

Rare Kaon decay

$$K^+ \to \pi^+ \nu \bar{\nu}$$

The story so far...

Decay	Branching Ratio (×10 ¹⁰)	
	Theory(SM)	Experiment
$K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \nu \overline{\nu} (\gamma)$	$0.85 \pm 0.07^{[1]}$	$1.73^{+1.15}_{-1.05}$
$K_{L}^{0} \rightarrow \pi^{0} \nu \overline{\nu}$	$0.27 \pm 0.04^{[3]}$	< 260 (90% CL)

- 1) A measurement of BR($K^+->\pi^+ vv$) determines V_{td} without input from Lattice QCD
- 2) The strong suppression of the SM component (<10⁻¹⁰) offers good sensitivity to New Physics.
- 3) E949 experiment: BR($K^+->\pi^+ vv$) consistent with the Standard Model prediction !!
- 4) E391a experiment: The upper limit on BR($K^0->\pi^0$ vv) was improved by a factor of 20.

Kaon and CKM Matrix

$$BR(K^{+} \to \pi^{+} \bar{\nu} \nu) = 6r_{K^{+}} BR(K^{+} \to \pi^{0} e^{+} \nu) \frac{|G_{l}|^{2}}{G_{F}^{2} |V_{us}|^{2}}$$

$$BR(K^{0} \to \pi^{0} \bar{\nu} \nu) = 6 \frac{\tau_{K_{L}}}{\tau_{K^{+}}} r_{K_{L}} BR(K^{+} \to \pi^{0} e^{+} \nu) \frac{(\operatorname{Im} G_{l})^{2}}{G_{F}^{2} |V_{us}|^{2}}$$

$$G_l = \frac{\alpha G_F}{2\pi \sin^2 \Theta_W} \left[V_{ts} V_{td} X(x_t) + V_{cs}^* V_{cd} X_{NL}^l \right]$$

EW Penguin	SM and/or example of SUSY effect	Contributes to
$\sum_{\bar{s}_L} Z$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{split} K \to & \pi \nu \bar{\nu} \\ K_L \to & \pi^0 \ell^+ \ell^- \\ K_L \to & \ell^+ \ell^- \end{split}$
\bar{s}_L \bar{s}_L d_L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K_L \to \pi^0 \ell^+ \ell^-$
SH^0 \bar{s}_L d_L	h^0, H^0, A^0 $\overline{S}_{L,R}$ $d_{R,L}$ $d_{R,L}$ M_u	$K_L ightarrow \pi^0 \mu^+ \mu^ K_L ightarrow \mu^+ \mu^-$ (helicity-suppressed)

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

SM
$$B(K^+ \to \pi^+ \nu \bar{\nu}(\gamma))^{\text{SM}} = 8.2(8) \cdot 10^{-11}$$

 $\mathcal{B}(K_L \to \pi^0 \mu^+ \mu^-) = (1.5 \pm 0.3) \times 10^{-11}$

Beyond SM

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = 17.3 \cdot 10^{-11}$$

 $\mathcal{B}(K_L \to \pi^0 \mu^+ \mu^-) = 12 \cdot 10^{-11}$

3

Detector layout

CHOD

Charged Hodoscope

IHEP

Sofia

LKr MUV

Mainz

IHEP

INR

SAV

Small Angle Veto

- 75 GeV/c
- 750 MHz
- π/K/p (~6% K⁺)

Belgium

Measure Kaon: Time

Angles

Gigatracker (GTK)

Momentum

Decay Region 65m

Total Length 270m

 $K^+ \rightarrow \pi^+ \pi^0 \pi^0$

Straw

Tracker

JINR

CERN

INFN

LAV:

Large Angle Photon Veto

 $K^+ \rightarrow \pi^0 \mu^+ \nu$

 $K^+ \rightarrow \pi^0 e^+ \nu$

2%

INFN

US

3% (called K_{u3}^+)

RICH

5% (called K_{e3}^+)

$$K^+ \to \mu^+ \nu$$
 $K^+ \to \pi^+ \pi^0$
 $K^+ \to \pi^+ \pi^+ \pi^-$

63% (called
$$K_{\mu 2}$$
)
21%

$$21\%$$

CERN

Beam Line + Infra.

CHANTI INFN

$$6\%$$

Instalation of K12 beam line started in mid 2012.

Beam Permit Nov 1st

Instalation of K12 beam line started in mid 2012.

Beam Permit Nov 1st

Technical run during November

First half of Straw Chamber during technical run!

- Module 1 (1=2 chamber) and frontend electronics was installed
- the readout board (SRB) is tested and the principles validated;
- the FPGA-based TDC have been integrated on the frontend board (cover) and tested successfully;

the validation of the high and low voltage power supplies (Wiener MPOD) was performed;

 the validation of the low voltage patch panels and the design of the high voltage Electronics meets design specifications patch panels was completed.

Identification of K^+ to π^+ π^0 through a reconstruction of contained π^0 shower plus π^+ residual mass

Timeline

Timeline

01/2013 07/2013 01/2014

Ready for first chamber installation

- A total of more than 4 000 straws have been manufactured;
- Procurement of all module frames and the rest of the mechanical components;
- Technical transfer including a full set of assembly tooling to Dubna after validation
- at CERN;
- Start-up of the module production in Dubna;

Preparations for first Physics Run (two years from now)

- Straw is key detector within experiment
- Calibration and alignment esential
- Feasibility of taking leading role in physics analysis

Men power needed

1 phD full time for four years and 1 postdoc

Summary

Status:

- New beamline commisioned
- Succesfull technical run
- First physics run October 2014

Alis Collaboration:

- Developing the sofware.
- Opportunity to get a leading role in the physics analysis.

Manpower required:

- 1 additional PhD
- 1 additional postdoc

BACKUP

Excellent response of the chamber

People in our experiment

List of publications

Nucl.Instrum.Meth. A718 (2013) 164-167

Phys.Lett. B719 (2013) 326-336

Phys.Lett. B698 (2011) 105-114

Nucl.Instrum.Meth. A623 (2010) 543-545

Nucl.Instrum.Meth. A617 (2010) 365-368

Nucl.Instrum.Meth. A617 (2010) 436-438

+ 35 proceedings

The Alis Collaboration

Lydia Brener
Alis Rodriguez Manso
Redmer Bertens
Davide Francesco Lodato
You Zhou
Carlos Perez
Luca Pernie

Schedule after our succesful 2012 technical run

2012: first technical run

- new beamline commissioned
- (prototypes of) all detectors online

Focus on: k+ -> pi0+pi+

- 8.10^6 events triggered
- excellent results on tracking (charged particles) calorimetry (neutrla) and trigger and daq systems

challending future steps:

- straw production ongoing
 - about to commission straw1
 - testing new tracker chips
 - cooling of computer farms

expectation:

- oct 2014 first physics run
 - few months later: first anlaysis resutls
- full phase space probed: spring 2017
 - full reacah of SM test reached

note from carlos and redmer: this is not the final layout of the slide :)!