

Outline

Part 1: Introduction to Flavour Physics

- What is flavour physics \& why is it interesting?
- Brief history of discovery in flavour physics
- CKM mechanism and Unitarity Triangle (UT)
- B-physics Experiments

Part 2: CP violation \& CKM measurements (Triumphs of the SM)

- Meson-antimeson oscillations
- Introduction to CP violation
- Measurement of UT angles
- Measurement of UT sides

Part 3: Search for New Physics

- Radiative Decays
- Tauonic Decays
- Purely Leptonic Decays

Part 4: The future

- What do we hope to learn from current experiments
- The future of flavour physics

BND School, B physics \& CP Violation
Phillip URQUIJO

Searches for New Phenomena

- Energy Frontier: Production of new particles from collisions at high-Energy (LHC)

- Limited by Beam Energy
- Flavour Frontier: virtual production of new particles to probe energies beyond the energy frontier.
- Often first clues about new phenomena, e.g. weak force, c, b, t quarks, Higgs boson.
- High precision required: very tiny effects

Searches for New Phenomena

- Energy Frontier: Production of new particles from collisions at high-Energy (LHC)
- Limited by Beam Energy
- Flavour Frontier: virtual production of new particles to probe energies beyond the energy frontier.

- Often first clues about new phenomena, e.g. weak force, c, b, t quarks, Higgs boson.
- High precision required: very tiny effects

Searches for New Phenomena

- Energy Frontier: Production of new particles from collisions at high-Energy (LHC)
- Limited by Beam Energy
- Flavour Frontier: virtual production of new particles to probe energies beyond the energy frontier.
- Often first clues about new phenomena, e.g. weak force, c, b, t quarks, Higgs boson.
- High precision required: very tiny effects

Highly virtual, thus
probabilities small

Searches for New Phenomena

- Energy Frontier: Production of new particles from collisions at high-Energy (LHC)
- Limited by Beam Energy
- Flavour Frontier: virtual production of new particles to probe energies beyond the energy frontier.
- Often first clues about new phenomena, e.g. weak force, c, b, t quarks, Higgs boson.
- High precision required: very tiny effects

Flavour as a high mass probe

Bounds from Mixing and some CP observables

Generic bounds without a flavor symmetry

- Ways out

1. New particles have large masses >> 1 TeV
2. New particles have degenerate masses
3. Mixing angles in the new sector are small, same as in SM (MFV)
4. The above already implies strong constraints on NP

New Phenomena DNA

- Different models predict different sets of quantum numbers/masses/ couplings.

Analyse meson (bound q anti-q pair) \& lepton decays in a variety of signatures. e.g.

Precision tests of quark interactions

New Phenomena in rare decay processes

BND School, B physics \& CP Violation

New Physics "DNA Chip"

Test Analyses

Flavour Phenomenology

- Much recent activity on a variety of models including:
- SUSY models (MSSM, CMSSM, BMSSM,)
- SUSY-GUTs
- Extra dimensions (UED, RS...)
- Extended Higgs sectors
- A 4th generation of quarks/leptons
- New gauge bosons W', Z'
- Models featuring a warped extra dimension (RandallSundrum) offer a simultaneous geometrical solution to the hierarchy and flavour problems

UT (CP violation) and New Physics

- You might have concluded from the last lecture that we had not seen New Physics,
- yet what we observe is the sum of Standard Model + New physics. How do we set limits on NP?
- One Hypothesis: assume that tree level diagrams are dominated by SM and loop could contain NP

Tree Diagram example

Loop diagram examples

They are consistent

- But consistency is only at the 5% level
- Same for $\mathrm{B}_{\mathrm{s}}(\mathrm{CP}$ violation in $\mathrm{B} \rightarrow \mathrm{J} / \Psi \Phi)$:
- limits on NP are not so strong

BND School, B physics \& CP Violation
Phillip URQUIJO
8
universitätbonn

Rare B decays

1. Radiative and Electroweak Penguin Decays with Flavour Changing Neutral Currents (FCNC) that occur in the SM only at the loop level

- high sensitivity to New Physics (NP) (can appear in the loop with size comparable to leading SM contributions)
- Complementary to the direct production of new particles expected at LHC

2. Highly suppressed (i.e. helicity suppression) processes.

- Huge datasets collected at the two B-factories, BaBar and Belle, and the LHC experiments (already!) made it possible to explore these decays.

Radiative \& EW Pengiuns $B \rightarrow X_{s} \gamma, B \rightarrow K^{*} I^{+} I^{-}$

Important NP contributions to $B R\left(B \rightarrow X_{S} \gamma\right)$

Example search for new physics.

Flavor changing neutral currents (FCNC)

- Forbidden at tree level in the SM
- New, heavy particles likely to appear at loop level

Decay rate sensitive to b quark dynamics
Used in conjunction with $B \rightarrow X_{d} Y$ for Indirect determination of $\left|\mathrm{V}_{\text {td }}\right| / / \mathrm{V}_{\text {ts }} \mid$

$$
\Gamma\left(B \rightarrow X_{s} \gamma\right)=\frac{\alpha G_{F}^{2} m_{b}^{5}}{32 \pi^{4}}\left|V_{t b} V_{t s}\right|^{2}\left|C_{7}\left(m_{b}\right)\right|^{2}\left[1+\frac{\lambda_{1}}{2 m_{b}^{2}}-\frac{9 \lambda_{2}}{2 m_{b}^{2}}+\ldots\right]
$$

$\mathrm{b} \rightarrow \mathrm{s} \gamma$
 Backgrounds

- Goals:
\triangleright high efficiency
\triangleright largest fraction of phase space
\rightarrow Energy cut as low as posible
- Dominating backgrounds
\triangleright merged π^{0} from continuum events
\triangleright (merged) π^{0} from $B \bar{B}$ events
Very bad for lower E_{γ} cuts!

- Background fighting
-Identify secondary photon production

Photon energy spectrum

- Sum of exclusive modes

- (fully) inclusive

- Differences in resolution: Photons from $B \rightarrow K^{*} \gamma$!
- Partial branching fractions $E_{\gamma}>1.6 \mathrm{GeV}$
$B R($ semi, bABAR $)=(3.49 \pm 0.20 \pm 0.50 \pm 0.04) \times 10^{-4}$ $B R($ incl, beLle $)=(3.47 \pm 0.15 \pm 0.40 \pm 0.01) \times 10^{-4}$

$\mathrm{b} \rightarrow \mathrm{s} \gamma$ Prediction

Not easy though...Decay rate sensitive to b quark mass, dynamics, etc.

$$
\begin{aligned}
\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)_{\mathrm{SM}}^{E_{\gamma}>1.6 \mathrm{GeV}}=\mathcal{B}\left(B \rightarrow X_{c} e \bar{\nu}\right)_{\exp }\left[\frac{\Gamma(b \rightarrow s \gamma)}{\Gamma(b \rightarrow c e \bar{\nu})}\right]_{\mathrm{LO}} \\
\times\left\{1+\mathcal{O}\left(\alpha_{s}\right)+\mathcal{O}(\alpha)+\mathcal{O}\left(\alpha_{s}^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{c}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)\right\} \\
\text { Misiak et al. (2006) }
\end{aligned}
$$

perturbative

LO QCD + local $1 / m_{b}{ }^{2}$
LO QCD + local $1 / m_{c}{ }^{2}$
non-local (!) $1 / m_{b}$
non-perturbative
relative size of corrections compared to leading-order (LO) branching ratio
Phillip URQUIJO
14

Strong constraints on NP

- Measured $(3.43 \pm 0.21 \pm 0.07) 10^{-4}$
- Theory $(3.15 \pm 0.23) 10^{-4}$ (NNLL) Misiak arXiv 1010.4896
- Ratio 1.13 ± 0.11, Limits most NP models
- e.g. 2HDM
- $\mathrm{m}\left(\mathrm{H}^{+}\right)>316 \mathrm{GeV}$

BND School, B physics \& CP Violation
Phillip URQUIJO
15

Photon Polarisation

- New LHCb measurement LHCb-
CONF-2013-009 of $\mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \boldsymbol{\pi} \pi \boldsymbol{\gamma}$
- compare y direction relative to $\mathrm{K}^{+} \pi \pi$ plane
- Equivalent to Parity violation.
- Polarisation amplitude $\mathrm{A}_{\text {ud }}$

$\mathcal{A}_{\text {ud }}=-0.085 \pm 0.019$ (stat) ± 0.003 (syst)

$$
\mathrm{B}^{\mathrm{o}} \rightarrow \mathrm{~K}^{*} \mathrm{O} \mathrm{l}^{+} \mathrm{l}
$$

- Similar to $B \rightarrow X_{s} \gamma$, where $X_{s}=K^{\star}$, but more diagrams (ways for NP to enter)

new particles can enter loops

- Rare. $\mathrm{BR}\left(\mathrm{B} \rightarrow \| \mathrm{K}^{*}\right)=(3.3 \pm 1.0) \cdot 10^{-6}$
- Several variables can be studied: forward backward AfB $^{\text {F }}$ asymmetry, is well predicted,
- Sensitive to Supersymmetry, Any 2HDM, Fourth generation, Extra dimensions, Axions . . .NP right handed currents

Operator Product Expansion

- To Build an effective theory for b physics
- take the weak part of the SM
- integrate out the heavy fields (W, Z, t)
$\mathcal{L}_{\text {(full EW } \times Q \text { CD) }} \longrightarrow \mathcal{L}_{\text {eff }}=\mathcal{L}_{\text {QED } \times \text { CCD }}\binom{$ quarls $\neq t}{x$ kppons }$+\sum_{n} C_{n}(\mu) Q_{n}$
Q_{n} - local interaction terms (operators), $\quad C_{n}$ - coupling constants (Wilson coefficients)
- Wilson coefficients
- encode information on the weak scale
- are calculable and known in the SM (at least to leading order)
- are affected by new physics
- for $\mathrm{K}^{\star} \mu \mu$ we care about C_{7} (also affects $\mathrm{b} \rightarrow \mathrm{s} \gamma$), C_{9} and C_{10}

Effective Operators

$$
\begin{aligned}
\mathcal{H}_{W}^{\Delta B=1, \Delta C=0, \Delta S=-1}= & 4 \frac{G_{F}}{\sqrt{2}}\left(\lambda_{c}^{s}\left(C_{1}(\mu) Q_{1}^{c}(\mu)+C_{2}(\mu) Q_{2}^{c}(\mu)\right)\right. \\
& \left.+\lambda_{u}^{s}\left(C_{1}(\mu) Q_{1}^{u}(\mu)+C_{2}(\mu) Q_{2}^{u}(\mu)\right)-\lambda_{t}^{s} \sum_{i=3}^{10} C_{i}(\mu) Q_{i}(\mu)\right)
\end{aligned}
$$

where the $\lambda_{q}^{s}=V_{q \phi}^{*} V_{q s}$ and the operator basis is given by

$$
\begin{array}{ll}
Q_{1}^{q}=\bar{b}_{L}^{\alpha} \gamma^{\mu} q_{L}^{\alpha} \bar{q}_{L}^{\beta} \gamma_{\mu} s_{L}^{B} & Q_{2}^{q}=\bar{b}_{L}^{\alpha} \gamma^{\mu} q_{L}^{\beta} \bar{q}_{L}^{B} \gamma_{\mu} s_{L}^{\alpha} \\
Q_{3}=\bar{b}_{L}^{\alpha} \gamma^{\mu} s_{L}^{\alpha} \sum_{q} \bar{q}_{L}^{\beta} \gamma_{\mu} q_{L}^{B} & Q_{4}=\bar{b}_{L}^{\alpha} \gamma^{\mu} s_{L}^{B} \sum_{q} \bar{q}_{L}^{B} \gamma_{\mu} q_{L}^{\alpha} \\
Q_{5}=\bar{b}_{L}^{\alpha} \gamma^{\mu} s_{L}^{\alpha} \sum_{q} \bar{q}_{R}^{\beta} \gamma_{\mu} q_{R}^{B} & Q_{6}=\bar{b}_{L}^{\alpha} \gamma^{\mu} s_{L}^{\beta} \sum_{q} \bar{q}_{R}^{\beta} \gamma_{\mu} q_{R}^{\alpha} \\
Q_{7}=\frac{3}{2} \bar{b}_{L}^{\alpha} \gamma^{\mu} s_{L}^{\alpha} \sum_{q} e_{q} \bar{q}_{R}^{B} \gamma_{\mu} q_{R}^{B} & Q_{8}=\frac{3}{2} \bar{b}_{L}^{\alpha} \gamma^{\mu} s_{L}^{\beta} \sum_{q} e_{q} \bar{q}_{R}^{B} \gamma_{\mu} q_{R}^{\alpha} \\
Q_{9}=\frac{3}{2} \bar{b}_{L}^{\alpha} \gamma^{\mu} s_{L}^{\alpha} \sum e_{q} \bar{q}_{L}^{\beta} \gamma_{\mu} q_{L}^{B} & Q_{10}=\frac{3}{2} \bar{b}_{L}^{\alpha} \gamma^{\mu} s_{L}^{\beta} \sum e_{q} \bar{q}_{L}^{\beta} \gamma_{\mu} q_{L}^{\alpha}
\end{array}
$$

Four-fermion operators (except

$$
\begin{aligned}
Q_{7 \gamma} & =\frac{e}{16 \pi^{2}} m_{b} \bar{b}_{L}^{\alpha} \sigma^{\mu \nu} F_{\mu \nu} s_{L}^{\alpha} \\
Q_{8 g} & =\frac{g_{s}}{16 \pi^{2}} m_{b} \bar{b}_{L}^{\alpha} \sigma^{\mu \nu} G_{\mu \nu}^{A} T^{A} s_{L}^{\alpha} \\
Q_{9 V} & =\frac{1}{2} \bar{b}_{L}^{\alpha} \gamma^{\mu} s_{L}^{\alpha} \overline{\gamma_{\gamma \mu}} l \\
Q_{10 A} & =\frac{1}{2} \bar{b}_{L}^{\alpha} \gamma^{\mu} s_{L}^{\alpha} \bar{l} \gamma_{\mu} \gamma_{5} l
\end{aligned}
$$

$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mathrm{O} \mathrm{l}^{+} \mathrm{l}^{-}$

LHCb arXiv:1304.6325
See also CDF PRL 108 (2012) 081807
BaBar PRD 86 (2012) 032012
ATLAS-CONF-2013-038 \& CMS BPH-11-009

Phillip URQUIJO
20
universitätbonn

Angular distributions and A_{FB}

- A lot of information in the full θ_{1}, θ_{k} and ϕ distributions
- Many observables depending on $q^{2}=m^{2}(\mu \mu)$

$$
\frac{d^{2} \Gamma}{d q^{2} d \cos \theta_{l}}=\frac{3}{8}\left[\left(1+\cos ^{2} \theta_{l}\right) H_{T}\left(q^{2}\right)+2 \cos \theta_{l} H_{A}\left(q^{2}\right)+2\left(1-\cos ^{2} \theta_{l}\right) H_{L}\left(q^{2}\right)\right]
$$

$$
\begin{aligned}
& H_{T}\left(q^{2}\right) \propto 2 q^{2}\left[\left(C_{9}+2 C_{7} \frac{m_{b}^{2}}{q^{2}}\right)^{2}+C_{10}^{2}\right] \\
& H_{A}\left(q^{2}\right) \propto-4 q^{2} C_{10}\left(C_{9}+2 C_{7} \frac{m_{b}^{2}}{q^{2}}\right), \\
& H_{L}\left(q^{2}\right) \propto\left[\left(C_{9}+2 C_{7}\right)^{2}+C_{10}^{2}\right] .
\end{aligned}
$$

Angular Analysis of $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*} \mathrm{l} \mathrm{l}^{+1}$

First measurement of zero-crossing point of $A_{F B}$ $\mathrm{q}_{0}^{2}=(4.9 \pm 0.9) \mathrm{GeV}^{2} / \mathrm{c}^{4}$

Consistent with SM expectation

No deviation from the Standard Model here

Isospin asymmetry in $\mathrm{B} \rightarrow \mathrm{K}^{(*)} \mu \mu$

Deviation from zero integrated over $q^{2} \sim 4.4 \sigma$ Consistent with previous measurements
(BaBar, Belle, CDF)

Consistent with zero \& with SM prediction Consistent with previous measurements (BaBar, Belle, CDF)

Tauonic Decays: $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \tau v$

$$
\begin{gathered}
R_{N P}=\frac{B R\left(B \rightarrow \tau \nu_{\tau}\right)_{S M+N P}}{B R\left(B \rightarrow \tau \nu_{\tau}\right)_{S M}} \\
R_{S U S Y}=\left[1-\frac{\tan ^{2} \beta}{1+\epsilon_{0} \tan ^{2} \beta} \frac{M_{B}^{2}}{M_{H}^{2}}\right]^{2} \\
\mathbf{R}_{2 \mathrm{HDM}, \mathrm{MFV}}=\left[1-\frac{m_{B}^{2}}{m_{H}^{2}} \frac{\tan ^{2} \beta}{1+\left(\epsilon_{0}+\epsilon_{1}\right) \tan \beta}\right]^{2}
\end{gathered}
$$

Power of e ete-, example: Full Reconstruction Method

- Fully reconstruct one of the B mesons to
- Tag B flavor/charge
- Determine B momentum
- Exclude decay products of one B from further analysis

\rightarrow Offline B meson beam!
Powerful tool for B decays with neutrinos
- Reconstruct D^{*}) and lepton.
- Examine missing mass in recoiling B.
- Should be consistent with 2-neutrinos from the tau.
- Large deviations from SM: Combined is almost 5 sigma! The B-factories must perform complementary tests.

BND School, B physics \& CP Violation
Phillip URQUIJO
26

Leptonic Decays

$B_{u} \rightarrow \tau v, B_{d, s} \rightarrow \mu \mu$

$\mathrm{B} \rightarrow \tau v$ Measurement

Rate related to B meson decay constant $f_{B}{ }^{2}, \mid \mathrm{Vub}^{2}$
$\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}$

Helicity suppressed - very small in SM.
NP could interfere e.g. charged Higgs, and change the branching fraction

$$
B\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)=B_{\mathrm{SM}} \times\left(1-\frac{\mathrm{m}_{\mathrm{B}}^{2}}{\mathrm{~m}_{\mathrm{H}}^{2}} \tan ^{2} \beta\right)^{2}
$$

Mass \& Flavour
Phillip URQUIJO

$\mathrm{B} \rightarrow \tau v$ Measurement

Rate related to B meson decay constant $f_{B}{ }^{2}, \mid \mathrm{Vub}^{2}$
$\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}$

Helicity suppressed - very small in SM. NP could interfere e.g. charged Higgs, and change the branching fraction
$B\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)=B_{\mathrm{SM}} \times\left(1-\frac{\mathrm{m}_{\mathrm{B}}^{2}}{\mathrm{~m}_{\mathrm{H}}{ }^{2}} \tan ^{2} \beta\right)^{2}$
Mass \& Flavour

Example of a B $\rightarrow \tau \nu$ candidate

Belle 2013 Result

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{B}^{+}{ }_{\text {tag }} \mathrm{B}_{\text {signal }}
$$

B-signal $\rightarrow \mathbf{T}(\mu v \mathrm{v}, \mathrm{evv}, \pi \mathrm{v}, \rho \mathrm{v}) \mathrm{v}$

ECL= Electromagnetic calorimeter

Signal $(B \rightarrow T v)$: Zero or small value of $E_{E C L}$ arising only from beam background

Consistent with SM

Charged Higgs: Type II 2HDM

- Type II 2HDM Global fit (Frequentist)
 Belle + BaBar : B \rightarrow TV + B \rightarrow DTV + B $\rightarrow D^{*}$ TV

- Everything white is ruled out....

$\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$

- Powerful, clean way of testing for New Physics
- Very small in the SM: NP can make large contributions
- Many NP models possible, not just supersymmetry.

$$
B R\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{S M}=(3.3 \pm 0.3) \times 10^{-8} \quad B R\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{M S S M} \propto \tan ^{6} \beta / M_{A 0}^{4}
$$

$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{\mu}^{+} \mu^{-}$selection

- Produce a very large sample of B mesons
- Trigger efficiently on dimuon signatures
- Reject background
- vertex resolution (identify displaced vertex): B impact parameters, B lifetime, B PT
- mass resolution (identify B peak)
- muon identification (reject background from B decays with misidentified pions): muon isolation, impact parameter of muons,
- typical to combine various discriminating variables into a multivariate classifier
- e.g. Boosted Decision Tree algorithm

$\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}:$LHCb candidate

Phillip URQUIJO

2012 Status

Phillip URQUIJO

CMS Mass Distributions

Barrel

2012 BDT bin 3

2012 BDT bin 4

Barrel

BDT
Endcap

Phillip URQUIJO

Bso

latest results from CMS \& LHCb

CMS arXiv:1307.5025

Events weighted by $\mathrm{S} /(\mathrm{S}+\mathrm{B})$

LHCb arXiv:1307.5024

Only events with BDT > 0.7

Results

Results

D0 10.4 t Popular physics theory running out of hiding places

By Pallab Ghosh

CDF 10ft

ATLAS 4.9fb

preliminary Rossarchers at the Largs Hadron collider
Ravered one of the rarest particle decays seen in nature.
fb^{-}The finding deals a significant blow to the
theory of physics known as supersymmetry.
Many researchers had noped the LHC would
CMS $25 \mathrm{fb}^{-1} \begin{aligned} & \text { Many researchers tha } \\ & \text { nave contirmed this by now. }\end{aligned}$
CMS+LHCb preliminary

Supersymmetry, or Susy, has gained popularity
as a way to explain some of the themic physics
in the traditional theory of subatom
known as the Standard Model.

The new observation, reported at the Hadron Collider Physids paper, is conference in Kyoto and outined an the most likely models of Susy-
2. is the spokesperson for the UK participation in the

Prof Chris parkes, who is the spokesperson for the Uk pan not be dead but
B(B) ${ }^{0}$ - these latest results have certainly put it into hospital."

Phillip URQUIJO
39

Lepton Decays

τ lepton flavour violation

- LFV provides a theoretically clean null test of the SM
- τ decays studied at B-factories. Dedicated experiments do μ LFV.
- MEG ($\mu \rightarrow \mathrm{e} \gamma$) new results 2011.
- NP may induce LFV at one-loop due to
- slepton mixing,
- H^{++}, e.g. Babu-Zee models,
- Neutral higgs boson.
- or LNV due to Majorana neutrinos.

- upper limits in SUSY e.g. BR~10-7
- TeV scale sensitivity!

Experimental technique

$$
\left.\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \tau^{+} \tau^{-} \text {(} \begin{array}{c}
\mathrm{Br} \sim 85 \% \\
\longrightarrow \mu+\eta \text { prong + missing } \\
\text { (tag side) }
\end{array}\right)
$$

Fully reconstructed \qquad

Signal extraction: $M_{\mu \eta}-\Delta E$ plane

$$
\begin{aligned}
& M_{\mu \eta}=\sqrt{\left(E_{\mu \eta}^{2}-p_{\mu \eta}^{2}\right)} \\
& \Delta E=E_{\mu \eta}^{C M}-E_{\text {beam }}^{C M}
\end{aligned}
$$

Upper limits (2011 Summer)

- Almost all LFV modes measured with full B-factory data sets
- Ratios of LFV decay BFs distinguish between NP models.
- LHCb and CMS are preparing

LFV Impact On Models

Seesaw

SUSY

CMSSM model point with 3 massive RH N for various $m\left(N_{3}\right)$ and θ_{13}

TeV scale slepton $\mathrm{ml} 3<\mathrm{ml} 1,2$

Eur.Phys.J. C72 (2012) 2126

MEG Phys. Rev. Lett. 110, 201801 (2013)
S. Antush et al. JHEP, 11:090 (2006)

End of Part 3

Flavour Beyond the Standard Model

- Supersymmetry (SUSY) fundamental continuous symmetry connecting fermions and bosons

In principle expect SUSY partners to have same masses as SM states

- Not observed!
- SUSY must be a broken symmetry at low energy
- Two higgs doublets in SUSY
- can give rise to large FCNC effects

Flavour Beyond the Standard Model

- Two Higgs doublet:
- 1 doublet $=\mathbf{4}$ degrees of freedom, $\mathbf{3}$ massive bosons -> 1 physical Higgs
- 2 doublets $=\mathbf{8}$ degrees of freedom, 3 massive bosons -> 5 physical Higgs
The Higgs doublets acquire different v.e.v.'s and the mass matrix reads

$$
\hat{m}_{d}^{i j}=\hat{h}_{d, 1}^{i j} \mathrm{v}_{1}+\hat{h}_{d, 2}^{i j} \mathrm{v}_{2}
$$

Key parameter $\tan \beta$: ratio of higgs doublet VEVs.
Diagonalisation of the mass matrix will not give diagonal Yukawa couplings

- Will induce large, usually unacceptable FCNC in the Higgs sector
- Solution:
- One Higgs doublet couples only to down quarks and the other couples to up quarks only
- Up and down sectors diagonalised independently, Higgs interactions remain flavour diagonal at tree level.

Experimental techniques

- Sum of exclusive modes
'semi-inclusive'

- Sum of ca. 40 modes
- Full reconstruction of B

Good background rejection
\triangleright Photon measured in B restframe (better resolution!)

- Dominant systematics
\triangleright missing final states
- (fully) inclusive

- High-energy photon $\triangleright E_{\gamma}^{*}>1.5 \mathrm{GeV}$
- Background reduction \triangleright lepton tag
- Dominant systematics
$\triangleright B$ background subtraction

Decay characteristics

- Rate sensitive to new physics but not shape.
- At parton level, photon is monochromatic with $\mathrm{E} \sim \mathrm{mb}_{\mathrm{b}} / 2$
- Smeared by motion of b-quark inside the B-meson, and gluon emission
- Complicated theoretical error on the prediction of the shape,
- =>As much of the low energy tail must be measured to reduce this error.

Majorana Neutrinos in B decays: $\mathrm{m}=0.2-5 \mathrm{GeV}$

- Same sign dilepton signature.
- If they are Majorana and couple to ordinary neutrinos
- Best limits are on μ modes
(a)

(b)

