Outline

Part 1: Introduction to Flavour Physics

- What is flavour physics \& why is it interesting?
- Brief history of discovery in flavour physics
- CKM mechanism and Unitarity Triangle (UT)
- B-physics Experiments

Part 2: CP violation \& CKM measurements (Triumphs of the SM)

- Meson-antimeson oscillations
- Introduction to CP violation
- Measurement of UT angles
- Measurement of UT sides

Part 3: Search for New Physics

- Radiative Decays
- Tauonic Decays
- Purely Leptonic Decays

Part 4: The future

- Future B experiments

Neutral Meson Mixing

The eigenstates of flavour M^{0} anti- M^{0}, degenerate in pure QCD, mix under weak interactions.
M^{0} : K^{0} (anti-s d), $\mathrm{D}^{0}\left(\mathrm{c}\right.$ anti-u), $\mathrm{B}^{0}\left(\right.$ anti-b d), $\mathrm{B}_{\mathrm{s}}{ }^{\circ}($ anti-b s)
Mixing can occur via short distance or long distance processes

Time dependent Schrödinger equation:

$$
i \frac{\partial}{\partial t}\binom{M^{0}}{\bar{M}^{0}}=H\binom{M^{0}}{\bar{M}^{0}}=\left(M-\frac{i}{2} \Gamma\right)\binom{M^{0}}{\bar{M}^{0}}
$$

\mathbf{H} is Hamiltonian, $\mathbf{M} \& \Gamma$ are 2×2 Hermitian matrices
CPT Theorem: particle and antiparticle have equal masses \& lifetimes $\mathrm{M}_{11}=\mathrm{M}_{22}, \Gamma_{11}=\Gamma_{22}$
BND School, B physics \& CP Violation
Phillip URQUIJO

Schrödinger equation

Physical states: eigenstates of the effective Hamiltonian

$$
M_{S, L}=p M^{0} \pm q \bar{M}^{0}
$$

CP conserved if physical states $=\mathrm{CP}$ eigenstates $(\mathbf{l q} / \mathbf{p} \mathbf{=}=\mathbf{1})$

Eigenvalues:

$$
\begin{gathered}
\lambda_{\mathrm{s}, \mathrm{~L}}=\mathrm{m}_{\mathrm{s}, \mathrm{~L}}-1 / 2 \mathrm{i} \Gamma_{\mathrm{s}, \mathrm{~L}}=\left(\mathrm{M}_{11}-1 / 2 \mathrm{i} \Gamma_{11}\right) \pm(\mathrm{q} / \mathrm{p})\left(\mathrm{M}_{12}-1 / 2 \mathrm{i} \Gamma_{12}\right) \\
\Delta \mathrm{m}=\mathrm{m}_{\mathrm{L}}-\mathrm{m}_{\mathrm{s}} \quad \Delta \Gamma=\Gamma_{\mathrm{s}}-\Gamma_{\mathrm{L}} \\
(\Delta \mathrm{~m})^{2}-1 / 4(\Delta \Gamma)^{2}=4\left(\left|\mathrm{M}_{12}\right|^{2}+1 / 4\left|\Gamma_{12}\right|^{2}\right) \\
\Delta \mathrm{m} \Delta \Gamma=4 \operatorname{Re}\left(\mathrm{M}_{12} \Gamma_{12}^{*}\right) \\
(\mathrm{q} / \mathrm{p})^{2}=\left(\mathrm{M}_{12}^{*}-1 / 2 \mathrm{i} \Gamma_{12}^{*}\right) /\left(\mathrm{M}_{12}-1 / 2 \mathrm{i} \Gamma_{12}\right)
\end{gathered}
$$

Neutral Meson Mixing: 2 Mechanisms

$\Delta \mathbf{m}$: value depends on rate of mixing diagram

$$
\begin{array}{r}
\Delta m_{d}=\frac{G_{F}^{2}}{6 \pi^{2}} m_{W}^{2} \eta_{b} S\left(x_{t}\right) m_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}}\left|V_{t b}\right|^{2}\left|V_{t d}\right|^{2} \\
x=\frac{\Delta m}{\Gamma} \sim \mathcal{O}(1)
\end{array}
$$

$\Delta \Gamma$: value depends on widths of decays into common final states (CP eigenstates) large for K, small for D and B

$$
y=\frac{\Delta \Gamma}{\Gamma} \sim \mathcal{O}(1)
$$

Note: CP violation in mixing when $\mid q / p l \neq 1$

The Neutral Meson-Antimeson Systems

$K^{0} \bar{K}^{0}$	
	K_{S}^{0} $\tau_{S} \simeq 90 \mathrm{ps}$ $\tau_{L} \simeq 52 \mathrm{~ns}$
$\Delta m_{K}=5 \times 10^{-3} \mathrm{ps}^{-1}$	
	$\begin{gathered} \Delta m_{K} / \Gamma_{K} \simeq 0.9 \\ \Delta \Gamma_{K} / 2 \Gamma_{K} \approx- \end{gathered}$

$D^{0} / \overline{D^{0}}$	$\mathrm{\tau}=0.4 \mathrm{ps}^{-1}$ mixes slowly $\Delta \mathrm{m}_{\mathrm{D}} \sim 0.01$

BND School, B physics \& CP Violation
Phillip URQUIJO

$\Delta m=2 \pi \times f r e q u e n c y$ of flavour oscillation ($1 \mathrm{ps}^{-1} \rightarrow 160 \mathrm{GHz}$)

Mixing in the $\mathrm{K}, \mathrm{D}, \mathrm{B}, \mathrm{B}_{\mathrm{s}}$ Systems

Phillip URQUIJO

$$
7
$$

Discovery of Mixing in B-System

First e+e- B-factory at DESY:
at $\sqrt{ } \mathrm{s}=10.58 \mathrm{GeV}$:
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S}) \rightarrow$ b anti-b

unMixed $B^{0} \bar{B}^{0} \rightarrow \ell^{+} \ell^{-}$
Mixed $\left.\begin{array}{l}B^{0} B^{0} \rightarrow \ell^{+} \ell^{+} \\ \bar{B}^{0} \bar{B}^{0} \rightarrow \ell^{-} \ell^{-}\end{array}\right\}$Same charge

Argus 1987

Measurement of mixing

"signal B"

¢ิ	B^{0}	\bar{B}^{0}
- ${ }^{-1}$	mixed	unmixed
\% \bar{B}^{0}	unmixed	mixed

"tagging B"
can be charged or neutral

$$
A_{\mathrm{mix}}(t)=\frac{N(B)_{\mathrm{un}-\operatorname{mixed}}(t)-N(B)_{\mathrm{mixed}}(t)}{N(B)_{\mathrm{un}-\operatorname{mixed}}(t)+N(B)_{\text {mixed }}(t)} \sim \cos (\Delta m t)
$$

perfect

tagging \& $\Delta \mathrm{t}$ resolution

Decay Time Difference ${ }^{-2}{ }^{-2}{ }^{-2}{ }^{4}{ }^{6}{ }^{6}$ (ps) B Phillip URQUIJO

Negative $\Delta \mathrm{t}$:
Signal B decay before tagging

9

B Mixing Results (BaBar, 2001)

BND School, B physics \& CP Violation

Thursday, 29 August 13

Phillıp UKQUIJU
10

B and B_{s} Mixing at LHCb (2013)

$$
A^{\text {mix }}=\frac{N^{\text {unmixed }}(t)-N^{\text {mixed }}(t)}{N^{\text {unmixed }}(t)+N^{\text {mixed }}(t)}
$$

$\Delta \mathrm{m}_{\mathrm{d}}=(0.511 \pm 0.005 \pm 0.006) \mathrm{ps}^{-1}$
PRD 71, 072003 (2005)

$$
B_{s} \rightarrow D_{s}(3) \pi
$$

$$
\Delta m_{s}=(17.768 \pm 0.023 \pm 0.006) \mathrm{ps}^{-1}
$$

$$
\text { NJP } 15 \text { (2013) } 053021
$$

D Meson Mixing (\&CP Violation)

Inconsistent with no mixing point $(0,0)$

Consistent with no CP violation point $(1,0)$

LHCb making huge progress on CPV measurements.
Keep an eye out.

CP Violation

Formalism \& measurements in B decays

CP Violation

CP violation caused by different interference effects in particle and antiparticle decays

One of the two amplitudes could be from mixing
Due to complex part of CKM matrix

$\begin{array}{cc}|A|^{2}= & |A|^{2}= \\ A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos (\Delta \phi+\Delta \delta) & A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos (-\Delta \phi+\Delta \delta)\end{array}$
For CPV A1 and A2 need to have different weak phases $\boldsymbol{\Phi}$ and different CP invariant (e.g. strong) phases $\bar{\delta}$

CPV in Charged B decays

- Consider charged $B^{+} \rightarrow K \pi$ decays.
- For K- π^{0}, there are 3 diagrams, but only 1 for
 $\mathrm{K}^{0} \mathrm{~T}^{-}$

- However, because we don't know the strong phases its difficult to get useful information on the weak phases.

Time Dependent CPV Formalism

Consider arbitrary final state f

Decay amplitudes of flavour states

$$
\begin{aligned}
& A_{f} \equiv \mathcal{A}\left(P^{0} \rightarrow f\right)=\langle f| H\left|P^{0}\right\rangle \\
& \bar{A}_{f} \equiv \mathcal{A}\left(\bar{P}^{0} \rightarrow f\right)=\langle f| H\left|\bar{P}^{0}\right\rangle
\end{aligned}
$$

General time dependence of decay rate for initially pure flavour states

$$
\left.\begin{array}{ll}
\Gamma\left(P^{0} \rightarrow f\right)(t)= & \left|A_{f}\right|^{2}\left(1+\left|\lambda_{f}\right|^{2}\right) \frac{1}{2} e^{-\Gamma t}
\end{array} \quad\left[\cosh \left(\frac{1}{2} \Delta \Gamma t\right)+D_{f} \sinh \left(\frac{1}{2} \Delta \Gamma t\right)+C_{f} \cos (\Delta m t)-S_{f} \sin (\Delta m t)\right] .\right] ~\left[\begin{array}{ll}
& \\
\Gamma\left(\bar{P}^{0} \rightarrow f\right)(t)=\left|A_{f}\right|^{2}\left|\frac{p}{q}\right|^{2}\left(1+\left|\lambda_{f}\right|^{2}\right) \frac{1}{2} e^{-\Gamma t} & {\left[\cosh \left(\frac{1}{2} \Delta \Gamma t\right)+D_{f} \sinh \left(\frac{1}{2} \Delta \Gamma t\right)-C_{f} \cos (\Delta m t)+S_{f} \sin (\Delta m t)\right]}
\end{array}\right.
$$

$$
D_{f}=\frac{2 \operatorname{Re}\left\{\lambda_{f}\right\}}{1+\left|\lambda_{f}\right|^{2}}, \quad C_{f}=\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}}, \quad S_{f}=\frac{2 \operatorname{Im}\left\{\lambda_{f}\right\}}{1+\left|\lambda_{f}\right|^{2}}
$$

- For a given final state f, the parameter λ_{f} fully describes the CPV in the decay (oscillation) of the meson

Classification of CP-violating Effects

- Condition for CP conservation

$$
\left.\left.\left|\left\langle f_{\mathrm{CP}}\right| H\right| P^{0}(t)\right\rangle\left.\right|^{2}=\left|\left\langle f_{\mathrm{CP}}\right| H\right| \bar{P}^{0}(t)\right\rangle\left.\right|^{2}
$$

- CP Conservation implies

$$
\begin{aligned}
& \quad|q / p|=1 \\
& \left|\lambda_{f_{C P}}\right|=1 \\
& \operatorname{Im} \lambda_{f_{\mathrm{CP}}}=0
\end{aligned}
$$

1. CP violation in the decay (direct CP violation)

$$
\Gamma(P \rightarrow f) \neq \Gamma(\bar{P} \rightarrow \bar{f}) \Leftrightarrow\left|\frac{\bar{A}_{\bar{f}}}{A_{f}}\right| \neq 1
$$

2. CP violation in mixing (indirect CP violation)

$$
\Gamma\left(P^{0} \rightarrow \bar{P}^{0}\right) \neq \Gamma\left(\bar{P}^{0} \rightarrow P^{0}\right) \Leftrightarrow\left|\frac{q}{p}\right| \neq 1
$$

3. CP violation in mixing/ decay interference

$$
\Gamma\left(P^{0}\left(\rightsquigarrow \bar{P}^{0}\right) \rightarrow f\right)(t) \neq \Gamma\left(\bar{P}^{0}\left(\rightsquigarrow P^{0}\right) \rightarrow f\right)(t)
$$

CP Violation
 1. Direct

1. Direct CP Violation: $\mathrm{B}^{\mathrm{o}} \rightarrow \mathrm{K}^{+} \Pi$

e.g.: $B \rightarrow K \pi$

Measure asymmetry between $\mathrm{B}^{\mathbf{0}} \rightarrow \mathrm{K}^{+} \boldsymbol{\pi}^{-}$and $\mathrm{B}^{\mathbf{0}} \rightarrow \mathrm{K}^{-} \boldsymbol{\pi}^{+}$

$$
|\overline{\mathcal{A}}|^{2}-|\mathcal{A}|^{2}=2\left|A_{1}\right|\left|A_{2}\right|\left[\cos \left(\arg \left(V_{t b}^{*} V_{t s}\right)+\Delta \delta\right)-\cos \left(\arg \left(V_{t b}^{*} V_{t s}\right)-\Delta \delta\right)\right]
$$

Direct CP Violation $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \Pi$

2008 Nature 452 332. $\mathrm{M}_{\mathrm{bc}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

Discovered in 2004 (BaBar \& Belle)

$$
\begin{aligned}
& A_{c P}=\frac{N\left(\bar{B}^{0} \rightarrow K^{+} \pi^{-}\right)-N\left(B^{0} \rightarrow K^{-} \pi^{+}\right)}{N\left(\bar{B}^{0} \rightarrow K^{+} \pi^{-}\right)+N\left(B^{0} \rightarrow K^{-} \pi^{+}\right)} \\
& \mathrm{A}_{\mathrm{CP}}\left(\mathrm{~K}^{-} \pi^{+}\right)=-0.082 \pm 0.006 \\
& \mathrm{~A}_{\mathrm{CP}}\left(\mathrm{~K}^{-} \pi^{0}\right)=+0.040 \pm 0.021 \\
& \text { "K } \pi \text { puzzle" } \\
& P\left(B^{0} \rightarrow K^{+} \pi^{-}\right)>P\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)
\end{aligned}
$$

Could be a sign of new physics ...
... but first need to rule out possibility of larger than expected QCD corrections

How to rule out QCD effects?

- How to rule out QCD effects?
- Measure more $\mathrm{B}_{\mathrm{u}, \mathrm{d}} \rightarrow \mathrm{K} \pi$ decays \& relate by isospin
- Perform similar analyses on $B \rightarrow K^{\star} \pi \& / o r B \rightarrow K \rho$
- Measure $\mathrm{B}_{\mathrm{s}} \rightarrow K K$ decays \& relate by U-spin
First evidence of CPV in $B_{s}==>$

PRL 110 (2013) 221601

$$
A_{C P}\left(B_{s}^{0} \rightarrow K^{-} \pi^{+}\right)=0.27 \pm 0.04(\text { stat }) \pm 0.01 \text { (syst) }
$$

Status of Direct CP Violation Measurements

Phillip URQUIJO

CP Violation

2. Mixing

CP violation in Mixing

$\boldsymbol{B}^{\boldsymbol{0}} \rightarrow \boldsymbol{X} \mathbf{I}^{+} \mathbf{v}$

- Lepton charge identifies B^{0} flavour in semileptonic decays:

$$
\begin{aligned}
& B^{0}: b \rightarrow \bar{c} \ell^{+} \nu \\
& \bar{B}^{0}: \bar{b} \rightarrow c \ell^{-} \bar{\nu}
\end{aligned}
$$

$$
\text { If } \mathrm{CPV} \Rightarrow P\left(B^{0} \rightarrow \bar{B}^{0}\right) \neq P\left(\bar{B}^{0} \rightarrow B^{0}\right)
$$

- Probability to observe two negatively charged leptons
- Probability to observe two positively charged leptons
- $\mathbf{N}^{--} \neq \mathbf{N}^{++}$

$$
A_{C P}=\frac{P\left(\bar{B}^{0} \rightarrow B^{0}\right)-P\left(B^{0} \rightarrow \bar{B}^{0}\right)}{P\left(\bar{B}^{0} \rightarrow B^{0}\right)+P\left(B^{0} \rightarrow \bar{B}^{0}\right)}=\frac{N^{++}-N^{--}}{N^{++}+N^{--}}=\frac{1-\left|\frac{1}{p}\right|^{4}}{1+\left|\frac{1}{p}\right|^{4}}
$$

CP violation in Mixing

Starting from a pure $\left|B^{0}\right\rangle$ state, the wave function evolves as

$$
\mathrm{A}(\Delta t)=\frac{N^{+-}-N^{ \pm \pm}}{N^{+-}+N^{ \pm \pm}} \sim \cos \Delta m \Delta t
$$

$$
\mathrm{N}^{++}-\mathrm{N}^{--/} \mathrm{N}^{++}+\mathrm{N}^{--}=1-|q / p|^{4} / 1+|q / p|^{4}
$$

$$
\Rightarrow|q / p|=1.0024 \pm 0.0023
$$

\Rightarrow CPV in mixing negligible in B system

CPV in Mixing: Semileptonic B_{s} decays

- D0: $\mu \mu$ inclusive - similar to $\mathrm{Y}(4 \mathrm{~S})$ approach (subtract effect of B_{d}) -3.9 ${ }^{\text {from SM! }}$
- LHCb \& DO: $\mathrm{D}_{\mathrm{s} \mu}$ (purified B_{s} sample)

$$
a_{s l}^{s} \equiv \frac{\Gamma\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{-} \mu^{+}\right)-\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{+} \mu^{-}\right)}{\Gamma\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{-} \mu^{+}\right)+\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{+} \mu^{-}\right)}
$$

\Rightarrow agrees with SM

CPV in Mixing: Semileptonic B_{s} decays

- D0: $\mu \mu$ inclusive - similar to $\mathrm{Y}(4 \mathrm{~S})$ approach (subtract effect of B_{d}) - 3.9σ from SM!
- LHCb \& DO: $\mathrm{D}_{\mathrm{s} \mu}$ (purified B_{s} sample)

$$
a_{s l}^{s} \equiv \frac{\Gamma\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{-} \mu^{+}\right)-\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{+} \mu^{-}\right)}{\Gamma\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{-} \mu^{+}\right)+\Gamma\left(B_{s}^{0} \rightarrow D_{s}^{+} \mu^{-}\right)}
$$

\Rightarrow agrees with SM

CP Violation

3. Interference

3.1 Measurement of angle β using CP eigenstates

More precisely: CP violation in interference between decay w/ and w/o mixing
The "Golden Decay": $\quad \boldsymbol{B}^{\mathbf{0}} \rightarrow \mathbf{J} / \boldsymbol{\Psi} \mathbf{K}^{\mathbf{0}}$
(theoretically clean: tree diagram dominates)

$$
\begin{aligned}
& \begin{array}{|c|}
\hline \bar{b}-B^{0} \text { mixing } \\
\mathbf{v}_{\mathrm{tb}^{*}} \mathrm{v}_{\mathrm{td}}-\bar{d} \\
\vdots \\
\vdots \\
d-\mathrm{v}_{\mathrm{td}} \\
\hline \\
q / p \approx \mathrm{v}_{\mathrm{tb}}{ }^{*}-b \\
q / p e^{-i 2 \beta} \\
\hline
\end{array} \\
& \text { Select } K_{S} \text { through decays } \\
& \left|K_{s}^{0}\right\rangle \approx p\left|K^{0}\right\rangle+q\left|\bar{K}^{0}\right\rangle \quad K_{s}^{0} \rightarrow \pi^{+} \pi^{-} \\
& \left|K^{0}\right\rangle=\frac{1}{2 p}\left(\left|K_{S}\right\rangle+\left|K_{L}\right\rangle\right) \quad K_{L}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}, \pi^{-} \ell^{+} \nu \\
& \text { decay } \\
& \text { decay + mixing } \\
& \arg \left(\mathrm{V}_{\mathrm{cs}} \mathrm{~V}_{\mathrm{cb}}{ }^{*}\right)-\arg \left(\mathrm{V}_{\mathrm{td}}{ }^{2} \mathrm{~V}_{\mathrm{tb}}{ }^{2} \mathrm{~V}_{\mathrm{cb}} \mathrm{~V}_{\mathrm{cs}}{ }^{*} \mathrm{~V}_{\mathrm{cs}}{ }^{2} \mathrm{~V}_{\mathrm{cd}}{ }^{*}{ }^{2}\right)=-2 \beta
\end{aligned}
$$

"Golden-Decay" Event in the BaBar Detector

Time dependent asymmetry

- Define the time-dependent CP asymmetry

$$
A_{C P}(t)=\frac{N\left(\bar{B}^{0}(t) \rightarrow J / \psi K_{s}^{0}\right)-N\left(B^{0}(t) \rightarrow J / \psi K_{s}^{0}\right)}{N\left(\bar{B}^{0}(t) \rightarrow J / \psi K_{s}^{0}\right)+N\left(B^{0}(t) \rightarrow J / \psi K_{s}^{0}\right)}=\sin (2 \beta) \sin (\Delta m t)
$$

- We can measure the angle of the UT

What do we have to do to measure $A_{C P}(t)$?

- Step 1: Produce and detect $B^{0} \rightarrow f_{C P}$ events
- Step 2: Separate B^{0} from \bar{B}^{0}
- Step 3: Measure the decay time t

Measuring time dependent CP asymmetries

Exclusive B meson and vertex reconstruction
BND School, B physics \& CP Violation
Phillip URQUIJO
31

$\sin 2 \beta$ Results

465M BB; PRD79 (2009) 072009
772M BB; PRL 108, 171802 (2012)

$$
\sin 2 \beta=0.667 \pm 0.023 \pm 0.012
$$

$\sin 2 \beta=0.666 \pm 0.031 \pm 0.013$

BND School, B physics \& CP Violation
Phillip URQUIJO
32

$\sin 2 \beta$ and the Nobel Prize

"... As late as 2001, the two particle detectors BaBar at Stanford, USA and Belle at Tsukuba, Japan, both detected broken symmetries independently of each other. The results were exactly as Kobayashi and Maskawa had predicted almost three decades earlier."

World Average for $\sin 2 \beta$ Measurements

BND School, B physics \& CP Violation
Thursday, 29 August 13

Notation:

Belle	ϕ_{1}	ϕ_{2}	ϕ_{3}
Babar, LHCb	β	α	γ
Belle II	$?$	$?$	$?$

$\sin (2 \beta)$
34
universitätbonn

3.2 Angle α from $B \rightarrow \pi \pi$

- Small BF ~ 10-6
- $\pi^{+} \pi^{-}$CP eigenstate with $\mathrm{CP}=-1$

$\operatorname{Sin} 2 \alpha / \varphi_{2}$ from $B \rightarrow \pi \pi, \rho \pi, \rho \rho$

Interference of suppressed $b \rightarrow u$ "tree" decay with mixing

Coefficients of time dependent CP asymmetry
neglecting
penguins just

like sin2beta!! \quad\begin{tabular}{ll}

$S_{\pi \pi}=\sin 2 \phi_{2}$ \& | But: large strong |
| :--- |
| penguins expected |

BND School, B physics \& CP Violation \& IP/TI~0.3

$S_{\pi \pi}=\sqrt{1-C_{\pi \pi}^{2}} \sin 2 \phi_{2 \text { eff }}$

$C_{\pi \pi} \propto \sin \delta$
\end{tabular}

[^0]
Summary for α

$\alpha[$ WA, $a l l]=\left(88.5^{+4.7}-4.4\right)^{\circ}$

3.3 Angle γ from $B \rightarrow D K$

Theoretically clean measurement of γ in the interference between the decays $B \rightarrow D^{0} K$ and $B \rightarrow \bar{D}^{0} K$

the only CP violating parameter that can be measured through tree decays
Common parameters:
CKM angle γ

$$
\frac{\left\langle B \rightarrow \overline{D^{0}} K\right\rangle}{\left\langle B \rightarrow D^{0} K\right\rangle}=r_{B} e^{i\left(\delta_{B}-\gamma\right)}
$$

Amplitude ratio r_{B}
Strong phase difference δ_{B}

$$
r_{B} \sim \frac{\left|V_{u b} V_{c s}^{*}\right|}{\left|V_{c b} V_{u s}^{*}\right|} \times \mid \text { col.supp } \mid=0.1-0.2
$$

Precision on γ very sensitive to value of r_{B}

Dalitz Plot Method

Reconstruct D in final states accessible to both D^{0} and $\overline{D^{0}}$
Study interference pattern in $\mathrm{D}^{0}\left(\right.$ anti- $\left.\mathrm{D}^{0}\right)$ Dalitz plot for

$$
\begin{aligned}
& B^{\mp} \rightarrow D\left(K_{s} h^{+} h^{-}\right) K^{\mp}
\end{aligned}
$$

Sensitivity varies over Dalitz plane Input: D decay amplitude \rightarrow model uncertainty

Simultaneous fit to Dalitz plot density for B^{+}and B^{-}decays in data BND School, B physics \& CP Violation Phillip URQUIJO 39

Angle γ from B $\rightarrow \mathrm{DK}$

$$
\begin{aligned}
& x_{ \pm}=r_{B} \cos \left(\delta_{B} \pm \gamma\right) \\
& y_{ \pm}=r_{B} \sin \left(\delta_{B} \pm \gamma\right)
\end{aligned}
$$

PRD 85, 112014 (2012).

$$
\begin{gathered}
\phi_{3}=\left(77.3_{-14.9}^{+15.1} \pm 4.2 \pm 4.3\right)^{\circ} \\
r_{B}=0.145 \pm 0.030 \pm 0.011 \pm 0.011 \\
\delta_{B}=(129.9 \pm 15.0 \pm 3.9 \pm 4.7)^{\circ} \\
\text { model error }
\end{gathered}
$$

$$
\begin{aligned}
& \gamma=(76 \pm 22 \pm 5 \pm 5)^{c} \\
& B \rightarrow D K, D^{*} K, D K^{*} \\
& D \rightarrow K_{s} \pi^{+} \pi^{-}, K_{s} K^{+} K^{-}
\end{aligned}
$$

Difference in Belle \& BaBar stat. errors due to values of r_{B}

γ from combination of $\mathrm{B}^{+} \rightarrow \mathrm{DK}^{+}$modes

- All direct CPV effects caused by γ in SM
- Negligible theory uncertainty
- Several B and D decays used
- Combination: from GLW/ADS ($\mathrm{D} \rightarrow \mathrm{hh}$) \& GGSZ ($\mathrm{D} \rightarrow \mathrm{K}$ shh)

BaBar PRD 87 (2013) 052015
Belle CKM2012 preliminary LHCb-PAPER-2013-020 \& LHCb-CONF-2013-006
γ [BaBar] $=(69 \pm 17)^{\circ}$
$y[B e l l e]=(68 \pm 14)^{\circ}$
$\mathrm{y}[\mathrm{LHCb}]=(69+11-13)^{\circ}$
Y [combined] $=(68.0+8.0-8.5)^{\circ}$

3.4 The B_{s} CKM angle β_{s}

- Analogous to $B \rightarrow J / \psi K$, time dependent CPV in B_{s}

$$
S_{\Psi \phi} \equiv " \sin \phi_{s} "=\sin \left(-\mathbf{2} \boldsymbol{\beta}_{s}^{\mathrm{SM}}+\phi_{s}^{\mathrm{NP}}\right)
$$

- In contrast to β, CKM angle β_{s} is very small

$$
-2 \beta_{s}^{S M}=(-2.08 \pm 0.10)^{\circ}
$$

(PRD83, 036004 (2011))

- Two interesting modes

pseudoscalar to vector vector decay
Fit with 10 physics parameters:
7 angular amplitudes and phases +
$\Gamma \mathrm{s}, \Delta \Gamma \mathrm{s}, \phi \mathrm{s}$

vector-pseudoscaler final state ("S-wave")
single CP odd eigenstate no angular analysis needed

$\mathrm{B}_{\mathrm{s}}{ }^{\mathrm{o}} \rightarrow \mathrm{J} / \psi \phi$ analysis

CP violation in $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$ \& $\mathrm{J} / \psi \pi \pi$

Summary: Measurements of Angles

Phillip URQUIJO

UT sides

$\mathrm{R}_{\mathbf{u}}$

Measurements of Sides: The Left Side R_{u}

Semileptonic Decays

Decay properties depend directly on $\left|V_{c b}\right| \&\left|V_{u b}\right|$ and m_{b} : perturbative $\left(a_{s}{ }^{n}\right)$.

- $\left|\mathrm{V}_{\mathrm{ub}}\right| \approx 0.004$ the smallest element - not easy!

Semileptonic Decays

$$
\mathrm{B} \rightarrow \mathrm{Dev}
$$

Decay properties depend directly on $\left|V_{c b}\right| \&\left|V_{u b}\right|$ and m_{b} : perturbative $\left(a_{s}{ }^{n}\right)$.

Quarks are bound in hadrons. Interactions of b-quark \& lightquark in the B are very important.

- $\left|\mathrm{V}_{\mathrm{ub}}\right| \approx 0.004$ the smallest element - not easy!

Measurements of $\left|V_{c b}\right|$ \& $\left|V_{u b}\right|$

2 Approaches in B decays
Inclusive $X_{u, \mathrm{c}}=$ sum of all final states.
Framework: Operator Production Expansion.
Exclusive $X_{c}=D, X_{u}=\pi$: Specific final state. Theory: Lattice QCD.

Different theory frameworks. Cross check each other.

IV V_{cb} I Determination

$\left|\mathrm{V}_{\mathrm{cb}}\right|, \mathrm{m}_{\mathrm{b}}$ \& b fermi motion extracted from Semileptonic (and Radiative) spectra.

Inconsistent
-New Physics unlikely
-b-quark dynamics?
-Problem with measurements?

Mass \& Flavour

Global fit from 6 experiments

Phillip URQUIJO

$\left|V_{u b}\right|$

- Problem: $b \rightarrow$ clv rate $50 x$ larger
- Overcoming this background increases Fermi motion dependence.

Mass \& Flavour
Phillip URQUIJO
51
universitätbonn

$\mathrm{IV} \mathrm{Vb} \mid$ from Inclusive $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \mid$ v

－To remove $\boldsymbol{b} \rightarrow \boldsymbol{c} / \mathbf{v}$ ：lose part of $\boldsymbol{b} \rightarrow \mathbf{u l v}$ ．
Measure $\left.\quad \Gamma\left(B \rightarrow X_{u} \ell v\right) \times f_{C}\right) \propto\left|V_{u b}\right|^{2}(1+$ 補正項 $)$

Fraction of signal measured
\rightarrow large theoretical uncertainties

If $f_{c}<80 \%$ ，theory error dominates precision
－New paradigm：B－＂tagging＂\＆Data mining techniques（Neural networks \＆Decision Trees）

Access～90\％ phase space （ $\mathrm{plep}^{*}>1 \mathrm{GeV}$ ）
＂Breakthrough＂
PU in
PRL 104021801 （2010）

$\mathrm{B} \rightarrow \pi \mathrm{lv}$ Exclusive

> European Strategy Group for Particle Physics (Jan 2013) identified $\left|\mathrm{V}_{\mathrm{ub}}\right|$ top priority in flavour.

Mass \& Flavour
Phillip URQUIJO
53

UT sides

\mathbf{R}_{t}

The Right Side R_{t}

Must use loop processes where $b \rightarrow t \rightarrow d$

$V_{t d}$ from B Mixing

- Relation between B mixing \& CKM elements:

$$
\mathrm{x} \equiv \frac{\Delta \mathrm{~m}}{\Gamma}=\frac{\mathrm{G}_{\mathrm{F}}^{2}}{6 \pi^{2}} \mathrm{~B}_{\mathrm{B}} \mathrm{f}_{\mathrm{B}}^{2} \mathrm{~m}_{\mathrm{B}} \tau_{\mathrm{B}}\left|\mathrm{~V}_{\mathrm{tb}}^{*} \mathrm{~V}_{\mathrm{td}}\right|^{2} \overbrace{\mathrm{t}}^{2} \mathrm{~F}\left(\frac{\mathrm{~m}_{\mathrm{t}}^{2}}{\mathrm{~m}_{\mathrm{W}}^{2}}\right) \eta_{\mathrm{QCD}}
$$

- F is a known function, $\eta_{Q C D \sim 0.8}$
- B_{B} and f_{B} are currently determined only theoretically.
- f_{B} very difficult to measure experimentally $(\mathbf{B} \rightarrow \mathbf{I} \mathbf{v}$).
- Best hope lattice QCD, slightly more precise for Bs mixing
- Ratio needed in UT (cancels parameters)
$\left|\mathbf{V}_{\mathrm{td}}\right|^{2} /\left|\mathbf{V}_{\mathrm{ts}}\right|^{2}=\left[(1-\rho)^{2}+\mathrm{n}^{2}\right]$

$$
\frac{\Delta m_{s}}{\Delta m_{d}}=\frac{m_{B_{s}}}{m_{B_{d}}} \xi^{2}\left|\frac{V_{t s}}{V_{t d}}\right|^{2}
$$

ps^{-1}	Belle/Babar	WA(inc LHCb)	$\Delta \%$
$\Delta \mathrm{~m}_{\mathrm{d}}$	0.508 ± 0.005	0.507 ± 0.004	0.8
$\Delta \mathrm{~m}_{\mathbf{s}}$		17.72 ± 0.04	$\mathbf{0 . 2}$

$\mathrm{V}_{\mathrm{tq}} \mathrm{I}$ Summary

- $\left|\mathrm{V}_{\mathrm{ts}}\right|=\left|\mathrm{V}_{\mathrm{cb}}\right|$ with UT constraint,
- Can also precisely extract $\left|\mathrm{V}_{\mathrm{ts}}\right|$ from $B\left(B \rightarrow X_{s} \gamma\right)$
UT sides at $\mathrm{e}^{+} \mathrm{e}^{-}$, FPCP 2013

Most precise $\left|V_{\text {tq }}\right|$ (PDG)

$\left\|\mathbf{V}_{\text {to }}\right\|$ (mix)	(8.4 ± 0.6) 10^{-3}
\| $\mathrm{V}_{\text {ts }} \mid$ (rad)	$(42.9 \pm 2.6) 10^{-3}$
$\left\|\mathbf{V}_{\text {td }} / / \mathbf{V}_{\text {ts }}\right\|$	0.211 ± 0.006
$\left\|\mathbf{V}_{\text {ts }} / / \mathbf{V}_{\text {cb }}\right\|$	$1.04 \pm 0.04 \pm 0.03$
$\left\|\mathrm{V}_{\text {tb }}\right\|^{* *}$	$\sim 1.03 \pm 0.04$

c.f. $\left|V_{\text {cb }}\right| \quad(40.9 \pm 1.1) 10^{-3}$

Phillip URQUIJO 57
universitätbonn

CKM Picture

- $\mathbf{V}^{+} \mathbf{V}=1$ gives us

$$
\begin{aligned}
& V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0 \\
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \\
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{u b}^{*}=0
\end{aligned}
$$

A triangle on the complex plane

	$\frac{V_{u b}}{V_{c b}}$	Angl	
UT CKM Parameter	Measureme nt	ठV/N	Ref.
$\mathrm{V}_{\mathrm{ub}}{ }^{* *}$	$(4.4 \pm 0.5) 10^{-3}$	10\%	
V_{cb}	(4.1 ± 0.1)10-2	3\%	PDG
$\mathbf{V}_{\text {to }} / \mathbf{V}_{\text {ts }}$		3\%	
$\mathrm{V}_{\text {cd }}$	0.228 ± 0.006	3\%	1209.0085
$\mathrm{V}_{\text {to }}$	$\sim 1.03 \pm 0.04$	4\%	1302.1773
\& Flavour	Phillip URQUIJO		58

Mass \& Flavour
Phillip URQUIJO

CKM Picture

- $\mathbf{V}^{\dagger} \mathbf{V}=1$ gives us

$$
\begin{aligned}
& V_{u d} V_{u s}^{*}+V_{c d} V_{c s}^{*}+V_{t d} V_{t s}^{*}=0 \stackrel{\stackrel{\rightharpoonup}{b}}{\dot{b}} \\
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \\
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{u b}^{*}=0
\end{aligned}
$$

A triangle on the complex plane

Putting it all together

Putting it all together

End of Part 2

Homework: CP Eigenstates

-Which of these is a CP eigenstate?
$\rightarrow B^{0} \rightarrow \pi^{+} \pi^{-}$
$-B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{\circ}$
$-B_{s} \rightarrow J / \psi \eta^{\prime}$
$\rightarrow \mathrm{B}^{\circ} \rightarrow \rho^{\circ} \pi^{\circ}$
$\rightarrow \mathrm{B}^{\circ} \rightarrow \rho^{\circ} \rho^{\circ}$

Aside: The origin of "penguins"

Symmetry Magazine Jan/Feb 2007

The origin of penguins

Told by John Ellis:
"Mary K. [Gaillard], Dimitri [Nanopoulos], and I first got interested in what are now called penguin diagrams while we were studying CP violation in the Standard Model in 1976... The penguin name came in 1977, as follows.
In the spring of 1977, Mike Chanowitz, Mary K. and I wrote a paper on GUTs [Grand Unified Theories] predicting the b quark mass before it was found. When it was found a few weeks later, Mary K., Dimitri, Serge Rudaz and I immediately started working on its phenomenology.

That summer, there was a student at CERN, Melissa Franklin, who is now an experimentalist at Harvard. One evening, she, I, and Serge went to a pub, and she and I started a game of darts. We made a bet that If I lost I had to put the word penguin into my next paper. She actually left the darts game before the end, and was replaced by Serge, who beat me. Nevertheless, I felt obligated to carry out the conditions of the bet.

For some time, it was not clear to me how to get the word into this b quark paper that we were writing at the time.... Later...I had a sudden flash that the famous diagrams look like penguins. So we put the name into our paper, and the rest, as they say, is history.

John Elis in Mikhail Shifman's "ITEP Lectures in Particle Physics and Field
Theory', hep-ph/9510397

John Ellis is the former director of Theoretical Particle Physics at CERN

$\sin 2 \beta$ Measurement Principle

$\mathrm{B} \rightarrow \pi \pi$ Results

BaBar : 467M BB arXiv:0807.4226
Belle : 535M BB
PRL98 (2007) 211801

Babar

$C_{\pi^{+} \pi^{-}} \neq 0$, and $S_{\pi^{+} \pi^{-}}=\sqrt{1-C_{\pi^{+} \pi^{-}}^{2}} \sin 2 \alpha_{\text {eff }}$
\rightarrow Observed two types of CP violation:

- Direct : C $\neq 0$
- Mixing-induced: $S \neq 0$

$$
\sigma\left(\alpha_{e f f}\right) \sim 4^{\circ}
$$

BND School, B physics \& CP Violation
Phillip URQUIJO

From $\alpha_{\text {eff }}$ to α : Isospin Analysis

To correct for penguin contribution: Gronau-London method (isopsin triangles).
From flavour tagged decay rates of $\Pi^{+} \Pi^{-}, \pi^{+} \pi^{0}, \pi^{0} \pi^{0}$

$$
\begin{aligned}
&\left|\pi^{+} \pi^{-}\right\rangle=\sqrt{\frac{2}{3}}|\pi \pi, I=0\rangle+\sqrt{\frac{1}{3}}|\pi \pi, I=2\rangle \\
&\left|\pi^{0} \pi^{0}\right\rangle=\sqrt{\frac{1}{3}}|\pi \pi, I=0\rangle-\sqrt{\frac{2}{3}}|\pi \pi, I=2\rangle \\
&\left|\pi^{+} \pi^{0}\right\rangle=|\pi \pi, I=2\rangle \\
& \square \frac{1}{\sqrt{2}} \bar{A}^{+-}+\bar{A}^{00}=\bar{A}^{0-} \\
& \frac{1}{\sqrt{2}} A^{+-}+A^{00}=A^{0+}
\end{aligned}
$$

$$
\arg \left(A^{+-} / \widetilde{A}^{+-}\right)=2 \Delta \alpha=2\left(\alpha-\alpha_{\text {eff }}\right)
$$

Ambiguities: 4 triangle orientations $\Rightarrow 4$-fold ambiguity for Δa
$\alpha \leftrightarrow \pi-a \Rightarrow 8$-fold ambiguity for a
BND School, B physics \& CP Violation
Phillip URQUIJO

65

α from Isospin Analysis

Input: $B F\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right), B F\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right), B F\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right), C_{+-}, S_{+-}, C_{00}$
Find minimum χ^{2} in fit of isospin triangle to measurements. compute C.L.

Belle: $11<\alpha<79^{\circ}$ excluded at 95% C.L. $\quad \alpha$ (degrees)

More promising: $\mathrm{B} \rightarrow \mathrm{\rho} \mathrm{\rho} \quad-5 \times$ larger BF

- Much smaller penguin pollution: $|P / T| \sim 4 \%$
- Final state is mix of CP-odd and CP-even, but CP-even (longitudinal polarization) dominates

Experimental Situation

1. (Ideally) Use modes with small penguin contributions
2. Correct for penguin effects (isospin analysis)

Phillip URQUIJO

Dalitz Plot Measurement

Compare regions of Dalitz space and quantify difference. ${ }_{\text {PRD }} 85,112014$ (2012).

[^0]: Thursday, 29 August 13

