

Direct Dark Matter Detection with a Ton Scale Bubble Chamber

Chicagoland Observatory for Underground Particle Physics 500kg

Evidence for Dark Matter

- Observational evidence of Dark Matter:
 - rotation curves of galaxies do not match visible matter
 - micro-lensing shows hints of gravitationally interacting matter

COUPP-500

The state of the art

- Indirect searches: DM annihilation
 (IceCube, H.E.S.S., GLAST,...)
- Direct searches: Nuclear recoil of WIMPs (COUPP, CDMS, XENON, CUORE,...)
- Goal: Set more stringent limits on DM scattering cross sections
- Difficulty: Discriminate true nuclear recoil from electron-, muon-, neutron- recoils and alpha particles

The state of the art

→ Idea: Upgrade COUPP to 500 kg bubble chamber

→ Advantages:

- Most of the R&D already performed
- Necessary know-how present within the collaboration
- High performance/Low cost

Experimental Setup

- COUPP-500: Bubble Chamber (fluid: CF₃I)
 - Bubble nucleation ~ temperature and pressure
- Setup based on previous COUPP experiments (upgrade)
- Signal: single bubble produced through
 DM recoil
- Background:
 - EM recoil (β and γ)
 - Neutrons
 - Alpha particles

Background

Tune operation parameters \sim sensitive to nuclear recoils & blind to minimum ionization (β and γ)

→ Full EM background rejection

Background

- Neutrons: mean-free-path 15 cm (~ 10¹² cm for WIMPs) with multiple scattering
 - More bubbles!

Dark matter

Neutron

→ Full neutron background rejection

Slide 7

Background

Alphas: Louder acoustics than nuclear recoil (4-5 X louder)

- Most of the R&D has been established in previous COUPP experiments
- Planned R&D:
 - Chemical studies of the active fluid
 - Bubble acoustics and acoustic sensors
- Ongoing/future calibrations:
 - Low energy nuclear recoil response
 - Acoustic alpha/recoil separation

Slide 9

•Conclusion

- Direct detection of DM nuclear recoil
- Based on know-how from previous COUPP experiments
- Simple experimental setup
- Relatively cheap compared to other experiments
- Full EM and neutron rejection possible
- Excellent alpha rejection (> 98.9%)
- Competitive limits

