VUB, Oct 18, 2013

The Search for Dark Matter Particles

Patrick Decowski <u>decowski@nikhef.nl</u>

Rotation Curves

- Zwicky in 1933: luminous matter insufficient to describe gravitational binding in clusters of galaxies
- Vera Rubin in early '70: Rotational curves of spiral galaxies do not follow Newtonian expectation based on mass in luminous disk

Need non-luminous "Dark Matter"

Much Astronomical Evidence for DM

Much Astronomical Evidence for DM

Much Astronomical Evidence for DM

Dark Matter and Cosmology

...but what is it made off?

Patrick Decowski - Nikhef/UvA

Properties of Dark Matter

- Known properties of DM:
 - Gravitationally interacting
 - No EM interactions
 - "Cold" i.e. non-relativistic
 - Non-baryonic
 - Long lived

Properties of Dark Matter

- Known properties of DM:
 - Gravitationally interacting
 - No EM interactions
 - "Cold" i.e. non-relativistic
 - Non-baryonic
 - Long lived

	FERMION	IS ma	ati in	ter constitu = 1/2, 3/2	ients , 5/2,	
Lep	tons spin =1/	2		Quark	(S spin	=1/2
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge
𝒫 lightest neutrino*	(0-0.13)×10 ⁻⁹	0		u up	0.002	2/3
e electron	0.000511	-1		d down	0.005	-1/3
𝔑 middle neutrino*	(0.009-0.13)×10 ⁻⁹	0		C charm	1.3	2/3
μ muon	0.106	-1		S strange	0.1	-1/3
ℓµ heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0		t top	173	2/3
τ tau	1.777	-1		bottom	4.2	-1/3

Properties of Dark Matter

- Known properties of DM:
 - Gravitationally interacting
 - No EM interactions
 - "Cold" i.e. non-relativistic
 - Non-baryonic
 - Long lived

Has to be some new, unknown, particle

Some DM Candidates

Many candidates, usually some extension of the Standard Model

Some DM Candidates

Many candidates, usually some extension of the Standard Model

Some DM Candidates

Many candidates, usually some extension of the Standard Model

"10-point test" of DM candidates Consist. with direct DN searches? Consist. with other astro. constr.? Consist. with other astro. constr.? Consist. with Barmanan Constr. Leaves stellar evol. unchend!

Is it neutral.

IV.

√

√

1

 \sim

✓

✓

✓

✓

~

✓

~

✓

✓

✓

✓

✓

Consistent with BBN.

v.

√

√

1

✓

√

✓

✓

✓

 \sim

✓

√

<

✓

√

×

<

VI.

 \checkmark

√

1

✓

 \checkmark

✓

✓

✓

_

✓

✓

✓

✓

✓

_

 \checkmark

Cold Neutral BBN Stars Self Direct 7-rays Astro Probed

VII.

 \checkmark

 \checkmark

1

 \checkmark

√

×

v!

√

√!

√!

 \checkmark

√!

✓

 \checkmark

_

 \checkmark

VIII.

-

√

1

√

√

√!

v!

 \checkmark

 \checkmark

v!

×

✓

v!

√!

_

✓

_

√!

√!

~

 \checkmark

√!

√!

√

1

√!

×

1

√!

_

_

✓

 \checkmark

 \checkmark

1

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

✓

<

✓

✓

✓

1

 \sim

×

 \sim

1

 \sim

√

×

~

~

 \sim

 \checkmark

 \times^{a}

√

√

 \checkmark

×

 \sim

Appropriate relic density!

III.

√

√

 \checkmark

<

√

✓

<

√

✓

1

 \checkmark

1

 \checkmark

 \checkmark

×

<

I.

 Ωh^2

×

 \sim

 \checkmark

 \checkmark

√

 \sim

 \checkmark

~

 \checkmark

 \checkmark

 \checkmark

~

 \checkmark

 \checkmark

 \checkmark

 \checkmark

п.

×

 \sim

1

<

√

 \checkmark

<

√

<

<

✓

1

✓

✓

<

~

aoso,
G.Bertone,
, A.Masiero,
JCAP
0803:022,
2008

√ =OK	~=Still viable	$\times = NO$! = To be/being explored
-------	----------------	---------------	--------------------------

DM candidate

SM Neutrinos

Neutralino

Gravitino

Sneutrino $\tilde{\nu}_L$

Axino

Axion

Champs

Wimpzillas

 B^1 UED

Sneutrino $\tilde{\nu}_R$

SUSY Q-balls

First level graviton UED

Inert Higgs model

Heavy photon (Little Higgs)

Sterile Neutrinos

Gravitino (broken R-parity)

"10-point test" of DM candidates Consist with direct DM searchest Consist. with other 25tro. constri-Consist. with gammaray constra Leaves stellar evol. unchend!

IV.

√

√

1

 \sim

✓

✓

✓

✓

~

√

~

✓

✓

✓

✓

✓

Consistent with BEIN.

v.

√

√

1

~

√

✓

✓

✓

 \sim

✓

√

<

✓

√

×

<

VI.

 \checkmark

✓

1

✓

 \checkmark

 \checkmark

✓

✓

_

✓

✓

 \checkmark

✓

✓

_

 \checkmark

Cold Neutral BBN Stars Self Direct 7-rays Astro Probed

VII.

 \checkmark

 \checkmark

1

 \checkmark

√

×

v!

√

√!

√!

 \checkmark

√!

✓

 \checkmark

_

 \checkmark

VIII.

-

√

1

√

√

√!

v!

 \checkmark

✓

v!

×

✓

v!

√!

_

✓

IX.

_

√!

√!

✓

√

√!

√!

√

✓

√!

×

1

√!

_

_

✓

x.

✓

 \checkmark

✓

 \checkmark

√

 \checkmark

✓

 \checkmark

✓

✓

 \checkmark

 \checkmark

✓

 \checkmark

1

 \sim

Appropriate relic density!

III.

√

√

 \checkmark

<

√

<

<

√

✓

1

 \checkmark

1

 \checkmark

 \checkmark

×

<

I.

 Ωh^2

×

 \sim

 \checkmark

 \checkmark

 \checkmark

 \sim

 \checkmark

~

 \checkmark

 \checkmark

 \checkmark

~

 \checkmark

 \checkmark

 \checkmark

 \checkmark

п.

×

 \sim

1

<

√

 \checkmark

<

√

<

<

<

1

✓

✓

<

~

\mathbf{Result}	1. Taos
×	, ,
~	
~	Bert
~	lon
✓	e,)
×	₽. 7
✓	las
~	ier
~	о, J
✓	L A
ת	P O
✓	80
✓	ι
✓	22
×	,20
~	80(

 \leq

√=OK	~=Still viable	$\times = NO$! = To be/being explored
------	----------------	---------------	--------------------------

DM candidate

SM Neutrinos

Neutralino

Gravitino

Sneutrino $\tilde{\nu}_L$

Axino

Axion

Champs

Wimpzillas

 B^1 UED

Sneutrino $\tilde{\nu}_R$

SUSY Q-balls

First level graviton UED

Inert Higgs model

Heavy photon (Little Higgs)

Sterile Neutrinos

Gravitino (broken R-parity)

"10-point test" of DM candidates Consist with direct DM searchest Consist. with other 25tro. constri. Consist. with gammaray constr. Leaves stellar evol. unchand.

IV.

√

√

1

 \sim

~

✓

√

✓

~

√

~

✓

✓

✓

✓

✓

Consistent with BEIN.

v.

√

√

1

~

√

✓

✓

✓

 \sim

✓

√

<

✓

√

×

<

VI.

 \checkmark

✓

1

✓

 \checkmark

✓

✓

✓

_

✓

✓

 \checkmark

✓

✓

_

 \checkmark

Cold Neutral BBN Stars Self Direct 7-rays Astro Probed

VII.

 \checkmark

 \checkmark

1

 \checkmark

√

×

v!

√

√!

√!

 \checkmark

√!

✓

 \checkmark

_

 \checkmark

VIII.

-

√

1

√

√

√!

v!

 \checkmark

✓

v!

×

✓

v!

√!

_

✓

IX.

_

√!

√!

✓

√

√!

√!

√

1

√!

×

1

V!

_

_

✓

x.

√

 \checkmark

✓

✓

 \checkmark

 \checkmark

✓

 \checkmark

✓

✓

 \checkmark

✓

✓

 \checkmark

1

 \sim

Appropriate relic density!

III.

√

√

1

<

√

✓

<

√

✓

1

 \checkmark

1

 \checkmark

 \checkmark

×

<

I.

 Ωh^2

×

 \sim

 \checkmark

 \checkmark

 \checkmark

 \sim

 \checkmark

~

 \checkmark

 \checkmark

 \checkmark

~

 \checkmark

 \checkmark

 \checkmark

 \checkmark

п.

×

 \sim

1

<

√

 \checkmark

<

√

<

<

✓

1

✓

✓

<

~

Result	. Tao
×	so,
~	<u></u>
\checkmark	Bert
~	ton
~	e, `
×	<u></u>
~	las
~	ier
~	, o,
 Image: A second s	C A
\times^{a}	P Q
\checkmark	080
~	ü.
~)22
×	20
~	300

 \leq

|--|

DM candidate

SM Neutrinos

Neutralino

Gravitino

Sneutrino $\tilde{\nu}_L$

Axino

 B^1 UED

Axion

Champs

Wimpzillas

Sneutrino $\tilde{\nu}_R$

SUSY Q-balls

First level graviton UED

Inert Higgs model

Heavy photon (Little Higgs)

Sterile Neutrinos

Gravitino (broken R-parity)

Three ways to find Particle Dark Matter

Three ways to find Particle Dark Matter

production

Dark Matter density and velocity distribution

From astrophysics: observation & simulation

Local DM density: $\rho_{DM} = 0.3 \text{ GeV cm}^{-3}$

 \rightarrow Flux of 10⁵ cm⁻² s⁻¹ for a 100 GeV WIMP

Preliminaries

Sun velocity vector pointing roughly to Cygnus

Assume WIMP is not only gravitationally interacting

M. W. Goodman and E. Witten, Phys. Rev. D 31, 3059 (1985).

We measure:

$$\frac{dR(t)}{dE_R} = N_T \frac{\rho_{\chi}}{m_{\chi}} \int_{v_{\min}}^{v_{esc}} d^3v \frac{d\sigma}{dE_R} v f(v, v_e(t))$$

Effective interaction Lagrangian (low E limit, $v \sim 10^{-3}$ c):

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= f_q \overline{\chi} \chi \overline{q} q + d_q \overline{\chi} \gamma^\mu \gamma^5 \chi \overline{q} \gamma_\mu \gamma^5 q + \dots \\ \text{Scalar} & \text{Axial} \end{aligned}$$

$$\frac{d\sigma}{dE_R} = \frac{m_T}{2\mu^2 v^2} \left[\sigma_{SI} F_{SI}^2(E_R) + \sigma_{SD} F_{SD}^2(E_R) \right]$$

We measure:

$$\frac{dR(t)}{dE_R} = N_T \frac{\rho_{\chi}}{m_{\chi}} \int_{v_{\min}}^{v_{esc}} d^3 v \frac{d\sigma}{dE_R} v f(v, v_e(t))$$

Effective interaction Lagrangian (low E limit, $v \sim 10^{-3}$ c):

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= f_q \overline{\chi} \chi \overline{q} q + d_q \overline{\chi} \gamma^\mu \gamma^5 \chi \overline{q} \gamma_\mu \gamma^5 q + \dots \\ \text{Scalar} & \text{Axial} \end{aligned}$$

$$\frac{d\sigma}{dE_R} = \frac{m_T}{2\mu^2 v^2} \left[\sigma_{SI} F_{SI}^2(E_R) + \sigma_{SD} F_{SD}^2(E_R) \right]$$

We measure:

$$\frac{dR(t)}{dE_R} = N_T \frac{\rho_{\chi}}{m_{\chi}} \int_{v_{\min}}^{v_{esc}} d^3v \frac{d\sigma}{dE_R} v f(v, v_e(t))$$

Effective interaction Lagrangian (low E limit, $v \sim 10^{-3}$ c):

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= f_q \overline{\chi} \chi \overline{q} q + d_q \overline{\chi} \gamma^\mu \gamma^5 \chi \overline{q} \gamma_\mu \gamma^5 q + \dots \\ \text{Scalar} & \text{Axial} \end{aligned}$$

$$\frac{d\sigma}{dE_R} = \frac{m_T}{2\mu^2 v^2} \left[\sigma_{SI} F_{SI}^2(E_R) + \sigma_{SD} F_{SD}^2(E_R) \right]$$

Effective interaction Lagrangian (low E limit, $v \sim 10^{-3}$ c):

$$\begin{split} \mathcal{L}_{\text{eff}} &= f_q \overline{\chi} \chi \overline{q} q + d_q \overline{\chi} \gamma^\mu \gamma^5 \chi \overline{q} \gamma_\mu \gamma^5 q + \dots \\ \text{Scalar} & \text{Axial} \end{split}$$

$$\frac{d\sigma}{dE_R} = \frac{m_T}{2\mu^2 v^2} \left[\sigma_{SI} F_{SI}^2(E_R) + \sigma_{SD} F_{SD}^2(E_R) \right]$$

We measure:

$$\frac{dR(t)}{dE_R} = N_T \frac{\rho_{\chi}}{m_{\chi}} \int_{v_{\min}}^{v_{esc}} d^3v \frac{d\sigma}{dE_R} v f(v, v_e(t))$$

Effective interaction Lagrangian (low E limit, $v \sim 10^{-3}$ c):

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= f_q \overline{\chi} \chi \overline{q} q + d_q \overline{\chi} \gamma^\mu \gamma^5 \chi \overline{q} \gamma_\mu \gamma^5 q + \dots \\ \text{Scalar} & \text{Axial} \end{aligned}$$

$$\frac{d\sigma}{dE_R} = \frac{m_T}{2\mu^2 v^2} \left[\sigma_{SI} F_{SI}^2(E_R) + \sigma_{SD} F_{SD}^2(E_R) \right]$$

Spin-independent cross section:

$$\sigma_{SI} = \frac{4\mu^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2 \propto A^2$$

Better sensitivity with high A

$$\sigma_{SD} = \frac{32\mu^2}{\pi} G_F^2 \frac{J+1}{J} \left[a_p \langle S_p \rangle + a_n \langle S_n \rangle \right]^2$$

Spin-independent cross section:

$$\sigma_{SI} = \frac{4\mu^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2 \propto A^2$$

Better sensitivity with high A

$$\sigma_{SD} = \frac{32\mu^2}{\pi} G_F^2 \underbrace{J+1}_{J} [a_p \langle S_p \rangle + a_n \langle S_n \rangle]^2$$
Only axial vector
describing state
of nucleus as q $\rightarrow 0$

Spin-independent cross section:

$$\sigma_{SI} = \frac{4\mu^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2 \propto A^2$$

Better sensitivity with high A

Spin-independent cross section:

$$\sigma_{SI} = \frac{4\mu^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2 \propto A^2$$

Better sensitivity with high A

Spin-independent cross section:

$$\sigma_{SI} = \frac{4\mu^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2 \propto A^2$$

Better sensitivity with high A

Spin-dependent cross section:

Need nucleus with spin:

¹⁹F, ²³Na, ⁷³Ge, ¹²⁷I, ¹²⁹Xe, ¹³¹Xe, ¹³³Cs (but no Ar!)

WIMP-nucleus scattering

- Need to consider 3 energy scales for WIMP-nucleus elastic scattering
 - Electroweak scale: determines composition and mass of WIMP
 - E.g. the SUSY part of the problem \rightarrow sweeps through SUSY parameter space
 - QCD scale: determines quark distributions inside the nucleons (both spin&density)
 - This has been measured to high precision
 - Nuclear physics: at the modest scattering energies, interaction is with the entire nucleus:
 - Not measurable and need to rely on calculations \rightarrow e.g. nuclear shell model

Expected Energy Spectrum

- Elastic collisions with nuclei
 - WIMP velocity $\sim 10^{-3}$ c
- Energy of recoiling nucleus is tiny : <50 keV
- Rates are uncertain, since they depend on model
- Spectrum is featureless (no peaks)

Minimizing Backgrounds

- Critical aspect of any rare event search minimize backgrounds!
- Purity of materials
 - Copper, germanium, xenon among the cleanest with no natural occurring longlived isotopes
 - Ancient lead, if free of ²¹⁰Pb
- Shielding
 - External U/Th/K backgrounds
- Krypton and Radon mitigation
- Material handling and assaying
 - Surface preparation, cosmic activation
- Underground siting and active veto
 - Avoid muon-induced neutrons
- Detector-based discrimination

Minimizing Backgrounds

- Critical aspect of any rare event search minimize backgrounds!
- Purity of materials
 - Copper, germanium, xenon among the cleanest with no natural occurring longlived isotopes
 - Ancient lead, if free of ²¹⁰Pb
- Shielding
 - External U/Th/K backgrounds
- Krypton and Radon mitigation
- Material handling and assaying
 - Surface preparation, cosmic activation
- Underground siting and active veto
 - Avoid muon-induced neutrons
- Detector-based discrimination

Current state-of-the-art: <1 ev/(kg·yr) Moving to: 1 ev/(ton·yr)

Underground Labs with DM Experiments

inPing

Soudan Soudan SNOLab URF SNOLab Gran Sasso (LNGS)

> Need at least 1000m rock (~3000 mwe) overburden Reduces muon rate by ~10⁵

> > South Pole

Kamioka

Yangyang

0 0

SuperCDMS CoGeNT DEAP 0 LUX CLEAN Picasso COUPP DAMIC

Underground Labs with **DM** Experiments ZEPLIN DRIFT DELWEISS PandaX ArDM DAMA/LIBRA Rosebud XENON ANAIS

CRESST DarkSide

XMASS Newage CDEX • • • KIMS

DM-Ice

Detection Techniques

Particle-dependent Response

- <u>Claims</u>
 - **DAMA**: Annual modulations long-time claim
 - Community is sceptical: something is modulating, but probably not DM
 - **CRESST-II**: More events than expected from background
 - **CDMS-Si**: 3 events when 0.7 BG events were expected
 - **CoGeNT**: Low energy spectrum has unexpected feature; annual modulation
- <u>Exclusions</u>
 - **XENONIOD**: excludes virtually all the above signals, some of them by large margins
 - **CDMS-Ge / CDMSlite**: excludes most of the above signals
 - **Others** (e.g. COUPP, EDELWEISS, ZEPLIN-III, SIMPLE): exclude most above signals

- <u>Claims</u>
 - **DAMA**: Annual modulations long-time claim

Modulation present in 2-6 keV, absent above 6 keV

• **Others** (e.g. COUPP, EDELWEISS, ZEPLIN-III, SIMPLE): exclude most above signals

- <u>Claims</u>
 - **DAMA**: Annual modulations long-time claim
 - Community is sceptical: something is modulating, but probably not DM
 - **CRESST-II**: More events than expected from background
 - **CDMS-Si**: 3 events when 0.7 BG events were expected
 - **CoGeNT**: Low energy spectrum has unexpected feature; annual modulation
- <u>Exclusions</u>
 - **XENONIOD**: excludes virtually all the above signals, some of them by large margins
 - **CDMS-Ge / CDMSlite**: excludes most of the above signals
 - **Others** (e.g. COUPP, EDELWEISS, ZEPLIN-III, SIMPLE): exclude most above signals

• <u>Claims</u>

- <u>Claims</u>
 - **DAMA**: Annual modulations long-time claim
 - Community is sceptical: something is modulating, but probably not DM
 - **CRESST-II**: More events than expected from background
 - **CDMS-Si**: 3 events when 0.7 BG events were expected
 - **CoGeNT**: Low energy spectrum has unexpected feature; annual modulation
- <u>Exclusions</u>
 - **XENONIOD**: excludes virtually all the above signals, some of them by large margins
 - **CDMS-Ge / CDMSlite**: excludes most of the above signals
 - **Others** (e.g. COUPP, EDELWEISS, ZEPLIN-III, SIMPLE): exclude most above signals

XENON Collaboration

XENONIO, XENONIO, XENONIT, XENONIT

Dual-Phase XeTPC

Detection Properties

Laboratori Nazionali del Gran Sasso, Italy

LNGS 1400 m Rock (3100 w.m.e)

LVD

0

ICARUS

WARP OPERA

Laboratori Nazionali del Gran Sasso, Italy

LNGS 1400 m Rock (3100 w.m.e)

ENONIT (2015)

LVD

CARUS

WARP OPERA

XENON100

XENON100 started physics run in early 2010

Patrick Decowski - Nikhef

XENON100

333

Bottom array: 80 PMTs

+4500 16000

PTFE TPC, Field shaping rings

Patrick Decowski - Nikhef

Impurities

Energy determination

 $E_{nr} = fcn(SI) \rightarrow measured in dedicated setups$

Discriminating Nuclear from Electron Recoils

BG-like ⁶⁰Co & ²³²Th: Y-source Signal-like AmBe:

neutron source

Discriminating Nuclear from Electron Recoils

Using dedicated radioactive source runs

BG-like ⁶⁰Co & ²³²Th: Y-source Signal-like

AmBe: neutron source

Discriminating Nuclear from Electron Recoils

Using dedicated radioactive source runs

BG-Like ⁶⁰Co & ²³²Th: y-source

Signal-like

Our Luminosity plot

Regular calibrations are critical

3rd data release from XENON100 - 225 livedays

All events in 48kg Fiducial Region

Apply basic noise cuts

Single Scatter Cut: WIMPs don't multiple-scatter

Set lower E threshold & restrict E range (+ various consistency cuts)

Two analyses:

I. Old-style cut-based analysis as a "Benchmark"

2. Profile Likelihood analysis in wider E range

For benchmark region: require 99.75% ER discrimination

Restrict from below to ensure signal is NR-like

Expected Background & Efficiencies

Profile likelihood uses detailed BG model

In Benchmark Region:

ER leakage	0.79 ± 0.16 ev
Neutrons (est. from MC)	0.17 ^{+0.12} -0.07 ev
Total	1.0 ± 0.2 ev

Efficiencies:

After Unblinding

2 events in "Benchmark" region

After Unblinding

2 events in "Benchmark" region

What would supposed signal look like?

Spin-dependent Limits

Reinterpret rate limits as spin-dependent WIMP-nucleon limits

Nuclear Models: Interpreting SD limits

Rate on nucleus → Nuclear Model → WIMP-nucleon spin-dependent limits

XENONIT

- 100x more sensitive than XENON100
- Around 3 tons of Xe, cleaner materials
- Upgrade option to large detector
- Start of science in 2015
- Building has started!

XENONIT Sensitivity

Neutrinos are the ultimate background

Neutrino-induced nuclear recoils: Coherent Neutrino Scattering

Neutrinos are the ultimate background

What will near future bring?

- This year:
 - LUX running: Oct 30
 - XMASS back running
 - DarkSide-50 running
 - COUPP-60 running
- SuperCDMS running (2012)
- CoGeNT about to release
- DAMA running high QE PMTs since Dec 2010...
- Start of XENONIT in early 2015

Astrophysical Uncertainties

Astrophysical Uncertainties

Astrophysical Uncertainties

Nuclear Recoil Response

Patrick Decowski

How many sigma?

Search	Degree of	Impact	LEE	Systematics	Number
	surprise				of σ
Higgs search	Medium	Very high	Mass	Medium	5
Single top	No	Low	No	No	3
SUSY	Yes	Very high	Very large	Yes	7
B_s oscillations	Medium/low	Medium	Δm	No	4
Neutrino oscillations	Medium	High	$sin^2(2\theta), \Delta m^2$	No	4
$B_s \to \mu\mu$	No	Low/Medium	No	Medium	3
Pentaquark	Yes	High/very high	M, decay mode	Medium	7
$(g-2)_{\mu}$ anomaly	Yes	High	No	Yes	4
H spin \neq 0	Yes	High	No	Medium	5
4^{th} generation q, l, ν	Yes	High	M, mode	No	6
$V_{\nu} > c$	Enormous	Enormous	No	Yes	>8
Dark matter (direct)	Medium	High	Medium	Yes	5
Dark energy	Yes	Very high	Strength	Yes	5
Grav waves	No	High	Enormous	Yes	7

Table 1: Summary of some searches for new phenomena, with suggested numerical values for the number of σ that might be appropriate for claiming a discovery.

Lyons, arXiv:1310.1284