B Physics & CP Violation Part 1/4

Phillip Urquijo Bonn University

BND School, August 29-30, 2013

universität**bonn**

Belle

Who am I?

2003	BSc (Honours)	U. Melbourne	Experiment	Theoretical Interpretation	
2004			BELLE		
2005	PhD	U. Melbourne			
2006				HFAG T	
2007	-		http://ailas.ch		
2008	Maitre-Assistant	U. Geneva			
2009			ГНСР		
2010	Research Assoc.	U. Syracuse	\mathbb{B}		
2011	Junior Professor				
2012	Belle II Physics Coordinator,	U. Bonn		CKM Fitter	
2013	Belle CKM Convenor				

BND School, B physics & CP Violation

Phillip URQUIJO

2

Outline

Part 1: Introduction to Flavour Physics

- Flavour problems in the SM
- Brief history of discovery in flavour physics
- CKM mechanism and Unitarity Triangle (UT)
- B-physics Experiments

Part 2: CP violation & CKM measurements (Triumphs of the SM)

Phillip URQUIJO

3

universität

- Meson-antimeson oscillations
- Introduction to CP violation
- Measurement of UT angles
- Measurement of UT sides

Part 3: Searches for New Physics

- Radiative Decays
- Tauonic Decays
- Purely Leptonic Decays

Part 4: The future

• Future B experiments

BND School, B physics & CP Violation

Simplified Standard Model

	leptons	quarks		strong	E&M	weak	
1st generation	e⁻	u		g	γ	W±	
	Ve	d				Z ⁰	
2nd generation	μ-	С					
3rd generation	V_{μ}	S					
	τ-	t					
	ν _τ	b					

- Why 3 sets (= generations) of particles?
 - How do they differ?
 - How do they interact with each other?
 - Are there only 3?

BND School, B physics & CP Violation

Phillip URQUIJO

4

universität

Simplified Standard Model

	leptons	quarks	strong	E&M	weak
1st generation	e⁻	u	đ		W±
	Vo	d	g	γ	70
- //1	Ve	d	9	γ	70

^{2nd} ge
^{2nd} ge
^{2nd} ge
^{and} ge
^{and} ge
^{and} Gell-Mann and his student at the time, Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins icecream store in Pasadena. Just as ice cream has both color and flavor so do quarks."

RMP 81 (2009) 1887

- Why 3 sets (= generations) of particles?
 - How do they differ?
 - How do they interact with each other?
 - Are there only 3?

BND School, B physics & CP Violation

Phillip URQUIJO

4

universit

The Generation Problem

Periodic Table: End of 19th century

Explained by atomic structure (nucleus +electrons, QM and electromagnetic forces)

The SM account of the 3 generations is merely a Periodic Table.

BND School, B physics & CP Violation

Phillip URQUIJO

universität**bonn**

5

Higgs discovery

Fermion masses arise from the *Yukawa* couplings of quarks and charged leptons to the Higgs field.

2012: LHC found *a* Higgs, key to explain mass, but a complete theory of mass must also explain flavour.

Beyond SM in the Lepton Sector

 No right-handed neutrinos in the SM, implies they are massless.

- Neutrieptssnilfativoushoiolation they have small but finite masses.
 - Where are the R-handed Neutrinos?
- A mechanism beyond the SM is needed.

7

universität

BND School, B physics & CP Violation

Phillip URQUIJO

1thousand million years

Big Bang

300 thousand years 3 minutes 1 second 10-10 10⁻³⁴ second 10⁻⁴³ seconds 10³² degrees 10²⁷ degrees 10¹⁵ degraes 10¹⁰ degrees 10⁹ degrees 6000 degrees 18 degrees

3 degrees K

Big Bang

1thousand million years

Big Bang

1thousand million years

Equal amoun of matter 8 antimatter Matter-antimatter symmetry violation is one of the three necessary conditions for generating a global excess of matter in the evolution of the universe (Sakharov 1967)

6000 degrees

Matter Dominates ! + CMB 3 degrees 1

Matter-AntiMatter Asymmetry

- The Only CP violating phase in SM leads to $10^{-17} \Delta N_B/N_v$. (from Jarlskog invariant)
- To create a larger asymmetry need
 - new sources of CP violation
 - that occur at high energy scales

where do we find it?

- quark sector: discrepancies with KM predictions
- lepton sector: CP violation in neutrino oscillations

t = (

MOU=

gauge sector, extra dimensions, other new physics:

BND School, B physics & CP Violation

Phillip URQUIJO

10,000,000,001

US

()

10,000,000,000

С	Charge Conjugation	particle⇔anti- particle
Ρ	Parity	x→-x, y→-y,z→-z
Τ	Time Reversal	t→-t

Key Aims of Flavour Physics Research

- 1. Search for new symmetries to explain the mass spectrum of fundamental particles.
- 2. Search for sources of matter-antimatter (CP) asymmetry in flavour to explain cosmological observations.
- 3. Understand the interplay of mass and CP asymmetries in a coherent theory of flavour & mass generation.

Flavour phenomena & possible absence of new physics at LHC point to existence of new symmetries at energies beyond the LHC.

BND School, B physics & CP Violation

Phillip URQUIJO

- Energy Frontier: Production of new particles from *collisions* at high-*Energy* (LHC)
 - Limited by Beam Energy

- Flavour Frontier: virtual production of new particles to probe energies beyond the energy frontier.
 - Often first clues about new phenomena, e.g. weak force, c, b, t quarks, Higgs boson.
 - High precision required: very tiny effects

BND School, B physics & CP Violation

Phillip URQUIJO

- Energy Frontier: Production of new particles from *collisions* at high-*Energy* (LHC)
 - Limited by Beam Energy

- Flavour Frontier: virtual production of new particles to probe energies beyond the energy frontier.
 - Often first clues about new phenomena, e.g. weak force, c, b, t quarks, Higgs boson.
 - High precision required: very tiny effects

BND School, B physics & CP Violation

Phillip URQUIJO

- Energy Frontier: Production of new particles from *collisions* at high-*Energy* (LHC)
 - Limited by Beam Energy

- Flavour Frontier: virtual production of new particles to probe energies beyond the energy frontier.
 - Often first clues about new phenomena, e.g. weak force,
 c, b, t quarks, Higgs boson.
 - High precision required: very tiny effects

BND School, B physics & CP Violation

 Energy Frontier: Production of new particles from *collisions* at high-*Energy* (LHC)

Limited by Beam Energy

- Flavour Frontier: virtual production of new particles to probe energies beyond the energy frontier.
 - Often first clues about new phenomena, e.g. weak force, c, b, t quarks, Higgs boson.
 - High precision required: very tiny effects

Advancing the Energy Frontier

Flavour Physics Brief history of discovery

Discovery of Anti-Matter (Anti-Particles)

Each particle has an anti-particle e.g. $u \leftrightarrow \overline{u}, \quad d \leftrightarrow \overline{d}, \quad e^- \leftrightarrow e^+, \quad \nu_e \leftrightarrow \overline{\nu}_e$ Anti-particle concept: P. Dirac, 1928

Compared to its partner, an anti-particle has

- same mass
- opposite electric charge

BND School, B physics & CP Violation

• opposite additive quantum numbers

14

Discovery of e⁺ (positron) in cosmic rays by C. Anderson, 1933

Anti-Hydrogen = $e^+\overline{p}$ bound state discovered 1995 (CERN)

Phillip URQUIJO

1947: Strangeness

New particle observed, produced in strong interaction, with long lifetime (decays only weakly)

 \rightarrow Observation of the "Kaon" in 1947

- → M. Gell-Mann, K. Nishijima (1953) Introduce new quantum number Strangeness S
- S conserved in strong interactions
- S not conserved in weak interactions

$p + \pi^- \to \Lambda + K^0$

BND School, B physics & CP Violation

1950-56: The "Θ - τ Puzzle"

Observation of two strange mesons with

- same mass
- same production rate
- same lifetime

 $\theta \to \pi^+ \pi^0; \quad P(\pi^+ \pi^0) = +1$ $\tau \to \pi^+ \pi^+ \pi^-; P(\pi^+ \pi^+ \pi^-) = -1$

But: decay into final states with different parities

1956: Lee and Yang "Is parity violated in the weak interaction?"

BND School, B physics & CP Violation

Phillip URQUIJO

16

1956: Parity Violation

Θ - τ Puzzle: The Solution

 $\theta \to \pi^+ \pi^0; \quad P(\pi^+ \pi^0) = +1$ $\tau \to \pi^+ \pi^+ \pi^-; P(\pi^+ \pi^+ \pi^-) = -1$

Parity is maximally violated in weak interactions. Its the same particle.

 $\theta = \tau = K^+$

 K^{\pm}

$$I(J^P) = \frac{1}{2}(0^{-})$$

K⁺ DECAY MODES

 K^- modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_j/Γ)	Scale factor/ Confidence level				
Hadronic modes							
Гg	$\pi^{+}\pi^{0}$	(21.13 ±0.14)%	S=1.1				
Γ ₁₀	$\pi^{+}\pi^{0}\pi^{0}$	(1.73 ±0.04)%	S=1.2				
Γ ₁₁	$\pi^{+}\pi^{+}\pi^{-}$	(5.576±0.031) %	S=1.1				

Phillip URQUIJO

18

universitä

1964: CP Violation - Cronin-Fitch Experiment

- Both $K^0 \rightarrow \pi\pi$ and anti- $K^0 \rightarrow \pi\pi$ occur
 - K⁰ may turn into its antiparticle, so are not mass eigenstates.
- The eigenstates are:

$$\begin{split} |K_S^0\rangle &= \frac{1}{\sqrt{2}} (|K^0\rangle + |\bar{K}^0\rangle) \\ |K_L^0\rangle &= \frac{1}{\sqrt{2}} (|K^0\rangle - |\bar{K}^0\rangle) \end{split}$$

• CP operator gives:

 $\mathbf{CP}|K^{0}\rangle = |\bar{K}^{0}\rangle, \mathbf{CP}|K_{S}\rangle = +|\bar{K}_{S}\rangle, \mathbf{CP}|K_{L}\rangle = -|\bar{K}_{L}\rangle$

• Thus:

only
$$K_S \to \pi \pi$$
, but $K_L \to 3\pi$

BND School, B physics & CP Violation

Phillip URQUIJO

19

1964: CP Violation - Cronin-Fitch Experiment

1964: CP Violation - Cronin-Fitch Experiment

1970: The GIM Mechanism

• Observed branching ratio $K^0 \rightarrow \mu^+ \mu^-$

 $\frac{\mathcal{B}K_L \to \mu^+ \mu^-}{\mathcal{B}K_L \to \text{all}} = (7.2 \pm 0.5) \times 10^{-9}$

- In contradiction with theoretical expectation in the 3 quark model ⇒Glashow, Iliopoulos, Maiani
- Prediction of a 2nd up type quark, additional Feynman graph cancels the "*u*-box graph"

$$\Delta m_k + \mathcal{B}(K_L \to \mu^+ \mu^-)$$

– Prediction of m(c)≈1.5GeV

22

BND School, B physics & CP Violation

Phillip URQUIJO

1973: The CKM Mechanism

Adding CPV to the picture led to the prediction of a third quark family before the charm was even discovered!

More on CKM later...

Alternatives explanations...

Progress of Theoretical Physics, Vol. 49, No. 2, February 1973

CP-Violation in the Renormalizable Theory of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

In a framework of the renormalizable theory of weak interaction, problems of CP-violation are studied. It is concluded that no realistic models of CP-violation exist in the quartet scheme without introducing any other new fields. Some possible models of CP-violation are also discussed.

When we apply the renormalizable theory of weak interaction¹⁾ to the hadron system, we have some limitations on the hadron model. It is well known that

VIOLATION OF CP INVARIANCE AND THE POSSIBILITY OF VERY WEAK INTERACTIONS*

652

L. Wolfenstein Carnegie Institute of Technology. Pittsburgh, Pennsylvania (Received 31 August 1964)

"Superweak model", CPV only in $\Delta F = 2$ transitions

Didn't work because they didn't predict CP violation in decay amplitudes.

BND School, B physics & CP Violation

Phillip URQUIJO

universitätbonn

23

1974: Discovery of the Charm Quark

1974: Discovery of the Charm Quark

1977: Discovery of the Bottom Quark

Are there really 3 generations? Fermilab E288 Experiment observed excess of di-muon events at a mass of around 9-10 GeV (3 resonances)

 $p + \mathrm{Cu} \to \mu^+ \mu^- + X$

The Standard Model & CP Violation

CKM mechanism

The Flavour Sector of the Standard Model

Basis of the Standard Model

$$\begin{split} \mathcal{L} &= -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\bar{\psi}D\psi & \text{Gauge Sector} \\ &+ \psi_{i}\lambda_{ij}\psi_{j}h + \text{h.c.} & \text{Flavour Sector} \\ &+ |D_{\mu}h|^{2} - V(h) & \text{Electroweak Symmetry} \\ &\text{Breaking Sector} \end{split}$$

 Quark Sector contains the majority of the free parameters of the Standard Model!

There is a lot to study!

BND School, B physics & CP Violation

Phillip URQUIJO

27

The (Flavour) Parameters of the SM

3 Gauge couplings: α_{EM}, α_{weak}, α_{strong}
2 Electroweak symmetry breaking: *ν*, *m*_H

CDF, D0) Weak Interaction

Hierarchy of the CKM Matrix

• Wolfenstein Parametrization: Expansion in $\lambda = \sin \theta_{\rm C} \approx 0.22$

(4 parameters: $\lambda \approx 0.22$, $A \approx 1$, ρ , η)

 $\left(\begin{array}{cccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$ Parameterisation good to λ³ in real part & λ₅ in $= \begin{pmatrix} 1 & \lambda & 0 \\ -\lambda & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \mathcal{O}(\lambda^2)$ imaginary part $= \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$ $= \begin{pmatrix} 1 - \lambda^{2}/2 - \lambda^{4}/8 & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda + (1 - 2(\rho + i\eta))A^{2}\lambda^{5}/2 & 1 - \lambda^{2}/2 - (1 + 4A^{2})\lambda^{4}/8 & A\lambda^{2} \\ A\lambda^{3}(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^{2} + (1 - 2(\rho - i\eta))A\lambda^{4}/2 & 1 - A^{2}\lambda^{4}/2 \end{pmatrix} + \mathcal{O}(\lambda^{6})$ BND School, B physics & CP Violation Phillip URQUIJO 30

universitätbor

Hierarchy of the CKM Matrix

CKM Matrix – Magnitude

theory inputs (eg., lattice calculations) required

BND School, B physics & CP Violation

Phillip URQUIJO

32

Why is b-quark physics interesting?

Heaviest quark that forms hadronic bound states (m_b~4.7 GeV)

- Must decay to 2nd or 1st Generation
 - All decays are CKM suppressed, Long lifetime (~1.6 ps)
- High mass: many accessible final states (all Br's are small)
- Dominant: "**tree**" b→c
- Very suppressed "tree" b→u
- FCNC: "**penguin**" b→s,d
- Flavour oscillations (b→t "**box**" diagram)
- Expect large CP asymmetries in some B decays

BND School, B physics & CP Violation

Phillip URQUIJO

D 33

Decays of the B Meson

The Six Unitarity Triangles

$$V^{\dagger}V = \begin{pmatrix} V_{ud}^{*} & V_{cd}^{*} & V_{td}^{*} \\ V_{us}^{*} & V_{cs}^{*} & V_{ts}^{*} \\ V_{ub}^{*} & V_{cb}^{*} & V_{tb}^{*} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

BND School, B physics & CP Violation

Phillip URQUIJO

35

universitätbonr

Unitarity Triangles for B_d

The Unitarity Triangle ("B_d Triangle")

$$V_{td} = |V_{td}| e^{-i\beta}$$
$$V_{ub} = |V_{ub}| e^{-i\gamma}$$
$$\alpha = \arg\left(-\frac{V_{tb}^* V_{td}}{V_{ub}^* V_{ud}}\right)$$
$$\beta = \arg\left(-\frac{V_{cb}^* V_{cd}}{V_{tb}^* V_{td}}\right)$$
$$\gamma = \arg\left(-\frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}}\right)$$

36

universität**bonn**

Phillip URQUIJO

BND School, B physics & CP Violation

Unitarity Triangles for B_d and B_s

B_s triangle contains very small angle, any deviation from this would be a sign of NP!

BND School, B physics & CP Violation

Phillip URQUIJO

 $\beta_s \equiv \arg$

 $\sim \eta \lambda^2 \sim 1^{\circ}$

universität**bon**r

 $\frac{cb^{V}cs}{z^{*}\mathbf{v}}$

37

Over-constraining the Unitarity Triangle

Five observables $(\alpha, \beta, \gamma, R_u, R_t)$ for 2 degrees of freedom (ρ, η)

The Unitarity Triangle can be fully determined by 2 precise measurements.

Measure more and the UT can R_u be over-constrained, e.g. R_u

38

We observe **SM+new physics** (must exist), so making the constraints disagree with each other would mean discovery.

Need at least 3 precise measurements

BND School, B physics & CP Violation

Phillip URQUIJO

The B Experiments

Colliders & Detectors

Where are B Mesons Produced?

The B Factories

PEP-II @ SLAC

Energy: 9.0 GeV e^{-} + 3.1 GeV e^{+} Design luminosity : 3 x 10³³ cm⁻²s⁻¹ Peak luminosity : 1.207 x 10³⁴ cm⁻² s⁻¹ B mesons: rate ~ 13 Hz, 470 M BB

KEK-B @ KEK

Energy: 8.0 GeV e^{-} +3.5 GeV e^{+} Design luminosity : 1 x 10³⁴ cm⁻²s⁻¹ Peak luminosity : 2.11 x 10³⁴ cm⁻² s⁻¹ B mesons: rate ~ 19 Hz, 780 M BB

Production of B Mesons

- Centre-of-mass energy = mass of Y(4S)
- Y(4S) is bound bb-state that decays to ~100% to B^+B^- or $B^0\overline{B}^0$ pairs

BND School, B physics & CP Violation

Phillip URQUIJO

43

Asymmetric Beam Energies

KEKB and PEP-II Luminosities

The B-Factory Experiments

b Production at Hadron Colliders

	e+e- (PEPII, KEKB)	p anti-p→b anti-bX (√s=2TeV) Tevatron	pp→b anti-bX (√s=7TeV) LHC
Prod. obb	1 nb	~100 µb	~300µb
typ. bb rate	10 Hz	~100 kHz	~300kHz
purity	~1/4	~0.2%	~0.6%
pile-up	0	1.7	0.5→25
B content	B+(50%),B ⁰ (50%)	$B^+(40\%), B^0(40\%), B_s(10\%), B_c(<1\%), b-baryon(10\%)$	
B boost	small, βγ~0.5	large, decay vertices are displaced	
event structure	BB pair alone	many particles not associated to b	
Prod. vertex	not reconstructed	reconstructed with many tracks	
B ⁰ anti-B ⁰ mixing	coherent	incoherent→flavour tagging dilution	
b production t hadron	\downarrow_{g} b g \downarrow_{g} f_{b} g \downarrow_{g} f_{b} g g g f_{b} g g g f_{b} g	b g	b g correction of the second
A a	quark annihilation gluon	fusion flavour excitati	gluon on splitting
3ND School, B physics & CP Violation		Phillip URQUIJO	universitätba

b Production at Hadron Colliders

2009-

LHC

More than 10¹² b-anti-b pairs (10⁹ at B-factories)produced already and growing.
LHCb dedicated B-physics detector
B-physics programs at CMS and ATLAS.

Phillip URQUIJO

48

LHCb

- Study beauty, and charm in forward region
 4.9 > η >1.9
- Designed for time dependent analyses with fast mixing frequencies
 - Vertex reconstruction with VELO Si detector
 - Hadron identification with RICH (K/π identification using Cherenkov light emission angle)
 - ECAL for electron, photon, hadron energy measurement
- Trigger is 2 phase, hardware
 +software for enormous rate
 reduction
 - triggers on high pT tracks, leptons, displaced vertices

BND School, B physics & CP Violation

Luminosity profiles at LHC

Running in 2010 (when I was on shift)

LHCb Event Display

BND School, B physics & CP Violation

Phillip URQUIJO

universitätbon

51

VErtex LOcator

Vertex Locator (Velo) Silicon strip detector with \sim 5 μ m hit resolution \rightarrow 30 μ m IP resolution

Material imaged used beam gas collisions

BND School, B physics & CP Violation

D VOI VON PICKOW CINCILO

B vertex measurement

LHCb Particle Identification

Kaon ring

54

universität**bonn**

BND School, B physics & CP Violation

Phillip URQUIJO

LHCb integrated luminosity

Phillip URQUIJO

55

universitätb

What does JLdt = 1/fb mean?

• Measured cross-section, in LHCb acceptance • $\sigma(pp \rightarrow bbX) = (75.3 \pm 5.4 \pm 13.0) \,\mu b$, PLB 694 (2010) 209

- So, number of bb pairs produced in 1/fb (2011 sample)
 10¹⁵ x 75.3 x 10⁻⁶ ~ 10¹¹
- Compare to combined data sample of e⁺e⁻ "B factories"BaBar and Belle of ~10⁹ BB pairs
 - for any channel where the (trigger, reconstruction, offline) efficiency not too small, LHCb has largest data sample

Phillip URQUIJO

56

● *p.s.*: for charm, $\sigma(pp \rightarrow ccX) = (6.10 \pm 0.93)$ mb

BND School, B physics & CP Violation

Heavy flavour production @ LHC

End of Part 1

CP Violation and the BAU

- We can estimate the magnitude of the baryon asymmetry of the Universe caused by KM CP violation
- Introduce parameterisation invariant measure of CP in quark sector, J.

Mass scale **M** can be taken to be EW scale O(100 GeV) This gives an asymmetry **O(10**⁻¹⁷) much below observed **O(10**⁻¹⁰)

BND School, B physics & CP Violation

Phillip URQUIJO

59

1956-57: Parity Violation

Quick verification using modified cyclotron

$$\pi^+ \to \mu^+ \nu$$
$$\mu^+ \to e^+ + 2\nu$$

parity violation in the decay of the +ve pion leads to a polarisation of the muon along direction of travel. Similarly for the electron.

BND School, B physics & CP Violation

1995: Discovery of the Top Quark

GIM+CKM+ *b*-decay prediction m(t)~150GeV (1980)

Z0 decays@LEP (1994) m(t)=179+12/-9GeV

1994 Direct Observation at the Tevatron (CDF & D0)

Are there more than three Generations?

- We do not know why there are 3 families (not predicted by Standard Model)
- But we know that there are 3 families with light neutrinos ($m_v < 45 \text{ GeV/c}^2$)

measurement of Z-boson width at LEP

 $e^+e^- \rightarrow \mathrm{hadrons}$

Thursday, 29 August 13

Width: $\Gamma = \hbar/\tau$ (τ : lifetime)

$$\Gamma_{Z} = \Gamma_{e} + \Gamma_{\mu} + \Gamma_{\tau} + \Gamma_{had} + n \cdot \Gamma_{v}$$

→ n = 3 neutrino families Potential 4th family in simple SM extension would have to have heavy neutrino ($m_v > m_z/2$)

20/

Phillip URQUIJO

9, e, p, t, Ve, V, VE, X 9, e, p, t, t, Ve, V, VE, X

62

New Phenomena DNA

 Different models predict different sets of quantum numbers/masses/ couplings.

Analyse meson (bound q anti-q pair) & lepton decays in a variety of signatures. e.g.

b Production at Hadron Colliders

At LHC Gluon-gluon fusion is prominent production mechanism. If gluons do not have equal momenta, **b** anti-b system can have significant momentum and go forward in the CM.

Requirements same as at all heavy flavour experiments: Good vertex resolution to identify PV & SV Good momentum resolution to measure proper time Particle ID to select decay products

BND School, B physics & CP Violation

Phillip URQUIJO

64

universität
Unitarity of the CKM Matrix

$$V^{\dagger}V = \begin{pmatrix} V_{ud}^{\ast} & V_{cd}^{\ast} & V_{td}^{\ast} \\ V_{us}^{\ast} & V_{cs}^{\ast} & V_{ts}^{\ast} \\ V_{ub}^{\ast} & V_{cb}^{\ast} & V_{tb}^{\ast} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
rows 1 × 1, uu
rows 2 × 2, cc
rows 3 × 3, tt
rows 3 × 3, tt
rows 1 × 1, dd
rows 2 × 2, ss
rows 3 × 3, tt
rows 3 × 3, bb
rows 1 × 1, dd
rows 2 × 2, ss
rows 1 × 1, dd
rows 2 × 2, ss
rows 1 × 2, cu
rows 1 × 2, cu
rows 1 × 2, cu
rows 1 × 3, tu
rows 1 × 3, tu
rows 1 × 2, sd
rows 1 × 3, tc
rows 1 × 2, sd
rows 1 × 3, bd
rows 2 × 3, bs
rows 2 × 3, bs
rows 1 × 3, bd
rows 2 × 3, bs
rows 1 × 3, bd
rows 2 × 3, bs
rows 1 × 3, bd
rows 2 × 3, bs
rows 1 × 3, bd
rows 2 × 3, bs
rows 1 × 3, bd
rows 2 × 3, bs
rows 1 × 3, bd
rows 2 × 3, bs
rows 1 × 3, bd
rows 2 × 3, bs
rows 1 × 3, bd
rows 2 × 3, bs
rows 1 × 3, bd
rows 2 × 3, bs
rows 1 × 3, bd
rows 2 × 3, bs
rows 2

BND School, B physics & CP Violation

Phillip URQUIJO

65

universität**bon**