

Direct Search for Dark Matter with EURECA

European Underground Rare Event Calorimeter Array

SIMSON Think Tank

Why search for dark matter?

 Hints at all scales: Rotational curves of galaxies, bullet cluster, CMB power spectrum,...

- Planck 2013: Universe = 26.8 % dark matter
- Possible composition: MACHOs, WIMPs axions, sterile neutrinos,...
- Detection:
 - Direct: scattering of WIMPs off atomic nuclei
 - Indirect: annihilation products of WIMPs

Direct dark matter searches

- Dark matter particle scatters elastically off an atomic nucleus
- Measure recoil energy O(10-100 keV)
- Expected signal rate ($\sigma=10^{-45}$ cm²) ≤ 1 event/kg/year

→ Minimize background and maximize signal:

- Deep underground site
- Ultra low radio-active materials
- Combination of detection techniques
- More target material!

Spin-independent

interaction (SI)

Current status of direct searches (SI)

EDELWEISS-II

- At Laboratoire Souterrain de Modane
- Uses ultrapure Ge bolometers operated at 18 mK
- Combines phonon and ionization detection techniques:
 - Phonon detection provides total energy
 - Ionization detection allows discriminates between nuclear and electron recoils

Issue: Electron recoil near surface induces less charge Solution: Special electrode layout that creates a clearly separated fiducial volume with background rejection power ~1 in 10⁵

CRESST-II

- Cryogenic Rare Event Search using Superconducting Thermometers
- Located at Gran Sasso, 1400m below ground
- Modular configuration of sensitive area. Each module consists of 300 g CaWO₄ scintillator + tungsten transition edge sensor (TES).
- System is cooled to 10 mK where tungsten sensor becomes superconducting.
- Phonon emission is registered as temperature change using extremely senstive SQUID ($\Delta T/T = 10^{-6}$)
- Enhance signal/background ratio:
 - Copper and lead shielding for photons
 - Polyethylene blocks for neutrons
 - Muon veto scintillator

Experimental setup for EURECA

- Large target mass, up to 1000 kg
- Cryogenic calorimeter (~10 mK)
- Combination of EDELWEISS and CRESST detection technology:
 - Phonon detection for total deposited energy measurement
 - Measurement of ionization and scintillation light for background discrimination
- NEW: multiple target materials (Ge, CaWO₄, ...)
 - Test A²-scaling of WIMP-nucleus interaction
 - Allows to constrain unknown WIMP mass
 - Help determine residual neutron background
- NEW: tower setup
 - Use coincidence veto to gain sensitivity
 Test uniform rates within target

Expected sensitivity of EURECA

Present state of play

Aim of 1-tonne experiments

Challenges

- Need to scale up technology (read-out, DAQ, cooling, shielding,...)
 in cost-effective way without deteriorating performance
- Shielding needs to allow for expected background of 1 event/tonne/year
 - Need to improve radiopurity of used materials
 - 3m water tank with PMTs
 - Put most radioactive parts of detectors and electronics behind local shield
- Lower recoil energy threshold to gain sensitivity to low WIMP masses
- R&D is ongoing

Timeline + contribution

Project	09	10	11	12	13	14	15	16	17	18	19	20	21
ASPERA Design Study/CDR													
Technical Design Report													
Decision													
Construction I (150 kg)													
Exploitation I													
Construction II (1 t)													
Exploitation II													

SIMSON Think Tank

- R&D for target material is crucial for background rate and lowering threshold Examples: ZnWO₄, CaMoO₄,Al₂O₃
- Implementation of a scalable DAQ framework

Conclusions & outlook

- EURECA is a next-generation direct dark matter experiment with a huge potential
- We request funding for R&D for Phase II upgrade:
 - Scalable DAQ framework
 - Additional target material

