Phillip Urquijo Bonn University BND School, August 29-30, 2013

VSIC

HCb

universität**bonn**

Outline

Part 1: Introduction to Flavour Physics

- What is flavour physics & why is it interesting?
- Brief history of discovery in flavour physics
- CKM mechanism and Unitarity Triangle (UT)
- B-physics Experiments

Part 2: CP violation & CKM measurements (Triumphs of the SM)

- Meson-antimeson oscillations
- Introduction to CP violation
- Measurement of UT angles
- Measurement of UT sides

Part 3: Search for New Physics

- Radiative Decays
- Tauonic Decays
- Purely Leptonic Decays

Part 4: The future

• Future B experiments

BND School, B physics & CP Violation

Phillip URQUIJO

2

universit

Neutral Meson Mixing

The eigenstates of flavour M⁰ anti-M⁰, degenerate in pure QCD, mix under weak interactions.

 M^0 : K^0 (anti-s d), D^0 (c anti-u), B^0 (anti-b d), B_s^0 (anti-b s)

Mixing can occur via short distance or long distance processes

Time dependent Schrödinger equation:

$$\frac{i}{2}\Gamma\left|\left(\frac{M^{0}}{\overline{M}^{0}}\right)i\frac{\partial}{\partial t}\left(\frac{M^{0}}{\overline{M}^{0}}\right)=H\left(\frac{M^{0}}{\overline{M}^{0}}\right)=\left(M-\frac{i}{2}\Gamma\right)\left(\frac{M^{0}}{\overline{M}^{0}}\right)$$

H is Hamiltonian, **M** & Γ are 2x2 Hermitian matrices

CPT Theorem: particle and antiparticle have equal masses & lifetimesM11=M22, $\Gamma_{11}=\Gamma_{22}$ BND School, B physics & CP ViolationPhillip URQUIJO3univers

Schrödinger equation

Physical states: eigenstates of the effective Hamiltonian

$$M_{s,L} = p M^0 \pm q \overline{M}^0$$

CP conserved if physical states = CP eigenstates (**Iq/pI=1**)

Eigenvalues:

$$\begin{split} \lambda_{s,L} &= m_{s,L} - \frac{1}{2}i\Gamma_{s,L} = (M_{11} - \frac{1}{2}i\Gamma_{11}) \pm (q/p)(M_{12} - \frac{1}{2}i\Gamma_{12}) \\ \Delta m &= m_{L} - m_{s} \qquad \Delta \Gamma = \Gamma_{s} - \Gamma_{L} \\ (\Delta m)^{2} - \frac{1}{4}(\Delta \Gamma)^{2} &= 4(|M_{12}|^{2} + \frac{1}{4}|\Gamma_{12}|^{2}) \\ \Delta m \Delta \Gamma &= 4\text{Re}(M_{12}\Gamma_{12}^{-*}) \\ (q/p)^{2} &= (M_{12}^{-*} - \frac{1}{2}i\Gamma_{12}^{-*})/(M_{12}^{-} - \frac{1}{2}i\Gamma_{12}) \end{split}$$

BND School, B physics & CP Violation

Phillip URQUIJO

4

universitä

Neutral Meson Mixing: 2 Mechanisms

 Δm : value depends on rate of mixing diagram

$$\Delta m_{d} = \frac{G_{F}^{2}}{6\pi^{2}} m_{W}^{2} \eta_{b} S(x_{t}) m_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}} |V_{tb}|^{2} |V_{td}|^{2}$$

$$B_{s}^{0} \xrightarrow{t} \overline{S}$$

$$B_{s}^{0} \xrightarrow{W} \overline{B}_{s}^{0}$$

$$S \xrightarrow{t} b$$

5

universi

 $x = \frac{\Delta m}{\Gamma} \sim \mathcal{O}(1)$

Note: CP violation in mixing when $lq/pl \neq 1$

BND School, B physics & CP Violation

Phillip URQUIJO

The Neutral Meson-Antimeson Systems

Mixing in the K, D, B, B_s Systems

Discovery of Mixing in B-System

Measurement of mixing

B Mixing Results (BaBar, 2001)

D Meson Mixing (&CP Violation)

LHCb making huge progress on CPV measurements. Keep an eye out.

BND School, B physics & CP Violation

Phillip URQUIJO

12

universität

CP Violation

Formalism & measurements in B decays

CP Violation

CP violation caused by different interference effects in particle and antiparticle decays

One of the two amplitudes could be from mixing Due to complex part of CKM matrix

$$\begin{split} |A|^2 &= |A|^2 = \\ A_1^2 + A_2^2 + 2A_1A_2\cos(\Delta\phi + \Delta\delta) & A_1^2 + A_2^2 + 2A_1A_2\cos(-\Delta\phi + \Delta\delta) \\ \text{For CPV A1 and A2 need to have different weak phases } \Phi \text{ and different} \\ \text{CP invariant (e.g. strong) phases } \delta \end{split}$$

Phillip URQUIJO

14

universitätbo

BND School, B physics & CP Violation

CPV in Charged B decays

• However, because we don't know the strong phases its difficult to get useful information on the weak phases.

15

BND School, B physics & CP Violation Phillip URQUIJO

Time Dependent CPV Formalism

Consider arbitrary final state f

Decay amplitudes of flavour states

$$A_f \equiv \mathcal{A}(P^0 \to f) = \langle f | H | P^0 \rangle$$

$$\overline{A}_f \equiv \mathcal{A}(\overline{P}^0 \to f) = \langle f | H | \overline{P}^0 \rangle$$

Define
$$\lambda_f \equiv \frac{q}{p} \frac{\overline{A}_f}{A_f}$$

16

univers

General time dependence of decay rate for initially pure flavour states

$\Gamma(P^0 \to$	$f(t) = A_f ^2 (1 + \lambda_f ^2) \frac{1}{2} e^{-\Gamma t}$	$\left[\cosh(\frac{1}{2}\Delta\Gamma t) + D_f \sinh(\frac{1}{2}\Delta\Gamma t) + C_f \cos(\Delta m t) - S_f \sin(\Delta m t)\right]$	t)
$\Gamma(\bar{P}^0 \to$	$f(t) = A_f ^2 \frac{p}{q} ^2 (1 + \lambda_f ^2) \frac{1}{2} e^{-\Gamma t}$	$\left[\cosh(\frac{1}{2}\Delta\Gamma t) + D_f \sinh(\frac{1}{2}\Delta\Gamma t) - C_f \cos(\Delta m t) + S_f \sin(\Delta m t)\right]$	t)
	$D_f = \frac{2\text{Re}\{\lambda_f\}}{1+ \lambda_f ^2}, C_f$	$_{f} = \frac{1 - \lambda_{f} ^{2}}{1 + \lambda_{f} ^{2}}, S_{f} = \frac{2 \operatorname{Im}\{\lambda_{f}\}}{1 + \lambda_{f} ^{2}}$	

• For a given final state **f**, the parameter λ_f fully describes the CPV in the decay (oscillation) of the meson

BND School, B physics & CP Violation Phillip URQUIJO

Classification of CP-violating Effects

- Condition for CP conservation $|\langle f_{\rm CP}|H|P^0(t)\rangle|^2 = |\langle f_{\rm CP}|H|\bar{P}^0(t)\rangle|^2$
- CP Conservation implies

$$|q/p| = 1$$
$$|\lambda_{f_{CP}}| = 1$$
$$\operatorname{Im}\lambda_{f_{CP}} = 0$$

- 1. CP violation in the decay (direct CP violation)
- 2. CP violation in mixing (indirect CP violation)
- 3. CP violation in mixing/ decay interference

BND School, B physics & CP Violation

$$\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f}) \Leftrightarrow \left|\frac{\bar{A}_{\bar{f}}}{A_f}\right| \neq 1$$

$$\Gamma(P^0 \to \bar{P}^0) \neq \Gamma(\bar{P}^0 \to P^0) \Leftrightarrow \left|\frac{q}{p}\right| \neq 1$$

$$\Gamma(P^0(\rightsquigarrow \bar{P}^0) \to f)(t) \neq \Gamma(\bar{P}^0(\rightsquigarrow P^0) \to f)(t)$$

Phillip URQUIJO

universitätbonn

17

CP Violation 1. Direct

1. Direct CP Violation: $B^{o} \rightarrow K^{+}\pi^{-}$

e.g.: B→Kπ

Measure asymmetry between $B^0 \rightarrow K^+\pi^-$ and $B^0 \rightarrow K^-\pi^+$

 $|\bar{\mathcal{A}}|^{2} - |\mathcal{A}|^{2} = 2|A_{1}||A_{2}|[\cos(\arg(V_{tb}^{*}V_{ts}) + \Delta\delta) - \cos(\arg(V_{tb}^{*}V_{ts}) - \Delta\delta)]$

19

universitätb

BND School, B physics & CP Violation Phillip URQUIJO

Direct CP Violation $B^o \rightarrow K^+\pi^-$

Discovered in 2004 (BaBar & Belle)

$$A_{CP} = \frac{N(\overline{B}^0 \to K^+ \pi^-) - N(B^0 \to K^- \pi^+)}{N(\overline{B}^0 \to K^+ \pi^-) + N(B^0 \to K^- \pi^+)}$$

 $A_{_{\rm CP}}({\rm K}^-\pi^+) = -0.082 \pm 0.006$ $A_{_{\rm CP}}({\rm K}^-\pi^0) = +0.040 \pm 0.021$

"Kπ puzzle"

$$P(B^0 \to K^+ \pi^-) > P(\overline{B}^0 \to K^- \pi^+)$$

Could be a sign of new physics but first need to rule out possibility of larger than expected QCD corrections

BND School, B physics & CP Violation

Phillip URQUIJO

20

How to rule out QCD effects?

- Measure more B_{u,d}→Kπ decays & relate by isospin
- Perform similar analyses on B→K*π &/or B→Kρ
- Measure B_s→KK decays
 & relate by U-spin
- First evidence of CPV in
 B_s ==>

21

PRL 110 (2013) 221601

 $A_{CP}(B_s^0 \to K^- \pi^+) = 0.27 \pm 0.04 \,(\text{stat}) \pm 0.01 \,(\text{syst}).$

School, B physics & CP Violation

Phillip URQUIJO

Status of Direct CP Violation Measurements

CP Violation

2. Mixing

CP violation in Mixing

$\bullet B^0 \to X I^+ v$

Lepton charge identifies B⁰ flavour in semileptonic decays:

$$B^{0} : b \to \bar{c}\ell^{+}\nu$$

$$\bar{B}^{0} : \bar{b} \to c\ell^{-}\bar{\nu}$$

If CPV $\Rightarrow P(B^0 \to \overline{B}{}^0) \neq P(\overline{B}{}^0 \to B^0)$

- Probability to observe two negatively charged leptons
- Probability to observe two **positively** charged leptons

N⁻⁻ ≠ N⁺⁺

$$A_{CP} = \frac{P(\bar{B}^0 \to B^0) - P(B^0 \to \bar{B}^0)}{P(\bar{B}^0 \to B^0) + P(B^0 \to \bar{B}^0)} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = \frac{1 - |\frac{1}{p}|^4}{1 + |\frac{1}{p}|^4}$$

BND School, B physics & CP Violation

Phillip URQUIJO

24

universit

BND School, B physics & CP Violation

Phillip URQUIJO

25

universitätbon

CPV in Mixing: Semileptonic B_s decays

Phillip URQUIJO

 D0: μμ inclusive - similar to Y(4S) approach (subtract effect of B_d)
 3.9σ from SM!

LHCb & D0: D_sµ (purified B_s sample)

$$\boldsymbol{a}_{sl}^{s} \equiv \frac{\Gamma(\overline{B}_{s}^{0} \to D_{s}^{-}\mu^{+}) - \Gamma(B_{s}^{0} \to D_{s}^{+}\mu^{-})}{\Gamma(\overline{B}_{s}^{0} \to D_{s}^{-}\mu^{+}) + \Gamma(B_{s}^{0} \to D_{s}^{+}\mu^{-})}$$

agrees with SM

26

universität

CPV in Mixing: Semileptonic B_s decays

Phillip URQUIJO

 D0: μμ inclusive - similar to Y(4S) approach (subtract effect of B_d)
 3.9σ from SM!

LHCb & D0: D_sµ (purified B_s sample)

$$\boldsymbol{a}_{sl}^{s} \equiv \frac{\Gamma(\overline{B}_{s}^{0} \to D_{s}^{-}\mu^{+}) - \Gamma(B_{s}^{0} \to D_{s}^{+}\mu^{-})}{\Gamma(\overline{B}_{s}^{0} \to D_{s}^{-}\mu^{+}) + \Gamma(B_{s}^{0} \to D_{s}^{+}\mu^{-})}$$

26

universität

BND School, B physics & CP Violation

3.1 Measurement of angle β using CP eigenstates

More precisely: CP violation in interference between decay w/ and w/o mixing

The "Golden Decay": $B^0 \rightarrow J/\Psi K^0$

(theoretically clean: tree diagram dominates)

28

 $arg(V_{cs}V_{cb}^{*}) - arg(V_{td}^{2}V_{tb}^{2}V_{cb}V_{cs}^{*}V_{cs}^{2}V_{cd}^{*2}) = -2\beta$

BND School, B physics & CP Violation

Phillip URQUIJO

"Golden-Decay" Event in the BaBar Detector

Time dependent asymmetry

Define the time-dependent CP asymmetry

We can measure the angle of the UT

What do we have to do to measure $A_{CP}(t)$?

- Step 1: Produce and detect $B^0 \rightarrow f_{CP}$ events
- Step 2: Separate B^0 from $\overline{B}{}^0$
- Step 3: Measure the decay time t

BND School, B physics & CP Violation

Phillip URQUIJO

30

Measuring time dependent CP asymmetries

$sin 2\beta$ Results

sin2 β and the Nobel Prize

"... As late as 2001, the two particle detectors BaBar at Stanford, USA and Belle at Tsukuba, Japan, both detected broken symmetries independently of each other. The results were exactly as Kobayashi and Maskawa had predicted almost three decades earlier."

33

universit

BND School, B physics & CP Violation Phillip URQUIJO

World Average for $sin_2\beta$ Measurements

Notation:

Belle	\$ 1	φ ₂	φ ₃
Babar, LHCb	β	α	γ
Belle II	?	?	?

 $sin(2\beta)$

34

universitätbonr

BND School, B physics & CP Violation

Phillip URQUIJO

3.2 Angle α from B $\rightarrow \pi\pi$

Sin2α/ $φ_2$ from B→ππ, ρπ, ρρ

Interference of **suppressed** $b \rightarrow u$ "tree" decay with mixing

But "**penguin**" is sizeable!

Coefficients of time dependent CP asymmetry

neglecting
penguins just
like sin2beta!! $S_{\pi\pi} = \sin 2\phi_2$
 $C_{\pi\pi} = 0$ But: large strong
penguins expected
IP/TI~0.3 $S_{\pi\pi} = \sqrt{1 - C_{\pi\pi}^2} \sin 2\phi_{2eff}$
 $C_{\pi\pi} \propto \sin \delta$ BND School, B physics & CP ViolationPhillip URQUIJO36

Summary for α

BND School, B physics & CP Violation

Phillip URQUIJO

37

universitätbon

3.3 Angle γ from B \rightarrow DK

Theoretically clean measurement of γ in the interference between the decays $B \rightarrow D^0 K$ and $B \rightarrow \overline{D^0} K$

Phillip URQUIJO

the only CP violating parameter that can be measured through tree decays

Common parameters:

CKM angle γ

Amplitude ratio $r_{\rm B}$

Strong phase difference δ_{B}

$$\frac{\left\langle B \to \overline{D^0} K \right\rangle}{\left\langle B \to D^0 K \right\rangle} = r_B e^{i(\delta_B - \gamma)}$$

$$r_B \sim \frac{|V_{ub}V_{cs}^*|}{|V_{cb}V_{us}^*|} \times |\text{col.supp}| = 0.1 - 0.2$$

38

Precision on γ very sensitive to value of r_B

BND School, B physics & CP Violation

Dalitz Plot Method

Reconstruct D in final states accessible to both D^0 and $\overline{D^0}$

Study interference pattern in D⁰(anti-D⁰) Dalitz plot for

Sensitivity varies over Dalitz plane Input: D decay amplitude \rightarrow model uncertainty

Simultaneous fit to Dalitz plot density for B⁺ and B⁻ decays in data

BND School, B physics & CP Violation

Phillip URQUIJO

39

γ from combination of B+ \rightarrow DK+ modes

- All direct CPV effects caused by γ in SM
 - Negligible theory uncertainty
 - Several B and D decays used
 - Combination: from GLW/ADS (D→hh) & GGSZ (D→K_shh)

BaBar PRD 87 (2013) 052015 Belle CKM2012 preliminary LHCb-PAPER-2013-020 & LHCb-CONF-2013-006

 γ [BaBar] = (69 ± 17)° γ [Belle] = (68 ± 14)° γ [LHCb] = (69+11-13)° γ [combined] = (68.0+8.0-8.5)°

41

universität

BND School, B physics & CP Violation

Phillip URQUIJO

3.4 The B_s CKM angle β_s

Analogous to $B \rightarrow J/\psi K$, time dependent CPV in B_s

 $S_{\Psi\phi}\equiv "\sin\phi_s"=\sin(-2eta_s^{
m SM}+\phi_s^{
m NP})$

In contrast to β , CKM angle β_s is very small

 $-2\beta_{\circ}^{\rm SM} = (-2.08 \pm 0.10)^{\circ}$

Two interesting modes

$$\overline{B}_{s}^{0}\left\{\begin{array}{c} b \\ \overline{s} \\ W \\ W \\ \overline{s} \\ W \\ \overline{s} \\$$

pseudoscalar to vector vector decay Fit with 10 physics parameters: 7 angular amplitudes and phases + Γ s, $\Delta\Gamma$ s, ϕ s

www.

42

vector-pseudoscaler final state ("S-wave") single CP odd eigenstate no angular analysis needed

BND School, B physics & CP Violation

Phillip URQUIJO

Thursday, 29 August 13

(PRD83, 036004 (2011))

$B_s^o \rightarrow J/\psi \phi$ analysis

CP violation in $B_s \rightarrow J/\psi \varphi \& J/\psi \pi \pi$

BND School, B physics & CP Violation

Phillip URQUIJO

44

universitätbon

Summary: Measurements of Angles

UT sides Ru

Measurements of Sides: The Left Side R_u

BND School, B physics & CP Violation

Phillip URQUIJO

47

universitätbonr

Semileptonic Decays

Decay properties depend directly on $|V_{cb}| \& |V_{ub}|$ and m_{b} : perturbative (α_s^n).

• $|V_{ub}| \approx 0.004$ the smallest element – not easy!

Mass & Flavour

Phillip URQUIJO

48

universität

Semileptonic Decays

Decay properties depend directly on $|V_{cb}| \& |V_{ub}|$ and m_{b} : perturbative (α_s^n).

Quarks are bound in hadrons. Interactions of *b*-quark & lightquark in the *B* are very important.

• $|V_{ub}| \approx 0.004$ the smallest element – not easy!

Mass & Flavour

Phillip URQUIJO

48

Measurements of $|V_{cb}| \& |V_{ub}|$

2 Approaches in B decays

Inclusive X_{u,c} = sum of all final states. Framework: Operator Production Expansion.

Exclusive $X_c=D$, $X_u=\pi$: Specific final state. Theory: Lattice QCD. Different theory frameworks. Cross check each other.

universität

49

Mass & Flavour

Phillip URQUIJO

IV_{cb}**I** Determination

 $|V_{cb}|$, m_b & *b* fermi motion extracted from Semileptonic (and Radiative) spectra.

|V_{ub}|

- Problem: b→clv rate 50x larger
- Overcoming this background increases *Fermi motion* dependence.

$$\frac{\Gamma(b \to u \ell \bar{v})}{\Gamma(b \to c \ell \bar{v})} \approx \frac{\left|V_{ub}\right|^2}{\left|V_{cb}\right|^2} \approx \frac{1}{50}$$

$|V_{ub}|$ from Inclusive $B \rightarrow X_u lv$

To remove b→clv: lose part of b→ulv.

Measure
$$\Gamma(B \rightarrow X_u \ell v) \times f_C \propto |V_{ub}|^2 (1 + \overline{A} \mathbb{E} \mathbb{I})$$
Fraction of signal measured
 \rightarrow large theoretical uncertaintiesIf $f_c < 80\%$, theory error
dominates precision

 New paradigm: B-"tagging" & Data mining techniques (Neural networks & Decision Trees)

$B \rightarrow \pi l v$ Exclusive

UT sides _{Rt}

Must use loop processes where $b \rightarrow t \rightarrow d$

55

universität**bonn**

BND School, B physics & CP Violation

Phillip URQUIJO

Vtd from B Mixing

Relation between B mixing & CKM elements:

$$\mathbf{x} = \frac{\Delta \mathbf{m}}{\Gamma} = \frac{\mathbf{G}_{\mathrm{F}}^{2}}{6\pi^{2}} \mathbf{B}_{\mathrm{B}} \mathbf{f}_{\mathrm{B}}^{2} \mathbf{m}_{\mathrm{B}} \mathbf{\tau}_{\mathrm{B}} \left| \mathbf{V}_{\mathrm{tb}}^{*} \mathbf{V}_{\mathrm{td}} \right|^{2} \mathbf{m}_{\mathrm{t}}^{2} \mathbf{F} \left(\frac{\mathbf{m}_{\mathrm{t}}^{2}}{\mathbf{m}_{\mathrm{W}}^{2}} \right) \mathbf{\eta}_{\mathrm{QCD}}$$

F is a known function, η_{QCD}~0.8

- **B**_B and **f**_B are currently determined only **theoretically**.
 - f_B very difficult to measure experimentally $(B \rightarrow I v)$.
 - Best hope lattice QCD, slightly more precise for Bs mixing
- Ratio needed in UT (cancels parameters) |V_{td}|²/ |V_{ts}|²=[(1-ρ)²+η²]

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \,\xi^2 \left| \frac{V_{ts}}{V_{td}} \right|^2$$

ps ⁻¹	Belle/Babar	WA(inc LHCb)	Δ%
Δm _d	0.508±0.005	0.507±0.004	8.0
Δms		17.72±0.04	0.2

56

BND School, B physics & CP Violation

Phillip URQUIJO

V_{ta} Summary

Inclusive Radiative ($\Delta \zeta^* \sim 1\%$)

Exclusive Radiative ($\Delta \zeta \sim 17\%$) (Assumes isospin symmetry)

Mixing (Δζ~2.6%) (PDG 2013)

	Most precise V _{tq} (PDG)		
Assuming V _{tb} =1	V _{td} (mix)	(8.4±0.6)10 ⁻³	
	V _{ts} (rad)	(42.9±2.6)10 ⁻³	
	V _{td} / V _{ts}	0.211±0.006	
	V _{ts} / V _{cb}	1.04±0.04±0.03	
	Vtb **	~1.03±0.04	

c.f. $|V_{cb}|$ (40.9±1.1)10⁻³

57

Phillip URQUIJO

 $|V_{ts}| = |V_{cb}|$ with UT constraint,

Can also precisely extract |V_{ts}| from $B(B \rightarrow X_s \gamma)$

UT sides at e⁺e⁻, FPCP 2013

CKM Picture

CKM Picture

Putting it all together

Phillip URQUIJO

59

universitätbonn

BND School, B physics & CP Violation

Putting it all together

End of Part 2

♦ Which of these is a CP eigenstate? ♦ B° → π⁺π⁻ ♦ K° → π⁺π⁻ ♦ B° → π⁺π⁻π° ♦ B° → π⁺π⁻π° ♦ B° → ρ°π° ♦ B° → ρ°ρ°

BND School, B physics & CP Violation

Phillip URQUIJO

Aside: The origin of "penguins"

Symmetry Magazine Jan/Feb 2007

The origin of penguins

Told by John Ellis:

"Mary K. [Gaillard], Dimitri [Nanopoulos], and I first got interested in what are now called penguin diagrams while we were studying CP violation in the Standard Model in 1976... The penguin name came in 1977, as follows.

In the spring of 1977, Mike Chanowitz, Mary K. and I wrote a paper on GUTs [Grand Unified Theories] predicting the *b* quark mass before it was found. When it was found a few weeks later, Mary K., Dimitri, Serge Rudaz and I immediately started working on its phenomenology.

That summer, there was a student at CERN, Melissa Franklin, who is now an experimentalist at Harvard. One evening, she, I, and Serge went to a pub, and she and I started a game of darts. We made a bet that if I lost I had to put the word penguin into my next paper. She actually left the darts game before the end, and was replaced by Serge, who beat me. Nevertheless, I felt obligated to carry out the conditions of the bet.

For some time, it was not clear to me how to get the word into this *b* quark paper that we were writing at the time.... Later...I had a sudden flash that the famous diagrams look like penguins. So we put the name into our paper, and the rest, as they say, is history."

John Ellis in Mikhail Shifman's "ITEP Lectures in Particle Physics and Field Theory", hep-ph/9510397

62

universitätbo

John Ellis is the former director of Theoretical Particle Physics at CERN

BND School, B physics & CP Violation

Phillip URQUIJO

sin2 β Measurement Principle

$B \rightarrow \pi\pi$ Results

From α_{eff} to α : Isospin Analysis

To correct for penguin contribution: Gronau-London method (isopsin triangles). From flavour tagged decay rates of $\pi^+\pi^-$, $\pi^\pm\pi^0$, $\pi^0\pi^0$

Phillip URQUIJO

$$|\pi^{+}\pi^{-}\rangle = \sqrt{\frac{2}{3}} |\pi\pi, I = 0\rangle + \sqrt{\frac{1}{3}} |\pi\pi, I = 2\rangle$$

$$|\pi^{0}\pi^{0}\rangle = \sqrt{\frac{1}{3}} |\pi\pi, I = 0\rangle - \sqrt{\frac{2}{3}} |\pi\pi, I = 2\rangle$$

$$|\pi^{+}\pi^{0}\rangle = |\pi\pi, I = 2\rangle$$

$$\frac{1}{\sqrt{2}} \overline{A}^{+-} + \overline{A}^{00} = \overline{A}^{0-}$$
$$\frac{1}{\sqrt{2}} A^{+-} + A^{00} = A^{0+}$$

$$\arg(A^{+-}/\widetilde{A}^{+-}) = 2\Delta\alpha = 2(\alpha - \alpha_{eff})$$

Ambiguities: 4 triangle orientations \Rightarrow 4-fold ambiguity for $\Delta \alpha$

 $\alpha \leftrightarrow \pi - \alpha \Rightarrow 8$ -fold ambiguity for α

BND School, B physics & CP Violation

universität

α from Isospin Analysis

Input : $BF(B^0 \rightarrow \pi^+\pi^-), BF(B^+ \rightarrow \pi^+\pi^0), BF(B^0 \rightarrow \pi^0\pi^0), C_{+-}, S_{+-}, C_{00}$ Find minimum χ^2 in fit of isospin triangle to measurements. compute C.L.

Experimental Situation

- 1. (Ideally) Use modes with small penguin contributions
- 2. Correct for penguin effects (isospin analysis)

Dalitz Plot Measurement

Compare regions of Dalitz space and quantify difference. PRD 85, 112014 (2012).

