure ϕp theories, however, Eq.(10.64) reads

1

q!
ϕq = 1 , q = p− 2 , (10.72)

and this has solutions

φn = (q!)1/q exp

(

2iπ
n

q

)

, n = 1, 2, . . . , q ; (10.73)

the corresponding values for J are

Jn = 1− 1

(q + 1)!
φn

q+1 =
q

q + 1
φn , n = 1, 2, . . . , q , (10.74)

and these have all the same absolute value. The thing to do is therefore to take
the asymptotic contributions from all these q singular points into account, and
sum them. We then obtain

Nk ≈
q
∑

n=1

(2k − 2)!

(k − 1)!
(4Jn)

−k

√

8(q − 1)!Jn

φn
q−1

=
(2k − 2)!

(k − 1)!

(

q + 1

4q

)k√
8

q

q
∑

n=1

φn
−(k−1) . (10.75)

The sum over the n values of φ will vanish completely, except when k − 1 is a
multiple of q, and then it evaluates to q/(q!)k−1 ; this is exactly the behaviour
we found using Legendre expansion.

We might have proceeded otherwise, by simply taking the single real solution
φq = (q!)1/q as the only singular point. The number of diagrams Nk will then
be nonvanishing for every k value, while in the asymptotic expression (10.75)

the sum over n φ’s is replaced by φq
−(k−1), that is precisely q times smaller than

the nonvanishing sums of Eq.(10.75). We see that the taking into account of
only the single, real solution causes the asymptotic values of Nk to be ‘smeared
out’ ; Nk is then never zero anymore, but its average value18 is still correct.

18For the correct definition of ‘average’.
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10.5.2 Counting one-loop diagrams

The SDe approach to counting diagrams has a number of interesting or useful
applications, one of which we discuss here. We can extend the treatment of the
previous section as follows. For the case of purely gluonic QCD the number of
one-loop diagrams including their symmetry factors can be counted by iterating
the appropriate Schwinger-Dyson equation :

Φ(J) = J +
1

2
Φ2 +

1

6
Φ3 +

h̄

2
(1 + Φ)Φ′ (10.76)

and taking care to discard terms of order h̄2 or higher. As an example, the
gluonic 20-point function is given by

N(19) = N0(19) + h̄ N1(19) +O
(

h̄2
)

,

N0(19) = 11081983532721088487500 ,

N1(19) = 2900013601350201168582750 . (10.77)

The number N0(19) is the actual number of diagrams since tree diagrams always
have unit symmetry factor ; but the number N1(19) underestimates the actual
number of diagrams since the symmetry factors are not trivial. We can see,
however, that the only possible nonntrivial symmetry factor at the one-loop
level is 1/2, as evidenced by the factor h̄/2 in Eq.(10.76). Inspection tells us
that in this theory the only elementary Feynman diagrams that have symmetry
factor 1/2 are

E1 = , E2 = , E3 = ,

E4 = , E5 = .

All diagrams that contain one of these elementaries as a subgraph will have a
symmetry factor 1/2, and it will suffice to determine their number and multiply
it by two19. Alternatively, we may get rid of all such diagrams, and work with
the difference. This is the more useful approach ; and it illustrates how we may
go about using counterterms to impose constraints on the structure of Feynman
diagrams. The procedure is best explained by going through it step by step.
In the first place, it will become necessary to again distinguish betwee three-
and four-point vertices. We therefore modify Eq.(10.76) be reinserting labels
for these couplings:

Φ(J) = J +
g3
2
Φ2 +

g4
6
Φ3 +

h̄

2
(g3 + g4Φ)Φ

′ (10.78)

19This relies, of course, on the fact that there can be no diagrams containing two (or more)
of the elementaries, since that would be a two-loop diagram (or even higher).
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Iterating this gives for the first N :

N(0) =
h̄

2
g3 ,

N(1) = 1 + h̄

(

1
g4 + g3

2

)

,

N(2) = g3 + h̄

(

4g3
2 +

7

2
g4g3

)

,

N(3) = g4 + 3g3
2 + h̄

(

7

2
g4

2 + 24g3
4 +

59

2
g4g3

2

)

. (10.79)

We can now start to remove graphs. We shall get rid of all diagrams with a
tadpole by introducing a tadpole counterterm h̄T in the SDe:

Φ(J) = J +
g3
2
Φ2 +

g4
6
Φ3 +

h̄

2
(g3 + g4Φ)Φ

′ − h̄T (10.80)

We see that this amounts to replacing J by J − h̄T , and the N ’s become

N(0) = h̄

(

1

2
g3 − T

)

,

N(1) = 1 + h̄

(

1
g4 + g3

2 − g3T
)

,

N(2) = g3 + h̄

(

4g3
2 +

7

2
g4g3 − g4T − 3g3

2T

)

,

N(3) = g4 + 3g3
2 + h̄

(

7

2
g4

2 + 24g3
4 +

59

2
g4g3

2 − 10g4g3T − 15g3
3T

)

.

(10.81)

The tadpole N(0) is removed by choosing T = g3/2 ; and by the recursive
structure of the SDe all diagrams containing the elementariy E1 are removed as
well. The remaining low-order Ns are now

N(1) = 1 + h̄

(

1

2
g4 +

1

2
g3

2

)

,

N(2) = g3 + h̄

(

3g4g3 +
5

2
g3

3

)

,

N(3) = g4 + 3g3
2 + h̄

(

7

2
g4

2 +
49

2
g4g3

2 +
33

2
g3

4

)

. (10.82)

Next, we want to get rid of the two self-energy bubbles E2 and E3. To this end,
we again modify the SDe:

Φ(J) = J +
g3
2
Φ2 +

g4
6
Φ3 +

h̄

2
(g3 + g4Φ)Φ

′ − h̄T +
h̄B

1 + h̄B
Φ , (10.83)
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where the strange-looking form of the counterterm is justified by the fact that
we can rewrite Eq.(10.83) into

Φ(J) =

(

J +
g3
2
Φ2 +

g4
6
Φ3 +

h̄

2
(g3 + g4Φ)Φ

′ − h̄T
)(

1 + h̄B

)

, (10.84)

which lends itself better to the purpose of iteration. We then obtain

N(1) = 1 + h̄

(

1

2
g4 +

1

2
g3

2 +B

)

,

N(2) = g3 + h̄

(

3g4g3 +
5

2
g3

3 + 3Bg3

)

,

N(3) = g4 + 3g3
2 + h̄

(

7

2
g4

2 +
49

2
g4g3

2 +
33

2
g3

4 + 4Bg4 + 15Bg3
2

)

.

(10.85)

Requiring N(1) = 1 leads to B = −(g4 + g3
2)/2, and we are left with

N(2) = g3 + h̄

(

3

2
g4g3 + g3

3

)

,

N(3) = g4 + 3g3
2 + h̄

(

3

2
g24 + 15g4g3

2 + 9g3
4

)

. (10.86)

Now, the one-loop contribution to the three-point function N(2) must not be
completely cancelled, since it contains the diagram

which has symmetry factor 1 and must be retained. We therefore add a coun-
terterm to the three-point coupling in the SDe:

Φ(J) =

(

J +
(g3 − h̄δ3)

2
Φ2 +

g4
6
Φ3 +

h̄

2
(g3 + g4Φ)Φ

′ − h̄T
)(

1 + h̄B

)

,

(10.87)
where the counterterm is needed only at one place since we are working to
one-loop accuracy. The result of the iteration is

N(2) = g3 + h̄

(

3

2
g4g3 + g3

3 − δ3
)

,

N(3) = g4 + 3g3
2 + h̄

(

3

2
g24 + 15g4g3

2 + 9g3
4 − 6δ3g3

)

. (10.88)

The condition now is that

N(2) = g3 + h̄g3
3 , (10.89)
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which requires δ3 = 3g4g3/2 to remove all elementaries E4, and leads to

N(3) = g4 + 3g3
2 + h̄

(

3

2
g4

2 + 6g4g3
2 + 9g3

4

)

. (10.90)

The same trick can be applied to the four-point coupling: the SDe is then

Φ(J) =

(

J +
(g3 − h̄δ3)

2
Φ2 +

(g4 − h̄δ4)
6

Φ3 +
h̄

2
(g3 + g4Φ)Φ

′ − h̄T
)(

1 + h̄B

)

,

(10.91)
which gives

N(3) = g4 + 3g3
2 + h̄

(

3

2
g4

2 + 6g4g3
2 + 9g3

4 − δ4
)

. (10.92)

For the four point coupling, we only want to retain the diagrams

, , and ,

which occur respectively 3,6, and 3 times. Therefore, δ4 = 3g4
2/2 removes all

occurrences of E5. With these choices, the SDe Eq.(10.91) can be iterated (and
truncated to one-loop order!) to give all diagrams that do not contain any of
the elementaries E1,...,5 as subdiagrams20.

For the 20-point gluonic amplitude we find that the number of diagrams
with symmetry factor unity is given by

N̂(19) = N0(19) + h̄M1(19) , M1(19) = 2013070318716871853439000 .
(10.93)

The total number of one-loop diagrams is therefore given by

N̂1(19) =M1(19) + 2
(

N1(19)−M1(19)
)

= 3786956883983530483726500 .
(10.94)

20The actual implementation of the approach described here in computer algebra mayhave
to be somewhat modified in the interest of speed : simply iterating Eq.(10.91) as it stands
may lead to unwieldily large expressions.
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In the table we give
the results for the am-
plitudes from two to
twenty external lines.
It is seen that the ratio
of one-loop to tree di-
agrams increases with
the number off exter-
nal legs ; while the
average symmetry fac-
tor per one-loop dia-
gram seems to slowly
approaches unity. It
can indeed be proven
that asymptotically it
does do so.

n+ 1 N0(n) N̂1(n)/N0(n) avg.symm.

2 1. 3. 0.5000
3 1. 14. 0.5357
4 4. 24.75 0.5758
5 25. 37.88 0.6066
6 220. 52.09 0.6309
7 2485. 67.47 0.6506
8 34300. 83.86 0.6672
9 5.594 105 101.2 0.6813
10 1.053 107 119.4 0.6936
11 2.244 108 138.5 0.7044
12 5.349 109 158.3 0.7140
13 1.409 1010 178.9 0.7226
14 4.064 1012 200.2 0.7305
15 1.274 1014 222.2 0.7376
16 4.315 1015 244.9 0.7441
17 1.569 1017 268.2 0.7502
18 6.101 1018 292.1 0.7558
19 2.525 1020 316.6 0.7609
20 1.108 1022 341.7 0.7658

The above strategy can of course be applied to other problems as well. For
instance, we may remove all one-loop three- and four point elementaries instead
of just those with symmetry factor one-half : in that case we are essentially
renormalising the theory. It should also be clear that in that case, in which we
just want to remove subdiagrams rather than count them, it is easy to go to
more loops in an order-by-order approach.
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10.6 Frustrated and unusual actions

10.6.1 Frustrating your neighbours

The one-dimensional action we have studied was based on ‘nearest-neighbour’
interactions. We can, of course, extend this treatment to include ‘next-to-
nearest-neighbour’ interactions as well. Let us take

S({ϕ}) =
∑

n

∆

[

1

2
µϕn

2 − γ1ϕnϕn+1 − γ2ϕnϕn+2

]

=
∑

n

∆

[

1

2
(µ− 2γ1 − 2γ2)ϕn

2 − 1

2
(γ1 + 4γ2)(ϕn+1 − ϕn)

2

− 1

2
γ2(ϕn+2 − 2ϕn+1 + ϕn)

2

]

, (10.95)

with the continuum behaviour of µ, γ1 and γ2 to be determined. We disre-
gard any other interactions since we shall only be interested in the propagator.
Setting up the SDe for the discrete propagator is trivial: we have

Π(n) =
h̄

µ
δn,0 + γ1

(

Π(n+ 1) + Π(n− 1)

)

+γ2

(

Π(n+ 2) + Π(n− 2)

)

, (10.96)

so that Fourier transformation gives us

Π(n) =
h̄

2iπ

∮

|u|=1

du
un−1

f(u)
,

f(u) = µ− γ1
(

u+
1

u

)

− γ2
(

u2 +
1

u2

)

. (10.97)

In the continuum limit, the only relevant poles of the integrand are those at
values of u such that |u| = 1−O (∆). Let uj (j = 1, 2, . . .) be these poles: then

Π(x) = h̄
∑

j

uj
|x|/∆

f ′(uj)
. (10.98)

Writing u = 1− v∆, we can approximate

f(u) = (µ− 2γ1 − 2γ2)− (γ1 + 4γ2)(v
2∆2 + v3∆3)

−(γ1 + 5γ2)v
4∆4 +O

(

∆2
)

. (10.99)

There are now two possible continuum limits. In the first case, we can assume
that γ1+4γ2 does not vanish. In that case, we can take γ1+4γ2 ∼ 1/∆, and the
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resulting continuum limit is indistinguishable from the nearest-neighbour case.
For later reference we shall denote this propagator by

P1(x) =
h̄

2m
exp(−m|x|) . (10.100)

The more curious solution is provided by the special choice γ1 = −4γ2. The
only sensible continuum limit in that case is to take

γ1 + 5γ2 ∼
1

∆3
→ γ1 ∼

4

∆3
, γ2 ∼ −

1

∆3
, (10.101)

and

µ = m4∆+ 2γ1 + 2γ2 ∼ m2∆+
6

∆3
. (10.102)

The poles of the integrand are therefore approximately given by

f(u) = ∆
(

m4 + v4
)

+O
(

∆2
)

= 0 , (10.103)

so that the solutions are

uk ≈ 1−∆m

(

1 + i√
2

)2k−3

, k = 1, 2, 3, 4 . (10.104)

Only u1 and u2 are inside the unit circle, and we obtain the propagator

Π(x) =
h̄

m3
√
8
exp

(−m|x|√
2

)(

cos

(

m|x|√
2

)

+ sin

(

m|x|√
2

))

,(10.105)

which we shall denote by P2(x): it has the interesting property that Π2(x) is
negative for mx between 3π/4 and 7π/4, modulo 2π. An discrete action such
as the one belonging to this continuum limit, in which nearest-neighbour and
next-to-nearest-neighbour couplings have opposite sign, are called frustrated21.
The continuum limit of the propagator can also be written as

P2(x) =
h̄

2π

∫

exp(ikx)

k4 +m4
dk , (10.106)

and that of the action reads

S[ϕ] =

∫ [

1

2
m4ϕ(x)2 +

1

2
ϕ′′(x)2

]

. (10.107)

10.6.2 Increasing frustration

It is quite possible to construct even more frustrated actions, as follows. Let us
suppose that the action is given by

S({ϕ}) =
∑

n





1

2
µϕn

2 −
p
∑

j=1

γjϕnϕn+j



 . (10.108)

21Frustrated in the sense that ‘not all couplings can have it their own way’.
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The propagator is given by Eq.(10.98), where now

f(u) = µ−
p
∑

j=1

γj

(

uj +
1

uj

)

. (10.109)

We shall now arrange for the only the highest possible power of 1−u to survive
in this expression. We first put u = exp(ik∆), so that the function f(u) becomes

f(u) = µ−
p
∑

j=1

2γj cos(jk∆) = µ−
∑

r≥0

(k∆)2r Br ,

Br ≡
p
∑

j=1

2(−)r
(2r)!

j2rγj . (10.110)

We now seek to find the γ’s such that

B1 = B2 = · · · = Bp−1 = 0 , Bp = − 1

∆2p−1
. (10.111)

In that case, we can take arbitrary constants cr, with cp = 1, and always have

p
∑

r=1

crBr =

p
∑

j=1

γjQ(j) = Bp , (10.112)

with

Q(j) =

p
∑

r=1

2(−)r
(2r)!

crj
2r . (10.113)

The polynomial Q(j) is even and of degree 2p in j, and Q(0) = 0. We can now,
for any preassigned q with 1 ≤ q ≤ p, choose the numbers cr such that

Q(0) = · · · = Q(q − 1) = Q(q + 1) = · · · = Q(p) = 0 , Q(q) 6= 0 , (10.114)

upon which

γq = Bp/Q(q) . (10.115)

Obviously, the polynomial Q(j) is given by

Q(j) =
2(−)p
(2p)!

∏

0 ≤ n ≤ p
n 6= q

(

j2 − n2

)

, (10.116)

from which we derive

γq =
(−)q−1(2p)!

∆2p−1(p− q)!(p+ q)!
, 1 ≤ q ≤ p . (10.117)
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The continuum limit of the propagator is, then

Πp(x) =
h̄

2π

∫

dk
exp(ikx)

k2p +m2p
(10.118)

The poles of the integrand are located at k = mωj , where

ωj = exp

(

iπ
2j + 1

2p

)

, j = 0, 1, 2, . . . , 2p , (10.119)

so that Cauchy integration gives

Πp(x) =
−ih̄

2pm2p−1

p
∑

j=0

ωj exp(iωjm|x|) . (10.120)

We may even investigate the limit p→∞: in that case we may approximate

1

k2p +m2p
≈
{

m−2p if −m < k < m
0 elsewhere

(10.121)

so that the propagator takes the form

Πp(x) ≈
h̄

2πm2p

m
∫

−m

dk exp(ikx) =
1

m2p−1π

sin(mx)

mx
. (10.122)

The propagators Πp(x) for
h̄ = m = 1, as a
function of x. The val-
ues of p are 1,2,5,10, and
also the asymptotic form
of Eq.(10.122) is plotted.
For large p the asymp-
totic form is approximated
smoothly.
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The higher the value of p, the more frustrated the lattice is, and the more
difficult it becomes for momentum modes with high wave number to propagate
through the lattice, as is evident from the Fourier form (10.118). For the totally
frustrated lattice, all wave numbers smaller than m propagate equally, and all
wave nubers larger than m do not propagate at all.
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10.7 Some techniques for one-loop diagrams

10.7.1 The ‘Feynman trick’

Consider n positive real numbers aj , j = 1..n. We can write

n
∏

j=1

1

aj
=

∞
∫

0

dz1 dz2 · · · dzn exp(−z1a1 − z2a2 − · · · − znan) (10.123)

In this integral, we may define s as the sum of the z’s, and define xj as zj/s, as
follows:

n
∏

j=1

1

aj
=

∞
∫

0

dz1 dz2 · · · dzn ds dx1 dx2 · · · dxn

× exp(−z1a1 − z2a2 − · · · − znan)
× δ(z1 + z2 + · · ·+ zn − s)
× δ

(

x1 −
z1
s

)

δ
(

x2 −
z2
s

)

· · · δ
(

xn −
zn
s

)

. (10.124)

We can now eliminate the z’s in favor of the x’s:

n
∏

j=1

1

aj
=

∞
∫

0

dx1 dx2 · · · dxn ds

× sn−1 exp

(

− s(x1a1 + x2a2 + · · ·+ xnan)

)

× δ(x1 + x2 + · · ·+ xn − 1) . (10.125)

A last integral over s then gives us the formula known as the Feynman trick:

n
∏

j=1

1

aj
= Γ(n)

1
∫

0

dx1 dx2 · · · dxn
(

x1a1 + x2a2 + · · ·+ xnan

)−n

× δ(x1 + x2 + · · ·+ xn − 1) . (10.126)

For example,

1

a1 a2
=

1
∫

0

dx
1

(

xa1 + (1− x)a2
)2 . (10.127)

10.7.2 A general one-loop integral

We shall compute the integral

I =

∫

dDq

(2π)D
|~q|n

(|~q|2 + a2)m
(10.128)
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in the spirit of dimensional regularization. That is, we shall assume that D, n
and m are such that the integral converges: where it does not, we define the
integral by analytical continuation from the convergence region. The number a2

is not necessarily a positive real number, but again we shall reach other values
for a2 by analytical continuation from positive real values.

In the first place, by scaling the vector ~q by a factor
√
a2 we find that

I = aD+n−2mI ′ , I ′ =

∫

dDq

(2π)D
|~q|n

(|~q|2 + 1)m
. (10.129)

Next, we compute WD(t), the number of D-dimensional Euclidean vectors ~q of
a given length t, as follows:

WD(t) =

∫

dDq δ(|~q| − t)

= 2t

∫

dDq δ(|~q|2 − t2)

= 2t

∫

dq1 dq2 · · · dqD δ
(

(q1)2 + (q2)2 + · · ·+ (qD)2 − t2
)

= (2t)2D
∞
∫

0

dq1 dq2 · · · dqD δ
(

(q1)2 + (q2)2 + · · ·+ (qD)2 − t2
)

= 2tD+1

∞
∫

0

dy1 · · · dyD y1
−1/2 · · · yD−1/2 δ

(

t2(y1 + · · · yD − 1)
)

= 2tD−1
Γ(1/2)D

Γ(D/2)
= 2tD−1

πD/2

Γ(D/2)
, (10.130)

where we have written qj = yj
1/2t, and used Euler’s formula of sect.(10.7.3).

Hence,

I ′ =
1

(4π)D/2Γ(D/2)
I ′′ , I ′′ =

∞
∫

0

du
u(D+n)/2−1

(u+ 1)m
, (10.131)

where we have used u = t2. Another application of Euler’s formula gives us

I ′′ =

∞
∫

1

du u−m (u− 1)(D+n)/2−1 =

1
∫

0

du um−2
(

1

u
− 1

)(D+n)/2−1

=

1
∫

0

du um−1−(D+n)/2 (1− u)(D+n)/2−1

=
Γ (m− (D + n)/2)Γ ((D + n/2)

Γ(m)
. (10.132)
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We arrive at the general formula

∫

dDq

(2π)D
|~q|n

(|~q|2 + a2)m
= aD+n−2m Γ

(

m− D+n
2

)

Γ
(

D+n
2

)

(4π)D/2 Γ
(

D
2

)

Γ(m)
. (10.133)

In the special case m = 2, n = 0 and D = 4− 2ǫ, with infinitesimally small
ǫ, we find

∫

dDq

(2π)D
1

(|q|2 + a2)2
=

a−2ǫ Γ(ǫ)

(4π)2−ǫ Γ(2)

=
1

(4π)2
(

1− ǫ log(a2) + · · ·
)

(1− ǫ log(4π) + · · ·)
(

1

ǫ
− γE + · · ·

)

=
1

(4π)2

(

1

ǫ
− γE − log(4π)− log(a2) +O (ǫ)

)

, (10.134)

where we have used

Γ(ǫ) =
1

ǫ
Γ(1 + ǫ) =

1

ǫ

(

1− ǫγE +O
(

ǫ2
))

, (10.135)

and γE ≈ 0.577216 is Euler’s constant.
Another curious feature of dimensional regularization is that of a → 0. For

D + n− 2m > 0, we find that the integral vanishes: for instance,
∫

d4−2ǫq =

∫

d4−2ǫq |~q|2 = d4−2ǫq
1

|~q|2 = 0 , (10.136)

whereas in particular the last integral appears to be divergent both for small
and large values of |~q|.

10.7.3 Euler’s formula

Consider the following identity:

n
∏

j=1

Γ(mj + 1) =

∞
∫

0

dz1 dz2 · · · dzn z1m1 z2
m2 · · · znmn exp(−z1 − z2 − · · · − zn) .(10.137)

In this integral, we employ the same technique as in sect.(10.7.1):

n
∏

j=1

Γ(mj + 1) =

∞
∫

0

dz1 dz2 · · · dzn ds dx1 dx2 · · · dxn
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× z1m1 z2
m2 · · · znmn exp(−z1 − z2 − · · · − zn)

× δ(z1 + z2 + · · ·+ zn − s)
× δ

(

x1 −
z1
s

)

δ
(

x2 −
z2
s

)

· · · δ
(

xn −
zn
s

)

. (10.138)

Eliminating the z’s in favor of the x’s gives

n
∏

j=1

Γ(mj + 1) =

∞
∫

0

ds dx1 · · · dxn sm1+···+mn+n−1 e−s

× x1m1 · · ·xnmn δ(x1 + · · ·+ xn − 1) , (10.139)

and the final integral over s results in Euler’s formula:

1
∫

0

dx1 · · · dxn x1m1 · · ·xnmnδ(x1 + · · ·+ xn − 1) =

Γ(m1 + 1)Γ(m2 + 1) · · ·Γ(mn + 1)

Γ(m1 +m2 + · · ·+mn + n)
. (10.140)
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10.8 The fundamental theorem for Dirac matri-

ces

10.8.1 Proof of the fundamental theorem

In this appendix we prove the following statement : if we have two sets of four
matrices, γµ and γ̂µ (µ = 0, 1, 2, 3) , satisfying Dirac’s anticommutation relation
:

γµ γν + γν γµ = 2 gµν , γ̂µ γ̂ν + γ̂ν γ̂µ = 2 gµν , (10.141)

then there is a matrix S such that

γ̂µ = S γµ S−1 . (10.142)

To this end, we first set up a basis of the Clifford algebra as follows :

Γ0 = 1 , Γ1 = γ0 , Γ2 = iγ1 , Γ3 = iγ2 , Γ4 = iγ3 ,

Γ5 = γ0γ1 , Γ6 = γ0γ2 , Γ7 = γ0γ3 , Γ8 = iγ1γ2 ,

Γ9 = iγ1γ3 , Γ10 = iγ2γ3 , Γ11 = iγ0γ1γ2 , Γ12 = iγ0γ1γ3 ,

Γ13 = iγ0γ2γ3 , Γ14 = γ1γ2γ3 , Γ15 = iγ0γ1γ2γ3 , (10.143)

which we denote by Γk, k = 0, 1, 2, . . . , 15 ; and using the γ̂µ we construct an
analogous set Γ̂k in the same way. These have a few interesting properties. In
the first place, Γk

2 = 1 for all k. Secondly, for every pair j and k there is a
number n such that

Γj Γk = cn Γn , n = 1,−1, i or − i. (10.144)

From these properties it follows that simultaneously

Γk Γj =
1

cn
Γn (10.145)

We can thus construct the multiplication table given below22 , where the possible
values of j define the rows, and those for k the columns: the corresponding entry
is then the value of n. For instance,

Γ6 Γ4 = Γ13

(in this case c13 happens to be 1).

22Kids! Don’t do this at home, since constructing this multiplication table is extremely
tedious. The numbers cn are not given: they are anyhow only defined up to a sign, since we
can always replace Γj by −Γj (using γ2γ0 instead of γ0γ2, say) without changing the Dirac
anticommutation relation.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 5 6 7 2 3 4 11 12 13 8 9 10 15 14
2 2 5 0 8 9 1 11 12 3 4 14 6 7 15 10 13
3 3 6 8 0 10 11 1 13 2 14 4 5 15 7 9 12
4 4 7 9 10 0 12 13 1 14 2 3 15 5 6 8 11
5 5 2 1 11 12 0 8 9 6 7 15 3 4 14 13 10
6 6 3 11 1 13 8 0 10 5 15 7 2 14 4 12 9
7 7 4 12 13 1 9 10 0 15 5 6 14 2 3 11 8
8 8 11 3 2 14 6 5 15 0 10 9 1 13 12 4 7
9 9 12 4 14 2 7 15 5 10 0 8 13 1 11 3 6
10 10 13 14 4 3 15 7 6 9 8 0 12 11 1 2 5
11 11 8 6 5 15 3 2 14 1 13 12 0 10 9 7 4
12 12 9 7 15 5 4 14 2 13 1 11 10 0 8 6 3
13 13 10 15 7 6 14 4 3 12 11 1 9 8 0 5 2
14 14 15 10 9 8 13 12 11 4 3 2 7 6 5 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note that in this table every row and every column contains each of the numbers
from 0 to 15 precisely once. Hence, if we keep j fixed and let k run from 0 to
15, the value of n will also take on all values from 0 to 15 (although generally
in a different order). Obviously, for the set Γ̂ exactly the same multiplication
table holds.

We are now ready to prove the theorem. Let A be an arbitrary matrix, and
define S by

S ≡
15
∑

k=0

Γ̂k A Γk . (10.146)

This has the desired property since

Γ̂j S Γj =

15
∑

k=0

Γ̂j Γ̂k A Γk Γj

=

15
∑

n=0

cn Γ̂n A
1

cn
Γn = S , (10.147)

in other words,

Γ̂j S = S Γj . (10.148)

It remains to ensure that the matrix S actually has an inverse. Since A can be
chosen at will (except F = 0) this is not a problem. Let us pick another matrix
B and construct

T =

15
∑

k=0

Γk B Γ̂k . (10.149)
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For this matrix we obviously have

Γj T = T Γ̂j . (10.150)

Combining Eq.(10.148) and (10.150) we see that the product TS commutes with
Γj (and the product ST commutes with Γ̂j). Therefore TS is proportional to
the unit matrix and we can adjust the elements of B such that T = S−1.

It is an interesting observation that the dimensionality of the γµ and that
of the γ̂µ does not have to be the same. In that case the matrices A and B are
simply not square matrices but have different numbers of rows and columns.

10.8.2 The charge conjugation matrix

An application of the fundamental theorem is the following. The anticommuta-
tion relation, if satisfied by the Dirac matrices γµ, is automatically also satisfied
by the matrices −(γµ)T where T stands for the transpose. There exists, there-
fore, a matrix C such that

γ̂µ = C γµ C−1 = −(γµ)T . (10.151)

This is called the charge conjugation matrix. In the representation given in
section 5.3.1, we have

γ̂0 = −γ0 , γ̂1 = γ1 , γ̂2 = −γ2 , γ̂3 = γ3 ; (10.152)

and we see that a good choice is

C = C−1 = γ0γ2 . (10.153)

Since this form is not proof against change of representation, the use of the
charge conjugation matrix in arguments and derivations lacks somewhat in ele-
gance.
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10.9 Dirac projection operators

10.9.1 Dirac projection operators

Formulation of the problem

The challenge discussed in this section is the following: given an element Π of
the Clifford algebra that satisfies

Π = Π , Π2 = Π , (10.154)

what is its generic form ? In addition, can we find several such elements Πj ,
j = 1, 2, . . . , n that decompose unity, that is,

ΠjΠk = δj,k Πj ,

n
∑

j=1

Πj = 1 ? (10.155)

If we can find solutions, then we see that the smallest possible size of the Dirac
matrices is n×n : also, we may be able to construct an operator that can serve
as the numerator of the Dirac propagator, with the understanding that it will
be (a) a projection operator of the type (10.154) on the mass shell, and (b)
dependent only on the particle’s momentum, in order to ensure that all degrees
of freedom propagate in the same manner. It is evident that any uniqueness
of the possible solutions corresponds directly to the uniqueness of the Dirac
equation.

The equivalence transform

It must be remembered that we may discuss the propagator of a free Dirac par-
ticle without reference to any of its interactions whatsoever. Therefore we may
encounter the situation where two or more different forms of the propagator are
possible, that result in exactly the same physics simply because the different
alternatives can be transformed into one another by a change in the particle’s
interactions. We adopt the following position: if there are two projection op-
erators of the type (10.154), Π and Π′, say, that can be transformed into one
another by means of a Clifford element Σ :

Π′ = Σ Π Σ , ΣΣ = 1 , (10.156)

where Σ depends only on the particle momentum23, the two alternatives Π and
Π′ will be deemed equivalent.

10.9.2 The first regular case

We may write a putative solution in the general form

Π =
1

4

(

(2 − S) + /p+ γ5/q + iPγ5 + Tαβσ
αβ
)

, (10.157)

23In order to avoid the situation where the different degrees of freedom propagate differently
after all.
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where S, pµ, qµ and P are real, and T µν is real and antisymmetric. The re-
quirement is now that N ≡ Π2 − Π vanish, and so its trace with any Clifford
element must also vanish. We can immediately find

2Tr
(

γ5/pN
)

= (p · q)S , 2Tr
(

(γ5/q − /p)N
)

= (p2 + q2)S . (10.158)

There are now several possibilities, the first of which is the regular case : it is
the case where S 6= 0 and p2 6= 0. We see that it implies that q2 = −p2 and
p · q = 0, so that p and q are linearly independent and one of them must be
timelike. In that case we may form a Vierbein by finding two additional vectors
e1,2

µ with
p · e1,2 = q · e1,2 = e1 · e2 = 0 , e1,2

2 = −1 , (10.159)

so that the tensor T can be decomposed24 as follows:

Tαβ = cpqp
[αqβ] + c12e1

[αe2
β] +

∑

j=1,2

(

cpjp
[αej

β] + cqjq
[αej

β]
)

, (10.160)

where the coefficients are all real and the square brackets indicate antisym-
metrization over the indices. We can now find two more conditions:

1

p2S
Tr ((cp1p

µe1
ν − cq2qµe2ν)σµνN) = cp1

2 + cq2
2 ,

1

p2S
Tr ((cp2p

µe2
ν − cq1qµe1ν)σµνN) = cp2

2 + cq1
2 , (10.161)

which tells us that cp1 = cp2 = cq1 = cq2 = 0. The tensorial part can therefore
only consist of /p/q and /pγ5/q, and we may write

Π =
1

4

(

(2 − S) + /p+ γ5/q + iPγ5 + ia/p/q + b/pγ5/q
)

(10.162)

with a and b real. Then, the results

− 2

p2
Tr (/pN) = S − p2b , 2iTr

(

γ5N
)

= SP + p4ab (10.163)

fix the values of a = −P/p2 and b = S/p2. Continuing, we evaluate

− 1

p2
ǫαβµνp

αqβTr (σµνN) = S2 + P 2 − p2 , (10.164)

which proves that pµ must actually be the timelike vector, and fixes |P |. Using
all the relations obtained, we finally have

Tr (N) = S2 − 1 , (10.165)

which tells us that if S 6= 0 we can take S = 1 (without loss of generality since
both Π and 1− Π satisfy Eq.(10.154)), and we must have p2 ≥ 1. The generic

24No matter that the vectors e1,2 are not unambiguous : the point is that a decompisition
is possible.
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form of Π in the regular case can be written as follows. We have an angle χ
such that p2 = cosh(χ)2 and P = sinh(χ), and two vectors kµ and sµ such that
k ·k = 1, s · s = −1 and k · s = 0; then pµ = cosh(χ)kµ and qµ = cosh(χ)sµ, and

Π(α, β) =
1

4

(

1 + αβ/kγ5/s+ α
[

cosh(χ)/k + i sinh(χ)γ5
]

+β
[

cosh(χ)γ5/s− i sinh(χ)/k/s
])

. (10.166)

The two parameters α and β satisfy α, β = ±1, and we have introduced them
here since the set of four elements Π(1, 1), Π(1,−1), Π(−1, 1) and Π(−1,−1)
satisfy Eq.(10.155). The situation can be simplified further by the use of the
equivalence transform based on

Σ = cosh(χ/2)− i sinh(χ/2)γ5/k : (10.167)

the equivalent form is then given by the simpler

Π(α, β) =
1

4

(

1 + α/k
) (

1 + βγ5/s
)

. (10.168)

The only possible way to relate this projection operator to a massive on-shell
Dirac particle of mass m and momentum pµ is to choose kµ = pµ/m, while sµ

then embodies the remaining (spin) degree of freedom. The final result is the
well-known Dirac form

Π(α, β) =
1

4m

(

m+ α/p
) (

1 + βγ5/s
)

,

p · p = m2 , s · s = −1 , p · s = 0 , α, β = ± . (10.169)

Obviously, the sum of any two or three of the above projection operators is also
a resolution to our quest.

10.9.3 Irregular cases

First irregular case

Let us now assume that, in Eq.(10.158), S 6= 0 and pµ 6= 0 but p2 = 0. In that
case qµ must be proportional to pµ, and we write qµ = c pµ. Now the trace

−2Tr (γµN) = Spµ + cǫρµαβp
ρTαβ (10.170)

proves that both T and c must be nonzero. Then, the relation

−
(

Sgµκgνλ + Pǫµνκλ
)

Tr (σµνN) = T κλ
(

S2 + P 2
)

(10.171)

shows that no solution is possible in this case since T must vanish.
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Second irregular case

Let us now assume S 6= 0 and pµ = 0. From

2Tr
(

γ5γµN
)

= S qµ (10.172)

we find that also q must vanish. Eq.(10.171) then says that the tensorial term
must also be absent, upon which

2iTr
(

γ5N
)

= SP (10.173)

proves that also P = 0. The only possibilities left are the trivial ones Π = 1
and Π = 0.

10.9.4 The second regular case

We have now examined all consequences of the assumption S 6= 0. The remain-
ing case S = 0 gives a projection operator that can be written as

Π =
1

2

(

1 + /p+ γ5/q + iPγ5 + Tαβσ
αβ
)

. (10.174)

The relation

−1

8
ǫµνκλ Tr (σµνN) = PT κλ − 1

2

(

qκpλ − pκqλ
)

(10.175)

allows us to distinguish two cases, P = 0 and P 6= 0.

The case P 6= 0

In this case the vectors p and q are not necessarily related to one another. The
projection operator reads

Π =
1

2

(

1 + /p+ γ5/q − i

2P
(/p/q − /q/p) + iPγ5

)

, (10.176)

under the single condition (from Tr (N)) that

1

P 2

(

p2q2 − (p · q)2
)

+ p2 − q2 − P 2 = 1 . (10.177)

Now, we can always find a vector rµ with p · r = q · r = 0 and r2 = −1. The
equivalence transform

Σ =
1√
2

(

1− iγ5/r
)

(10.178)

will then eliminate both the axial-vector and the pseudoscalar term, so that we
actually arrive at a special case of the situation for P = 0.
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The case P = 0

In this case p and q must be proportional to one another. The projection
operator then takes the form25

Π =
1

2

(

1 + a/k + bγ5/k + i/k/r
)

, (10.179)

with k2 = ±1 or 0, k · r = 0, and a, b real. The single condition that can be
found is

k2(a2 − b2 + r2) = 1 , (10.180)

so that k2 cannot vanish.

Now, assume that k2 = +1. The equivalence transforn

Σ =
1√
2
(1− i/k) (10.181)

then eliminates the axial-vector and tensorial term at the cost of introducing a
pseudoscalar one, and we find the equivalent form26

Π =
1

2

(

1 + c/k + iPγ5
)

, k2 = 1 , c2 = 1 + P 2 , (10.182)

in other words, there is an angle α such that

Π =
1

2

(

1 + cosh(α)/k + i sinh(α)γ5
)

. (10.183)

The equivalence transform

Σ = cosh(α/2)− i sinh(α/2)γ5/k (10.184)

then suffices to produce the equivalent form

Π =
1

2
(1 + /k) , (10.185)

which we recognize as the combination Π(1, 1)+Π(1,−1) of the first regular case.

The remaining alternative is that the vector kµ of Eq.(10.179) obeys k2 =
−1. Now the equivalence transform

Σ =
1√
2

(

1− iγ5/k
)

(10.186)

gives27

Π =
1

2

(

1 + cosh(α)γ5/k + i sinh(α)γ5
)

, k2 = −1 (10.187)

25This is most easily imagined by letting q become parallel to p as P diminishes towards
zero.

26Here, kµ has be redefined, but still k2 = +1.
27Again, under redefinition of k with k2 = −1.
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The next equivalence transform,

Σ = cosh(α/2) + i sinh(α/2)γ5/k (10.188)

produces the final form

Π =
1

2

(

1 + γ5/k
)

, (10.189)

that is included in the first regular case as Π(1, 1) + Π(−1, 1).

10.9.5 Conclusions

We have established the following results:

• The finest decomposition of the unity in Clifford space is that into the
four projection operators given in Eq.(10.169);

• Consequently, the smallest possible size of the Dirac matrices is 4× 4;

• The Dirac equation in its well-known form is in fact the only possible one,
up to equivalence transforms that may obscure, but cannot change, the
physics since the interaction vertices can always compensate.

It must be noticed that, in the ‘second regular case’ we have been cavalier in
accepting equivalence transformations without determining that they depend
only on the particle momentum. In fact, since in that case we have S = 0 the
unity is decomposed into two sectors, Π and 1−Π, and so we may feel confident
that, whatever degrees of freedom are propagating, they will do so identically.
The real requirement of momentum-only dependence resides in the ‘first regular
case’.
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10.10 States of higher integer spin

10.10.1 The spin algebra for integer spins

In this Appendix we shall consider systems of spinning particles with arbitrary
integer spin. Such particles states can be represented, in the Feynman rules, as
tensors of some rank r :

|s,m〉µ1µ2µ3···µr

where s stands for the total spin of the particle, and m denotes the spin along
some quantization axis, for which we shal take the z direction here. That is,
once we have found the correct operators of the spin algebra

(Sx,y,z)
µ1µ2···µr

ν1ν2···νr
and (S2)µ1µ2···µr

ν1ν2···νr

Then we have, by definition,

(S2)µ1µ2···µr

ν1ν2···νr
|s,m〉ν1ν2···νr = h̄2 s(s+ 1) |s,m〉µ1µ2···µr ,

(Sz)
µ1µ2···µr

ν1ν2···νr
|s,m〉ν1ν2···νr = h̄m |s,m〉µ1µ2···µr . (10.190)

It is easy to see that the spin algebra is correctly constructed once we have
raising and lowering operators

(S±)
µ1µ2···µr

ν1ν2···νr
, S− = (S+)

†
,

with
[[S+, S−], S+] = 2h̄2 S+. (10.191)

We can then find the other algebra elements via

Sx =
1

2

(

S+ + S−
)

, Sy =
1

2i

(

S+ − S−
)

, Sz =
1

2h̄
[S+, S−] ,

S2 =
1

2

{

S+, S−
}

+ (Sz)
2 . (10.192)

We will start with particles in their rest frame28. The spin representations are
built using four unit vectors, with obvious notation, as tµ, xµ, yµ and zµ, which
obey

t · t = 1 , x ·x = y ·y = z ·z = −1 , t ·x = t ·y = t ·z = x ·y = x ·z = y ·z = 0 .
(10.193)

Things will become easier if we also define

x±
µ =

1√
2

(

xµ ± i yµ
)

(10.194)

so that

x± · x± = 0 , x+ · x− = −1 , x± · z = x± · t = 0 . (10.195)

28This implies that the particles are massive. For massless partices, see later on.
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Since the spin of a particle informs us about its behaviour under rotations in
the three-dimensional spacelike part of Minkowski space, we always require, for
particles in their rest frame,

|s,m〉µ1µ2···µr tµj
= 0 , j = 1, 2, . . . , r . (10.196)

This means that the appropriate tensors in fact contain only the three vectors
x+, x−, and z ; for instance the rank-4 tensor |s,m〉µ1µ2µ3µ4 may contain a term
x+

µ1x−
µ2zµ3x+

µ4 . In general, the particle’s tensor is a linear combination of
such terms : which precise linear combination it is depends on s and m, and
this is what we want to look into.

10.10.2 Rank one for spin one

The simplest nontrivial case is that of a rank-1 tensor, that is, a vector. We
have already considered these in Chapter 6. We can define

|1, 1〉µ = x+
µ , |1, 0〉µ = zµ , |1,−1〉µ = −x−µ , (10.197)

so that

〈1, 1|µ = x−
µ , 〈1, 0|µ = zµ , 〈1,−1|µ = −x+µ . (10.198)

For brevity, we shall use the easily interpretable notation

|1, 1〉 = |+〉 , |1, 0〉 = |0〉 , |1,−1〉 = − |−〉 . (10.199)

These states are properly normalized, since

〈1,m1|1,m2〉 = 〈1,m1|µ |1,m2〉µ = − δm1,m2 . (10.200)

In addition, the states are complete in the sense that

∑

λ=+,−,0

|1, λ〉µ 〈1, λ|ν = tµtν − δµν ≡ ∆µ
ν . (10.201)

Note that
∆µα ∆αν = −∆µ

ν , ∆µ
µ = −3 . (10.202)

We now proceed to set up the spin algebra. A general raising operator can
always be written in the form

S+ =
√
2h̄

(

a |+〉 〈0|+ b |0〉 〈−|
)

, (10.203)

where a and b are some complex numbers ; and so

S− =
√
2h̄

(

a∗ |0〉 〈+|+ b∗ |−〉 〈0|
)

. (10.204)
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From

S+S− = −2h̄2
(

|a|2 |+〉 〈+|+ |b|2 |0〉 〈0|
)

,

S−S+ = −2h̄2
(

|a|2 |0〉 〈0|+ |b|2 |−〉 〈−|
)

, (10.205)

we find that to get the correct form of Sz we have to take |a| = |b| = 1, since
only then29

Sz = −h̄
(

|+〉 〈+| − |−〉 〈−|
)

; (10.206)

furthermore, we find automatically

S2 = −2h̄2
(

|+〉 〈+|+ |0〉 〈0|+ |−〉 〈−|
)

, (10.207)

which shows that we have here indeed a spin-one system. For reasons that will
become clear later on we shall choose a = −1 and b = 1. Thus,

S+ |+〉 = 0 , S+ |0〉 =
√
2h̄ |+〉 , S+ |−〉 = −

√
2h̄ |0〉 . (10.208)

In more explicit tensorial language, we have the following matrix forms :

S+
µ
ν =

√
2h̄

(

−x+µzν + zµx+ν

)

,

S−
µ
ν =

√
2h̄

(

−zµx−ν + x−
µzν

)

,

Sz
µ
ν = h̄

(

−x+µx−ν + x−
µx+ν

)

,

S2µ
ν = −2h̄2

(

x+
µx−ν + x−

µx+ν + zµzν

)

. (10.209)

10.10.3 Rank-2 tensors

By taking tensor products of vectors we can build more complicated systems.
Let us attempt rank-2 tensors. We can easily construct the spin algebra for this
system as follows :

Σj
µν

αβ = Sj
µ
αδ

ν
β + δµαSj

ν
β , j = +,−, z , (10.210)

and it is easily checked that these also obey the correct commutation relations

[Σ+,Σ−] = 2h̄Σz , [Σz,Σ+] = h̄Σ+ ; (10.211)

29Do not be confused with the overall minus signs emerging here ! Remember that the
states are normalized to minus unity. This is a consequence of our dealing with spacelike
objects in an essentially Minkowski space.
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the operator for the total spin is of course

Σ2µν
αβ = S2µ

αδ
ν
β + δµαS

2ν
β + S+

µ
αS−

ν
β + S−

µ
αS+

ν
β + 2Sz

µ
αSz

ν
β .

(10.212)
There is precisely one rank-2 tensor with a spin 2h̄ along the z axis : it is the
tensor product

|2, 2〉µν = |1, 1〉µ |1, 1〉ν = x+
µx+

ν ≡ |++〉 , (10.213)

with obvious notation. It is straightforward to check that the total spin of this
object is, indeed, equal to 2h̄. By applying the lowering operator as given in
Eq.(10.210), and normalizing, we can immediately recover the other states in
the spin-2 sector :

|2, 2〉 = |++〉 ,

|2, 1〉 =

(

|+0〉+ |0+〉
)

/
√
2 ,

|2, 0〉 =

(

− |+−〉 − |−+〉+ 2 |00〉
)

/
√
6 ,

|2,−1〉 =

(

− |−0〉 − |0−〉
)

/
√
2 ,

|2,−2〉 = |−−〉 . (10.214)

These five objects are totally symmetric. They are also traceless in the sense
that |2,m〉µν gµν = 0 ; this is due to our choice for the constants a and b made
above. The one object made up from |+0〉 and |0+〉 that is orthonormal to |2, 1〉
is |+0〉 − |0+〉, which forms the basis of a spin-1 sector :

|1, 1〉 =

(

|+0〉 − |0+〉
)

/
√
2 ,

|1, 0〉 =

(

|−+〉 − |+−〉
)

/
√
2 ,

|1,−1〉 =

(

|−0〉 − |0−〉
)

/
√
2 . (10.215)

Finally, one single state is left :

|0, 0〉 =
(

|+−〉+ |−+〉+ |00〉
)

/
√
3 , (10.216)

which upon inspection is seen to have zero spin. The orthonormality of these
nine states is easily checked. Some simple algebra also tells us that

2
∑

m=−2

|2,m〉µν 〈2,m|αβ =
1

2
∆µ

α ∆ν
β +

1

2
∆µ

β ∆
ν
α −

1

3
∆µν ∆αβ ,
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1
∑

m=−1

|1,m〉µν 〈1,m|αβ =
1

2
∆µ

α ∆ν
β −

1

2
∆µ

β ∆
ν
α ,

|0, 0〉µν 〈0, 0|αβ =
1

3
∆µν ∆αβ , (10.217)

so that there is a completeness relation of the form

2
∑

s=0

s
∑

m=−s

|s,m〉µν 〈s,m|αβ = ∆µ
α ∆ν

β . (10.218)

This confirms that no states have been overlooked.

10.10.4 Rank-3 tensors

For the sake of illustration we also give the complete set of rank-3 tensorial
states. These fall apart in one spin-3, two spin-2, three spin-1 and a single spin-
0 sector, giving the correct total of 27 possible orthonormal states, listed below.
For reasons of typography I have left out the normalizing denominators ; these
can of course be trivially recovered.

spin-3 :

|3, 3〉 = |+++〉
|3, 2〉 = |++ 0〉+ |+0+〉+ |0 + +〉
|3, 1〉 = 2 |+00〉+ 2 |0 + 0〉+ 2 |00+〉

− |++−〉 − |+−+〉 − |−++〉
|3, 0〉 = 2 |000〉 − |+0−〉 − |0−+〉 − |−+ 0〉

− |−0+〉 − |+ − 0〉 − |0 +−〉
|3,−1〉 = |+−−〉+ |−+−〉+ |− − +〉

−2 |−00〉 − 2 |0− 0〉 − 2 |00−〉
|3,−2〉 = |− − 0〉+ |−0−〉+ |0−−〉
|3,−3〉 = − |− −−〉

spin-2(1) :

|2, 2〉 = |+0+〉+ |0 + +〉 − 2 |++ 0〉
|2, 1〉 = 2 |00+〉 − |+−+〉 − |−++〉

− |+00〉 − |0 + 0〉+ 2 |++−〉
|2, 0〉 = |+0−〉+ |0 +−〉 − |−0+〉 − |0−+〉
|2,−1〉 = 2 |00−〉− |+−−〉 − |−+−〉

− |0− 0〉 − |−00〉+ 2 |− −+〉
|2,−2〉 = 2 |− − 0〉 − |0−−〉 − |−0−〉

spin-2(2) :

|2, 2〉 = |+0+〉 − |0 + +〉
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|2, 1〉 = |+00〉 − |0 + 0〉 − |+−+〉+ |−++〉
|2, 0〉 = − |0−+〉+ |−0+〉 − |+0−〉

+ |0 +−〉 − 2 |+− 0〉+ 2 |−+ 0〉
|2,−1〉 = |+−−〉 − |−+−〉+ |−00〉 − |0− 0〉
|2,−2〉 = |0−−〉 − |−0−〉

spin-1(1) :

|1, 1〉 = 6 |++−〉+ 3 |0 + 0〉+ 3 |+00〉
+ |+−+〉+ |−++〉 − 2 |00+〉

|1, 0〉 = 3 |0 +−〉+ 3 |+0−〉+ 3 |−0+〉
+3 |0−+〉 − 2 |+− 0〉 − 2 |−+ 0〉+ 4 |000〉

|1,−1〉 = 2 |00−〉 − 3 |−00〉 − 3 |0− 0〉
− |+−−〉 − |−+−〉 − 6 |− −+〉

spin-1(2) :

|1, 1〉 = |+00〉 − |0 + 0〉+ |+−+〉 − |−++〉
|1, 0〉 = |0 +−〉 − |+0−〉+ |0−+〉 − |−0+〉
|1,−1〉 = |+−−〉 − |−+−〉+ |0− 0〉 − |−00〉

spin-1(3) :

|1, 1〉 = |+−+〉+ |−++〉+ |00+〉
|1, 0〉 = |+− 0〉+ |−+ 0〉+ |000〉
|1,−1〉 = |+−−〉+ |−+−〉+ |00−〉

spin-0 :

|0, 0〉 = |+− 0〉+ |−0+〉+ |0 +−〉
− |0−+〉 − |+0−〉− |−+ 0〉 (10.219)

Note that the spin-0 state is totally antisymmetric : obviously, this is the only
possible such state in three space dimensions. We can also compute the ‘partial’
completeness relations pertaining to each spin sector. Some algebra teaches us
that these are the following set of mutually orthogonal projection operators :

spin-3 :

3
∑

m=−3

|3,m〉µνρ 〈3,m|αβγ =

1

6

(

∆µ
α∆

ν
β∆

ρ
γ +∆µ

β∆
ν
γ∆

ρ
α +∆µ

γ∆
ν
α∆

ρ
β

+∆µ
β∆

ν
α∆

ρ
γ +∆µ

α∆
ν
γ∆

ρ
β +∆µ

γ∆
ν
β∆

ρ
α

)

− 1

15

(

∆µν
(

∆ρ
α∆βγ +∆ρ

β∆γα +∆ρ
γ∆αβ

)

+ ∆νρ
(

∆µ
α∆βγ +∆µ

β∆γα +∆µ
γ∆αβ

)
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+ ∆ρµ
(

∆ν
α∆βγ +∆ν

β∆γα +∆ν
γ∆αβ

)

)

spin-2(1) :

2
∑

m=−2

|2,m〉µνρ 〈2,m|αβγ =

1

3

(

∆µ
α∆

ν
β +∆ν

α∆
µ
β

)

∆ρ
γ

−1

6

(

(

∆µ
β∆

ν
γ +∆ν

β∆
µ
γ

)

∆ρ
α +

(

∆µ
α∆

ν
γ +∆ν

α∆
µ
γ

)

∆ρ
β

)

+
1

6
∆µν

(

∆ρ
α∆βγ +∆ρ

β∆αγ

)

+
1

6

(

∆µρ∆ν
γ +∆νρ∆µ

γ

)

∆αβ

− 1

12

(

∆µρ∆ν
α∆βγ +∆µρ∆ν

β∆αγ +∆νρ∆µ
α∆βγ +∆νρ∆µ

β∆αγ

)

−1

3
∆µν∆ρ

γ∆αβ

spin-2(2) :

2
∑

m=−2

|2,m〉µνρ 〈2,m|αβγ =

1

3

(

∆µ
α∆

ν
β −∆ν

α∆
µ
β

)

∆ρ
γ

+
1

6

(

∆µ
γ∆

ν
β∆

ρ
α −∆µ

γ∆
ν
α∆

ρ
β −∆ν

γ∆
µ
β∆

ρ
α +∆ν

γ∆
µ
α∆

ρ
β

)

+
1

4

(

∆µρ∆ν
α∆βγ −∆µρ∆ν

β∆αγ −∆νρ∆µ
α∆βγ +∆νρ∆µ

β∆αγ

)

spin-1(1) :

1
∑

m=−1

|1,m〉µνρ 〈1,m|αβγ =

1

15
∆µν∆ρ

γ∆αβ

− 1

10
∆µν

(

∆ρ
α∆βγ +∆ρ

β∆αγ

)

− 1

10

(

∆µρ∆ν
γ +∆νρ∆µ

γ

)

∆αβ

+
3

20

(

∆µρ∆ν
α∆βγ +∆µρ∆ν

β∆αγ +∆νρ∆µ
α∆βγ +∆νρ∆µ

β∆αγ

)

spin-1(2) :

1
∑

m=−1

|1,m〉µνρ 〈1,m|αβγ =
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−1

4

(

∆µρ∆ν
α∆βγ −∆µρ∆ν

β∆αγ −∆νρ∆µ
α∆βγ +∆νρ∆µ

β∆αγ

)

spin-1(3) :

1
∑

m=−1

|1,m〉µνρ 〈1,m|αβγ =

1

3
∆µν∆ρ

γ∆αβ

spin-0 : |0, 0〉µνρ 〈0, 0|αβγ =

1

6

(

∆µ
α∆

ν
β∆

ρ
γ +∆µ

β∆
ν
γ∆

ρ
α +∆µ

γ∆
ν
α∆

ρ
β

−∆ν
α∆

µ
β∆

ρ
γ −∆ν

β∆
µ
γ∆

ρ
α −∆ν

γ∆
µ
α∆

ρ
β

)

. (10.220)

The total completeness relations is also valid :

3
∑

s=0

s
∑

m=−s

|s,m〉µνρ 〈s,m|αβγ = ∆µ
α ∆ν

β ∆
ρ
γ , (10.221)

provided we sum over all sectors with the same s.

10.10.5 Massless particles : surviving states

So far, we have taken our particles to be at rest, with a momentum p for which

pµ = mtµ .

For moving particles, we can obtain the correct states by simply performing the
appropriate Lorentz boost. As already indicated, we shall take the motion of
the particles to be along the z axis ; our states have been prepared for this by
taking z as the spin quantization axis. The momentum of the particle will then
be

pµ = mtµ → pµ = p0 tµ + |~p| zµ , (10.222)

and the vector zµ becomes, under the same boost

zµ →
( |~p|
m

)

tµ +

(

p0

m

)

zµ . (10.223)

The vectors x± are not affected by the boost. It is therefore sufficient to replace,
in Eqns.(10.197),(10.214), (10.215),(10.216), and (10.219), z by its boosted form.

Let us now consider the extreme case : that of a massless particle. We can
view this as the limit p0/m→∞ of a massive particle. In that limit, zµ diverges
badly, and we must again adopt the point of view presented in chapter 6 : the
theory wil only be viable if those tensors that diverge in the massless
limit decouple completely. That is, the only observable states must be those
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that do not diverge, i.e. those that contain x+’s and x−’s but not any trace of
a z. A quick inspection in our inventory of states reveals that only a handful of
states are left :

rank-1, spin-1 : |1, 1〉 = |+〉 , |1,−1〉 = − |−〉
rank-2, spin-2 : |2, 2〉 = |++〉 , |2,−2〉 = |−−〉
rank-2, spin-1 : |1, 0〉 = (|+−〉 − |−+〉)/

√
2

rank-3, spin-3 : |3, 3〉 = |+++〉 , |3,−3〉 = − |− −−〉 (10.224)

With the exception of the rank-2, spin-1 state, the so-calledKalb-Ramond state,
all the surviving states havem = ±s and are totally symmetric. Is this general ?
In other words, how do we know that there is no rank-31, spin-17 state that
is built up from only x+’s and x−’s ? We can answer this question by the
following pleasing argument. Since the ladder operators Σ± transform physical
states into one another, any physical state must be an eigenstate of Σ+Σ− or
Σ−Σ+

30. Disregarding, for simplicity, minus signs and factors
√
2, the effect of

Σ+ is 0→ +, − → 0, and that of Σ− is +→ 0, 0→ −. We can therefore write

Σ+Σ− |+−〉 → Σ+ |0−〉 → |+−〉+ |00〉 . (10.225)

Let us now consider a hypothetical massless-particle candidate state. It will be a
linear combination of kets with lots of +’s and −’s. Among these we concentrate
on three kets in particular :

T1 = |· · ·+ +− · · ·〉 , T2 = |· · ·+−+ · · ·〉 , T3 = |· · · −++ · · ·〉 .
(10.226)

The rest of the content of the kets (indicated by the ellipses, and consisting of
some sequences of +’s and −’s) is identical for the three kets. The candidate
state contains these T ’s in some linear combination :

C1T1 + C2T2 + C3T3 + lots of other terms

Let us now consider what happens if we let Σ+Σ− work on these kets. T1 will
turn into a lot of terms, among which we can recognize two important ones :

T1 → |· · ·+ 00 · · ·〉+ |· · · 0 + 0 · · ·〉+ · · · . (10.227)

Similarly, we find for T2 and T3 :

T2 → |· · · 00 + · · ·〉+ |· · ·+ 00 · · ·〉+ · · · ,
T3 → |· · · 00 + · · ·〉+ |· · · 0 + 0 · · ·〉+ · · · . (10.228)

We now note a few things. In the first place, a resulting ket like |· · · 0 + 0 · · ·〉
can only come from the T ’s (in this case, from T1 and T3). In the second place,

30It is of course possible that Σ+ acting on our state, say, will give zero, and then it is an
eigenstate of Σ−Σ+ with eigenvalue zero. We may avoid this trivial case by choosing, instead,
Σ+Σ−, under which our state will have a nonzero eigenvalue.
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our candidate state cannot contain this ket by itself, since it must be free of 0’s.
In the third place, such unwanted kets must drop out because our state is an
eigenstate of Σ2. We must therefore rely on cancellations between the T ’s. In
fact, we need simultaneously

C1 = −C2 , C2 = −C3 , C3 = −C1 . (10.229)

Obviously, C1,2,3 = 0 : our three T ’s do not occur at all31 ! But of course we
can repeat the same argument for any other such three kets. We see that the
only possibilities to have admissible massless-particle states are twofold:

• Only +’s, or only −’s, occur. These are precisely the rank-s, spin-s states
such as we have found, and this persists also for s > 3. Note that these
states are totally symmetric — not for some deep field-theoretical reason,
but because they can’t help it.

• Precisely one + and one − occur. This is the Kalb-Ramond state, which
now stands revealed as a lone exception.

10.10.6 Massless propagators

For massless states, the spin sums cannot be built up from objects like ∆µ
α since

these diverge. An often-used recipe is the following. For a massless particle of
momentum pµ, define

pµ = (p0, ~p) , p̄µ = (p0,−~p) . (10.230)

Obviously, this is not a Lorentz-invariant definition, but as we shall see that is
not a problem. The point is that a p̄ can be found whatever the Lorentz frame
is. We can now write

|+〉µ 〈+|ν + |−〉µ 〈−|ν = x+
µx−ν + x−

µx+ν

=
1

p · p̄

(

pµp̄ν + p̄µpν

)

− δµν ≡ ∇µ
ν . (10.231)

In analogy to Eq.(10.202) we now have

∇µα∇αν = −∇µ
ν , ∇µ

µ = −2 . (10.232)

If, as we must promise ourselves, massless states only couple to conserved
sources (on which the handlebar operation gives zero), the terms containing p̄
will always drop out. We can now write the spin sums for the surviving massless
states as follows :

rank-1, spin-1 : ∇µ
α ,

31A three-cornered argument such as this, in which all T ’s disappear, deserves to be called
a Bermuda triangle.
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rank-2, spin-2 :
1

2

(

∇µ
α∇ν

β +∇µ
β∇ν

α

)

− 1

2
∇µν∇αβ ,

rank-2, spin-1 :
1

2

(

∇µ
α∇ν

β −∇µ
β∇ν

α

)

,

rank-3, spin-3 :
1

6

(

∇µ
α∇ν

β∇ρ
γ +∇µ

β∇ν
γ∇ρ

α +∇µ
γ∇ν

α∇ρ
β

+∇µ
β∇ν

α∇ρ
γ +∇µ

α∇ν
γ∇ρ

β +∇µ
γ∇ν

β∇ρ
α

)

− 1

12

(

∇µν
(

∇ρ
α∇βγ +∇ρ

β∇γα +∇ρ
γ∇αβ

)

+ ∇νρ
(

∇µ
α∇βγ +∇µ

β∇γα +∇µ
γ∇αβ

)

+ ∇ρµ
(

∇ν
α∇βγ +∇ν

β∇γα +∇ν
γ∇αβ

)

)

(10.233)

Compared to the massive case, some coefficients are different : -1/2 rather than
-1/3 in the spin-2 case, and -1/12 instead of -1/15 for spin-3. This is due, of
course, to the different traces of ∆ and ∇. The spin sum for the massless vector
particle (rank-1, spin-1) is in fact that of the axial gauge discussed in Chapter
6, with the gauge vector r chosen to be p̄. Note that, whatever rµ, we can
always move to the centre-of-mass frame of pµ and rµ, and in that frame we
have precisely rµ = p̄µ.

10.10.7 Spin of the Kalb-Ramond state

Concerning the Kalb-Ramond (KR) state, there may be some controversy. For
a massless particle in this state, the spin along the axis of motion must, under
measurement, always come out zero. It is not easy to see how such a particle can
be distinguished from a scalar one. Indeed, in string theory where the KR state
comes up naturally, it is considered to describe a (pseudo)scalar particle called
the axion. In order to talk sensibly about the spin of the KR state it is useful
to consider how it may be measured, for instance using fermions. We therefore
consider the coupling of a rank-2, spin-1 state to fermions. The interaction
vertex must have the properties that (a) it is an antisymmetric rank-2 tensor,
and (b) it is current-conserving, in order to make sense in the massless limit.
Denoting the two fermions by ψ and ψ the simplest choice appears to be

ψ ǫµνρσ pρ (A+Bγ5) γσ ψ

where p is the momentum of the antisymmetric tensor state, and A and B
are constants. This interaction vertex vanishes trivially under the handlebar
operation. For the process

f̄(p1) f(p2) → f(p3) f̄(p4)

by the exchange of a KR state of mass M , we then have the amplitude

M = ih̄ v(p1) ǫ
µνρσ pρ (A+Bγ5) γσu(p2)
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× ∆µα∆νβ −∆µβ∆να

2(s−M2)

× u(p3) ǫαβκλ pκ (A′ +B′γ5) γλv(p4) ,

s = p · p , p = p1 + p2 = p3 + p4 . (10.234)

Because of the current conservation and the antisymmetry of the vertices, we
may replace ∆µα∆νβ −∆µβ∆να by 2gµαgνβ. Furthermore, since

ǫµνρσ pρ ǫµν
κλ pκ = 2

(

pσ pλ − s gσλ
)

(10.235)

we have

M = −2ih̄ 1

s−M2

((

v(p1)
(

A(m2 −m1) + B(m1 +m2)γ
5
)

u(p2)

× u(p3)
(

A′(m3 −m4)−B′(m3 +m4)γ
5
)

v(p4)

)

−s
(

v(p1)
(

A+Bγ5
)

γµ u(p2)

× u(p3)
(

A′ +B′γ5
)

γµ v(p4)

))

. (10.236)

Here mj is the mass of momentum pj . Note that, in contrast to e.g. the case of
QED, m1 = m2 or m3 = m4 is not necessary for current conservation. We can
now investigate several situations. In the first place, ifM 6= 0 the amplitude has
a pole for some nonzero s value, which we may take as the signal of a particle.
The second term in brackets in Eq.(10.236) then tells us that, indeed, a spin-1
particle has been exchanged32. The occurrence of the first term is, then, not
surprising : a similar contribution is found in e.g. the W exchange in muon
decay. Secondly, we may take M = 0. In that case, the second term no longer
has a pole. It can therefore not survive a truncation argument, and must not be
counted as coming from any particle propagation. The first term does survive ;
if we also assume flavour conservation so that m1 = m2 and m3 = m4, the only
degree of freedom that propagates is, indeed, that of a pseudoscalar.

32We can measure this, for instance by looking at the angular distribution of the produced
fermion-antifermion pair ; see also Appendix 10.11.
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10.11 Unitarity bounds

10.11.1 Resonances

In this appendix we shall establish bounds on total cross sections as implied by
the unitarity of the theory. We are interested in upper bounds on cross sections,
that is we want to investigate the most efficient way to get rid of the initial state
in favour of some final state. Now, as is known from the elementary theory of
coupled oscillators, the most efficient way to pump energy (i.e. the energy
content of the initial-state particles) into another state is by resonance. In our
language, this means that we shall consider two initial-state particles colliding
and coupling to another particle with just the right energy to put that particle
on its mass shell. Unavoidably, if the new particle can be made in such a way it
can also decay, and it therefore must have a nonzero decay width which protects
its propagator from exploding. We shall investigate this process in some detail.

10.11.2 Preliminaries : decay widths

We shall investigate the unitarity bound on the cross section for a given initial
two-particle state 1 to evolve into a given n-particle state 2 by way of a resonant
particle X of rest mass M and total decay width Γ. This means that particle X
must couple both to 1 and to 2. There is therefore a possible decay X→1, given
by the Feynman diagram
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X 1

The corresponding matrix element can be written as

MX→1 = i Ak · uj . (10.237)

In this admittedly abstract expression, u stands for the external-line factor33

for the incoming X particle that has, in addition to energy and momentum,
a discrete quantum number j denoting its angular momentum (for brevity we
shall use the smaller word ‘spin’ throughout this section). We shall assume that
j runs from 1 to N , so that there are in total N spin states : for a spin-J
particle, therefore, N = 2J + 1. Similarly the final state is characterized by
a discrete quantum number k alongside the continuous energy and momentum
variables, and k is assumed to run from 1 to K. For instance, if 1 stands for an
electron-positron state, K = 4 since there are two spin states for the electron
and two for the positron. Thus, Ak denotes the total of the connected diagrams
(the blob) and any external-line factors for a final state with discrete quantum
number k. The total decay width Γ1 for X to go into the two-particle state 1 is
given by

Γ1 =
1

2M

1

N

∑

j,k

∫

Ak · uj uj ·Ak
1

(2π)2
dΩ

8

λ(M2,m2,m′2)1/2

M2
S1 , (10.238)

33This might be just a number, or a spinor, or a polarization vector,. . . take your pick.
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where m and m′ are the masses of the two particles in 1. The symmetry factor
S1 equals 1 if the particles are distinguishable, and 1/2 if they are not. Ω is of
course the solid angle of one of the particles in the rest frame of X. The angle-
and spin-averaged transition rate is therefore

1

K

∑

j,k

∫

dΩ

4π
Ak · uj uj ·Ak =

16πMΓ1N

S1K

M2

λ1/2
, (10.239)

with λ1/2 = λ(M2,m2,m′2)1/2.

The process X→2 is described by the Feynman diagrams contained in
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and is written
MX→2 = i Bl · uj , (10.240)

where l denotes the discrete quantum numbers in the state 2. The width for
the process is given by

Γ2 =
1

2M

1

N

∑

j,l

∫

Bl · uj uj · Bl dVn S2 , (10.241)

where dVn is the n-particle phase space factor going with the state 2, and S2 is
the appropriate symmetry factor.

10.11.3 The rôle of angular momentum conservation

Let us consider the process X→2 in some greater detail. It is easy to conceive
of a final state 2 that couples only to a particle of spin J and to no other spin.
Now, our important supposition : if the initial particle is at rest, and if space
is isotropic so that there is no preferred direction, this does not only mean that
angular momentum is conserved but also that the various 2J + 1 spin states of
the X particle are to be treated on the same footing, so that each spin state must
have the same decay width. This in its turn implies that the integrated-over
final state must form a projection onto the pure spin-J state :

∑

l

Bl Bl = B(M2)
∑

n

unun (10.242)

where n runs, of course, from 1 to N. Obviously, under the isotropy assumption
B can only depend on M2. We find that

∫

∑

l

Bl · uj uj′ ·Bl = B(M2)
∑

n

un · uj uj′ · un ∝ δj,j′ , (10.243)

or, in other words,

∑

l

∫

Bl · uj uj′ · Bl = 2M Γ2 δj,j′ . (10.244)
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10.11.4 The unitarity bound

We now consider the process 1→2 by X exchange. For total scattering invariant
mass

√
s, it is given by the diagram
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1 X 2

and the amplitude reads

M =
−i

s−M2 + iMΓ
Bl · Π ·Ak . (10.245)

Here, Π is the numerator of the X propagator : on the mass shell, therefore, we
must have

Π⌋s=M2 =
∑

n

uj uj . (10.246)

For the total cross section we therefore have

σ =
1

2λ(s,m2,m′2)1/2
1

(s−M2)2 +m2Γ2

1

K

×
∑

k,l

∫

(Bl ·Π ·Ak) (Ak ·Π ·Bl) dVn S2 . (10.247)

On the X mass shell, we can write, with the help of Eq.(10.244),

σ =
1

2λ1/2
1

M2Γ2

1

K

∑

k,l,j,j′

∫

(Bl · uj uj ·Ak) (Ak · uj′ uj′ ·Bl) dVn S2

=
1

2λ1/2
1

M2Γ2

1

K

∑

k,l,j,j′

∫

(Bl · uj uj′ · Bl) (Ak · uj′ uj ·Ak) dVn S2

=
1

2λ1/2
1

M2Γ2

2MΓ
2

K

∑

k,j,j′

∫

dΩ

4π
Ak · uj′ uj · Ak δj,j′ , (10.248)

where it must be realized that we have rewritten the integral over B-cum-A
by the integral over B times the average over A. Due to angular-momentum
conservation we can now write, using Eq.(10.239),

σ⌋s=M2 =

(

Γ1

Γ

)(

Γ2

Γ

)

N

S1K

16π s

λ(s,m2,m′2)
. (10.249)

Now, the factor Γ2/Γ is understandable since the X particle has only a fractional
probability to decay into state 2 (there may be other decay channels available,
in fact at least the decay X→1), and then symmetry between the reactions 1→2
and 2→1 requires also the presence of the factor Γ1/Γ. We conclude that the
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cross section for the initial state 1 to go into any final state with spin J is
bounded by the unitarity limit

σUL =
2J + 1

S1K

16π s

λ(s,m2,m′2)
, (10.250)

where as mentioned before S1 is 1/2 for indistinguishable particles and 1 for
distinguishable ones, and K is the total number of possible discrete quantum
numbers for the initial state34.

34For example, for an initial e+e− state we have S1 = 1, K = 4 : for an initial state of two
photons S1 = 1/2, K = 4, and for an initial state of two gluons S1 = 1/2, K = 256 since
gluons come with 2 possible spin states and 8 different colour states.
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10.12 The CPT theorem

In this appendix, we shall discuss the very fundamental CPT theorem35 for theo-
ries with interacting particles. This theorem deals with what happens (or ought
to happen) to scattering amplitudes when we relate various physical scattering
processes36. As usual, we shall start by looking at Dirac particles.

10.12.1 Transforming spinors

In Chapter 5, we defined the standard form for the various spinors corresponding
to an on-shell (anti)-particle with mass m and momentum pµ. We recapitulate
them here :

u±(p) = N(p) (/p+m)u∓(k0) ,

v±(p) = N(p) (/p−m)u∓(k0) ,

u+(k0) = /k1 u−(k0) , u−(k0)u−(k0) = ω−/k0 ,

N(p) = 1/
√

2(pk0) , k0
2 = (k0k1) = 0 , k1

2 = −1 . (10.251)

This is, of course, only a phase convention, where the phase choice is not explicit
but implied by the choice of k0, k1 and the complex phase of u−(k0). Now, let
us apply γ5 to these states. It is easy to see that

γ5 u+(p) = v+(p) , γ5 u−(p) = − v−(p) ,

u+(p) γ
5 = −v+(p) , u−(p) γ

5 = v−(p) . (10.252)

In words, what this transformation does is to change an incoming, right(left)-
handed fermion into an outgoing, left(right)-handed antifermion (and vice versa).
Thus we have (a) the interchange of particle and anti-particle (charge conjuga-
tion, C), (b) the interchange of right- and left-handedness37 (parity inversion,
P), and (c) the interchange of initial and final state (time reversal T), which
goes by the name of CPT transformation38. Applied to Feynman diagrams, we
can depict this as follows (where we have indicated the helicity) :

+ → + , − → − −

+ → − + , − → − . (10.253)

35Also known as the CTP theorem, the TCP theorem, the TPC theorem, the PTC theorem,
or the PCT theorem.

36Recall that, in these notes, we concentrate on the (perturbative)processes that are going
on, that is, scattering described by diagrams and amplitudes.

37Recall that for a particle + means right-handed, but for an antiparticle it means left-
handed (cf section 5.6.5)

38There is a slight subtlety here. An ingoing particle with three-momentum ~p is transformed
into an outgoing antiparticle with the same momentum ~p. Under P, momenta are inverted so
that ~p becomes −~p : but under T the velocities are again inverted. The same holds, of course,
for spin vectors. It is only the fact that ”+” means right-handed for particles and left-handed
for antiparticles that ensures that the net result is just a change of handedness.
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As we can see, the effect of CPT on any diagram is not only to interchange
initial and final states, but also to reverse the arrows on intermediate fermion
lines.

10.12.2 CPT transformation on sandwiches

Let us consider the scalar current for two on-shell momenta p1,2, with respective
masses m1,2 :

Jλ1λ2 = uλ1(p1)uλ2(p2) . (10.254)

Under CPT, this scalar current behaves as follows :

J++ → Ĵ++ = −v+(p1)v+(p2) ,

J+− → Ĵ+− = v+(p1)v−(p2) . (10.255)

At first sight, these CPT transforms look nothing like the original. Note, how-
ever, that using the standard form we can write them as traces :

J++ = N(p1)N(p2)Tr (ω−/k0(/p1 +m1)(/p2 +m2)) ,

J+− = N(p1)N(p2)Tr (ω−/k0(/p1 +m1)(/p2 +m2)/k1) , (10.256)

whereas

Ĵ++ = − N(p1)N(p2)Tr (ω−/k0(/p1 −m1)(/p2 −m2)) ,

Ĵ+− = N(p1)N(p2)Tr (ω−/k0(/p1 −m1)(/p2 −m2)/k1) , (10.257)

Keeping track of which terms in these traces actually survive39, we see that,
appearances notwithstanding,

Ĵλ1λ2 = Jλ1λ2 . (10.258)

Similar (almost trivial) trace arguments show that, under CPT,

Jλ1λ2

µ = uλ1(p1) γ
µ uλ2(p2) → − Jλ1λ2

µ ,

Jλ1λ2

µν = uλ1(p1) γ
µγν uλ2(p2) → + Jλ1λ2

µν ,

Jλ1λ2

µνα = uλ1(p1) γ
µγνγα uλ2(p2)→ − Jλ1λ2

µνα , (10.259)

and so on.

10.12.3 CPT transformation on diagrams

Consider a nontrivial but very simple diagram, for simplicity taken from the
electroweak process

e−(p1)γ(q1)→ e−(p2)Z
0(q2) :

39For J±±, these are the terms that contain an odd number of masses, for J±∓ those with
even numbers of masses survive.



July 24, 2013 311

(10.260)

Leaving out overall constants and denominators, this can be written as

M = Aµν ǭµλZ
(q2) ǫλγ

ν(q1) ,

Aµν = uλ2(p2)ωγµ (/q +m) γν uλ1(p1) ,

q = p1 + q1 = p2 + q2 , ω = gv + gaγ
5 , (10.261)

where we have indicated the handedness (helicity) of the external particles. For
the polarization vectors we take the representation given in Eq.(6.36), and for
/q we may, if we wish, use Eq.(5.67) to write

/q =
1

2
γα u+(q)γ

αu+(q) . (10.262)

Let us now see what happens if we apply CPT. In the first place,

/q → − /q , (10.263)

following immediately from Eq.(10.262)40 Therefore, Aµν transforms as

Aµν → −λ1λ2 vλ1(p2)ωγµ (−/q +m) γν vλ2 (p1) . (10.264)

The arguments given in the previous section show that this evaluates again to
Aµν itself. Finally, for the polarization vectors we have, for instance,

ǫλγ

ν → − ǫλγ

ν = − ǭν−λγ
, (10.265)

so that the CPT transform of an incoming, left(right)-handed photon can be
interpreted as that of an outgoing, right(left)-handed photon with the same
momentum, up to an overall minus sign. The same goes of course for ǫλZ

µ.
We see that, under CPT, the amplitude M remains unchanged41 : but the
interpretation is now that of the process

e+(p2)Z
0(q2)→ e+(p1)γ(q1) ,

with the understanding that left(right)-handed particles have been replaced by
right(left)-handed ones. The corresponding Feynman diagram is now

, (10.266)

40Antoher approach might be to find a set of timelike, positive-energy momenta k1,2,3,...
with masses m1,2,3,..., and a set of constants c1,2,3,... such that

∑

j
cjkj

α = qα

and
∑

j
cjmj = m. Obviously, this is always possible. We can then write /q +

m =
∑

j
cj(u+(kj)u+(kj) + u−(kj)u−(kj)), which under CPT are transformed into

∑

j
cj(−v+(kj)v+(kj)− v−(kj)v−(kj)) = −/q +m.

41You might think that the fact that the two minus signs coming from the polarization
vector cancel so nicely is suspicious : but you should realize that if three external bosons were
involved there would be two internal fermion propagators instead of one.
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which may help you to understand the replacing of /q by −/q : in diagrammatic
terms, it comes from the fact that now q runs against the propagator’s arrow.

It is now easy to see that we can perform similar operations on every con-
ceivable Feynman diagram in our theory42, and we shall always find that it
transforms into itself. We say that our theory is CPT-invariant : if we (a) re-
place every external particle by its antiparticle (and vice versa), (b) interchange
the initial and final states, and (c) interchange right- and left-handed, then all
amplitudes remain the same. This is the CPT theorem.

10.12.4 How to kill CPT, and what it costs

Like all such theorems, the CPT theorem can only be valid under a number of
circumstances. Here, we mention the most important of these.

In the first place, comparing the diagrams (10.260) and (10.266) we see that
we have implicitly assumed that the vertices of the theory are insensitive to
what is the ‘incoming’, and what the ‘outgoing’ particle : for instance, the two
vertices

µ

_
e

and

µ

e+

are both assigned the value iQγµ/h̄. More poignantly, in the electroweak sector
we use the same vertex for

U D

W +

and

W
_

D U

It is, of course, possible to let the vertex depend on the ‘orientation’ of
the (sub)process : such theories, which as we see are not easily expressed dia-
grammatically43, are called non-Hermitian. A non-Hermitian action would ruin
CPT.

In the second place, and more subtly, we have assumed that there is, at
least, the very possibility of a vacuum state through which particles can move ;
in the literature, this means that there is a state with lowest energy. If the
spectrum of the theory is not bounded from below, CPT is ruined : but, again,
it is not easy to see how any ordinary particle physics could be alive under such
circumstances44, whether CPT invariant or not.

In the last place, there is the issue of Lorentz invariance. We have assumed
that every vector hµ will, under CPT, turn into −hµ, and this is very important
for proving the CPT invariance of amplitudes. Suppose, now, that we introduce

42If push comes to shove, we can always write every vector quantity in the diagram with
spinors : we then end up with a massively complicated object containing loads of (anti)spinors
and their conjugates, but for the rest only fixed numbers or matrices ; for such structures, we
have already proven everything that is needed.

43At least in the way we have formulated things.
44In these notes, we take the existence of particles with a perturbative description for

granted.
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into our theory a fixed vector45 fµ, simply a set of four universally defined46

numbers which enter nontrivially into the Feynman rules. Such a vector would,
under CPT, not turn into its opposite ; but neither would it change under
Lorentz transformations, it would simply remain fµ. CPT would be ruined to-
gether with Lorentz invariance. A theory violating CPT will therefore manifest
itself in being Lorentz-noninvariant. You might hope to avoid this by having,
built into the fabric of the universe, some physically meaningful vector quan-
tity fµ, that does change with Lorentz transformations47. Still, CPT would be
ruined, but we must also conclude that the ‘vacuum’ state is itself simply not
Lorentz invariant since there is a ‘preferred momentum’.

Note that it is, in principle, possible to violate Lorentz invariance without
destroying CPT. For instance we can use a fixed ‘tensor’ fµν rather than a
vector fµ. Such a tensor does not change sign under CPT, exactly as it should.
We can then construct theories where Lorentz invariance is violated but CPT
invariance is not48.

We see that the conditions under which CPT symmetry holds are very plau-
sible and general, but they are not unavoidable. CPT may be ruined, but we
can see that by the concomitant violation of Lorentz invariance, either in the
interactions of the theory or in the structure of the vacuum itself !

45We speak of a ‘vector’ here in the sense that it has four components, not in the sense
of its behavior under coordinate transformations : indeed, the whole point is that it doesn’t
transform at all.

46Think of having some inspiration, or a voice from heaven engraving these numbers on
stone tablets.

47Such a thing would be, for instance, the ‘momentum of the æther’.
48As an example, we can use, for the kinetic part of a Lagrangian, the object fµν∂µϕ ∂νϕ

rather than the usual gµν∂µϕ ∂νϕ.


