Loop-induced Bounds on Higgs Effective Operators

Cen Zhang

Université Catholique de Louvain

Centre for Cosmology, Particle Physics and Phenomenology

Jan. 23 2014, at ULB

H. Mebane, N. Greiner, C. Zhang, S. Willenbrock, arXiv:1306.3380 C-Y. Chen, S. Dawson, C. Zhang, arXiv:1311.3107

Outline

Cen Zhang	CP3
-----------	-----

臣

Outline

4 Summary

^	フレ		(α)	no)
Len	zn	ana		РЗТ
		ang.		

Constraining Higgs couplings from precision test

• Limits on Higgs couplings can be inferred from precision electroweak measurements.

-modify gauge-boson self energies and *Vff* vertex, which in turn contribute to the oblique parameters, S T and U.

 Can yield complementary information to direct Higgs production measurements.

Oblique parameters

 Precision electroweak measurements are mostly summarized by three parameters, S T and U.
 Peskin and Takeuchi PRD 46,381

$$\alpha S = \left(\frac{4s^2c^2}{m_Z^2}\right) \left\{ \Pi_{ZZ}(m_Z^2) - \Pi_{ZZ}(0) - \Pi_{\gamma\gamma}(m_Z^2) - \frac{c^2 - s^2}{cs} \Pi_{\gamma Z}(m_Z^2) \right\}$$

Previous studies

- Hagiwara, Ishihara, Szalapski and Zeppenfeld (HISZ), Phys.Rev.D48:2182
 Alam, Dawson and Szalapski (ADS), Phys.Rev.D57:1577
 - Consider gauge-invariant effective operators, e.g.

$$egin{aligned} \mathcal{O}_{\mathrm{WW}} &= \phi^{\dagger} \, \hat{W}^{\mu
u} \, \hat{W}_{\mu
u} \phi, \qquad \mathcal{O}_{BB} &= \phi^{\dagger} \, \hat{B}^{\mu
u} \, \hat{B}_{\mu
u} \phi \ \mathcal{L}_{\mathrm{EFT}} &= \mathcal{L}_{\mathrm{SM}} + \sum_{i} c_{i} \mathcal{O}_{i} / \Lambda^{2} \end{aligned}$$

Compute leading log contributions

$$S = rac{m_Z^2}{\pi^2 \Lambda^2} \left(c^2 c_{WW} + s^2 c_{BB}
ight) \log \left(rac{\Lambda^2}{m_h^2}
ight)$$

 $c_{BB} = -15 \pm 26$, $c_{WW} = -4.6 \pm 7.8$ ($\Lambda = 1 \text{TeV}$)

No renormalization, momentum cut off at Λ.

Cen Zhang (CP3)

However...

More modern point of view for renormalization

• Effective theories are renormalizable.

"Unrenormalizable theories are just as renormalizable as renormalizable theories" S. Weinberg 0908.1964

- At each order in 1/Λⁿ, divergences can be absorbed by introducing counterterms at the same order. Results are obtained in terms of c(μ).
- The c(μ)'s will evolve and mix as μ changes. The μ dependences are controlled by RG equations.
 Alonso et al. 1312.2014

Elias-Miro et al. 1312.2928

Previous results

Previous results on STU should be taken with care...

If the log contributions. If the log contributions.

Counterterm operators are ignored.

$$S = \frac{1}{\Lambda^2} \left[-4\pi v^2 c_{BW}(\Lambda) + \frac{m_Z^2}{\pi} (s^2 c_{BB}(\Lambda) + c^2 c_{WW}(\Lambda)) \log\left(\frac{\Lambda^2}{m_h^2}\right) \right]$$

Need to assume $c_{BW}(\Lambda) = 0$ in order to bound c_{BB} and c_{WW} .

Limits on c_i(A) do not tell you much about Higgs couplings. We need c_i(m_h).

What we want to do

What exactly is the information about Higgs operators that can be extracted from Precision Electroweak Measurements?

- Do renormalization correctly.
- No assumptions on $c(\Lambda)$.
- Study limits on $c(m_h)$.

Outline

4 Summary

^	760		$(\cap I$	הי
Cen	2112	ina i	lUi	-3

Operator basis

• HISZ basis, operators involve EW gauge field and Higgs doublet, assume SU(2)XU(1) and CP-conservation.

At tree level 0.05 $O_{BW} = \phi^{\dagger} \hat{B}^{\mu\nu} \hat{W}_{\mu\nu} \phi$ (S) $\frac{\left|\Phi,I\right|}{\Lambda^2}$ (TeV⁻²) $O_{\phi 1} = (D_{\mu}\phi)^{\dagger}\phi \phi^{\dagger}(D^{\mu}\phi)$ $O_{DW} = \operatorname{Tr} \left[D^{\mu}, \hat{W}^{\nu\rho} \right] \left[D_{\mu}, \hat{W}_{\nu\rho} \right]$ -0.05 $O_{DB} = 2 \partial^{\mu} \hat{B}^{\nu\rho} \partial_{\mu} \hat{B}_{\nu\rho}$ -0.10 $\frac{c_{BW}}{\sqrt{2}}$ (TeV⁻²) < 6 b

Operator basis

- At loop level
 - Include

Operators
$\mathcal{O}_{WW} = \phi^{\dagger} \hat{W}^{\mu u} \hat{W}_{\mu u} \phi$
$\mathcal{O}_{BB}=\phi^{\dagger}\hat{B}^{\mu u}\hat{B}_{\mu u}\phi$
$\mathcal{O}_{\phi, 2} = rac{1}{2} \partial^{\mu} \left(\phi^{\dagger} \phi ight) \partial_{\mu} \left(\phi^{\dagger} \phi ight)$
$\mathcal{O}_{oldsymbol{W}} = \left(\mathcal{D}_{\mu} \phi ight)^{\dagger} \hat{oldsymbol{W}}^{\mu u} \left(\mathcal{D}_{ u} \phi ight)$
$\mathcal{O}_{\mathcal{B}}=\left(\mathcal{D}_{\mu}\phi ight)^{\dagger}\hat{B}^{\mu u}\left(\mathcal{D}_{ u}\phi ight)$
$O_{WWW} = \operatorname{Tr} \hat{W}^{\mu}_{\ u} \hat{W}^{ u}_{\ ho} \hat{W}^{ ho}_{\ \mu}$
•

*TGC=Triple Gauge-boson Coupling

Neglect

$$O_{\phi,3} = rac{1}{3} \left(\phi^{\dagger} \phi
ight)^3$$
 and $O_{\phi,4} = (\phi^{\dagger} \phi) (D_{\mu} \phi)^{\dagger} (D^{\mu} \phi)$

큰

Approach

Calculations

			~~~	$\Pi_{WW}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
				$\Pi_{ZZ}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
	δΓ	<i>О</i>		$\Pi_{\gamma\gamma}$	
No.	ST W	$\mathcal{O}_{WWW}, \mathcal{O}_B, \mathcal{O}_W$		$\Pi_{\gamma Z}$	
~~~~~~~~~~		$\mathcal{O}_{WWW}, \mathcal{O}_B, \mathcal{O}_W$	1	$\Pi_{WW}$	$\mathcal{O}_{WW}$
	o_{γ}	O_{WWW}, O_B, O_W		Π_{ZZ}	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
· ·	Π	0 0 0		$\Pi_{\gamma\gamma}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
<u>ک</u> مر ا	Π_{WW}	O_{WWW}, O_B, O_W		$\Pi_{\gamma Z}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
~~~ <u>}</u> ~~~		$O_{WWW}, O_B, O_W$	~~~	$\Pi_{WW}$	$\mathcal{O}_{WW}$
<i>,</i> ∼⊂	$\Pi_{\gamma\gamma}$	$O_{WWW}, O_B, O_W$		$\Pi_{ZZ}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
~~~{ ∳~~~	$\Pi_{\gamma Z}$	$O_{WWW}, O_B, O_W$		$\Pi_{\gamma\gamma}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
~				$\Pi_{\gamma Z}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
(T)	Π_{WW}	$\mathcal{O}_B, \mathcal{O}_W, \mathcal{O}_{WW}$	2005	Π_{WW}	\mathcal{O}_{WW}
é ,	Π_{ZZ}	$\mathcal{O}_B, \mathcal{O}_W, \mathcal{O}_{BB}, \mathcal{O}_{WW}$		Π_{ZZ}	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
بَحِرْ	$\Pi_{\gamma\gamma}$	$\mathcal{O}_B, \mathcal{O}_W$		$\Pi_{\gamma\gamma}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
~~~~( •~~~	$\Pi_{\gamma Z}$	$\mathcal{O}_B, \mathcal{O}_W, \mathcal{O}_{BB}^*, \mathcal{O}_{WW}^*$		$\Pi_{\gamma Z}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
~	п	top diagram only		$\Pi_{WW}$	$\mathcal{O}_{WW}$
<u></u>	$\Pi_{WW}$	$\mathcal{O}_W$		$\Pi_{ZZ}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
~~~ ,~~~		$\mathcal{O}_B, \mathcal{O}_W$		$\Pi_{\gamma\gamma}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
	$\Pi_{\gamma\gamma}$	$\mathcal{O}_B, \mathcal{O}_W$		$\Pi_{\gamma Z}$	$\mathcal{O}_{BB}, \mathcal{O}_{WW}$
mi m	$\Pi_{\gamma Z}$	O_B, O_W	~~~	Π_{WW}	\mathcal{O}_W
L				Π_{ZZ}	\mathcal{O}_W
				$\Pi_{\gamma\gamma}$	
				$\Pi_{\gamma Z}$	\mathcal{O}_W

臣

Calculations

 Vertex and self-energy functions are combined in a gauge-invariant way. Hagiwara et al. Phys. Rev. D48:2182

$$\begin{split} \overline{\Pi}_{WW} &= \Pi_{WW} + 2(q^2 - m_W^2)\delta\Gamma^W \\ \overline{\Pi}_{ZZ} &= \Pi_{ZZ} + 2c (q^2 - m_Z^2)\delta\Gamma^Z \\ \overline{\Pi}_{\gamma\gamma} &= \Pi_{\gamma\gamma} + 2s q^2\delta\Gamma^\gamma \\ \overline{\Pi}_{\gamma Z} &= \Pi_{\gamma Z} + s q^2\delta\Gamma^Z + c (q^2 - m_Z^2)\delta\Gamma^\gamma \end{split}$$

Oblique parameters are defined with Π.

$$\begin{split} &\alpha\Delta S \quad = \quad \left(\frac{4s^2c^2}{m_Z^2}\right) \left\{ \overline{\Pi}_{ZZ}(m_Z^2) - \overline{\Pi}_{ZZ}(0) - \overline{\Pi}_{\gamma\gamma}(m_Z^2) - \frac{c^2 - s^2}{cs} \left(\overline{\Pi}_{\gamma Z}(m_Z^2)\right) \right\} \\ &\alpha\Delta T \quad = \quad \left(\frac{\overline{\Pi}_{WW}(0)}{m_W^2} - \frac{\overline{\Pi}_{ZZ}(0)}{m_Z^2}\right) \\ &\alpha\Delta U \quad = \quad 4s^2 \left\{ \frac{\overline{\Pi}_{WW}(m_W^2) - \overline{\Pi}_{WW}(0)}{m_W^2} - c^2 \left(\frac{\overline{\Pi}_{ZZ}(m_Z^2) - \overline{\Pi}_{ZZ}(0)}{m_Z^2}\right) - 2sc \left(\frac{\overline{\Pi}_{\gamma Z}(m_Z^2)}{m_Z^2}\right) - s^2 \frac{\overline{\Pi}_{\gamma\gamma}(m_Z^2)}{m_Z^2} \right\} \end{split}$$

• Always choose $\mu = m_h$.

イロト イポト イヨト イヨト

Outline

4 Summary

^	760		$(\cap I$	וחר
Cen	Zna	na i		-3

Results

Results on STU

Numerically:

$$S = \left\{ -0.76c_{BW} + 10^{-3} \left(1.48c_B - 1.4c_W - 0.2c_{BB} - 0.71c_{WW} + 0.66c_{WWW} \right) \right\} \left(\frac{1}{\Lambda} \frac{TeV}{\Lambda} \right)^2$$

$$T = \left\{ -4.0c_{\Phi,1} - 10^{-3} \left(0.13c_B + 0.12c_W \right) \right\} \left(\frac{1}{\Lambda} \frac{TeV}{\Lambda} \right)^2$$

$$U = \left\{ 0.20c_{DW} + 10^{-3} \left(-0.02c_B + 2.06c_W + 0.14c_{WW} + 2.1c_{WWW} \right) \right\} \left(\frac{1}{\Lambda} \frac{TeV}{\Lambda} \right)^2$$

- Loop-induced bounds are about 3 orders of magnitude weaker than the tree level ones.
- This is in contrast with previous results, where loop-induced bounds are typically 1 or 2 orders of magnitude weaker.

Cen Zhang (CP3)

Loop-induced Bounds on Higgs Couplings

< □ ▷ < @ ▷ < 큰 ▷ < 큰 ▷ 23 Jan

Results

Plot:
$$\mu = \Lambda$$
 vs. $\mu = m_h$.

Limits on $c_{BB}(\mu)$ and $c_{WW}(\mu)$, assuming only two operators are present.

Results

Plot:
$$\mu = \Lambda$$
 vs. $\mu = m_h$.

Limits on $c_W(\mu)$ and $c_{WW}(\mu)$, assuming only two operators are present.

Combining with direct constraints from $h \rightarrow \gamma \gamma$ and $h \rightarrow \gamma Z$

Pomarol and Riva 1308.2803

 $\gamma\gamma$:

 γZ :

$$\begin{aligned} & 2\left(s^2 c_{BB} - c^2 c_{WW}\right) \\ & + \left(c^2 - s^2\right) c_{BW} + \frac{1}{2} \left(c_B - c_W\right) \\ & \in [-2.4, 4.8] \times 10^{-2} \end{aligned}$$

Cen Zhang (CP3)

Loop-induced Bounds on Higgs Couplings

23 Jan

Combining with direct constraints from $h \rightarrow \gamma \gamma$ and $h \rightarrow \gamma Z$ Pomarol and Riva 1308.2803

 $\gamma\gamma$:

 γZ :

$$\begin{split} & 2\left(s^2 c_{BB} - c^2 c_{WW}\right) \\ & + \left(c^2 - s^2\right) c_{BW} + \frac{1}{2} \left(c_B - c_W\right) \\ & \in [-2.4, 4.8] \times 10^{-2} \end{split}$$

Combining with direct constraints from $h \rightarrow \gamma \gamma$ and $h \rightarrow \gamma Z$

Pomarol and Riva 1308.2803

Cen Zhang (CP3)

Loop-induced Bounds on Higgs Couplings

Combining with direct constraints from $h \rightarrow WW$

Cen Zhang (CP3

Beyond STU

- We are able to perform a real fit, including all data, without using the STU formalism.
 H. Mebane et al. 1306.3380
- This allows us to find bounds on c(m_h) marginalizing over other (tree level) operators.

/-0.913	-0.218	0.145	-0.312	0.011		/CWWW		/-149.2	±	120.9	
-0.156	0.961	0.184	-0.129	0.031	1	CW		-17.7	±	187.5	
-0.099	-0.066	0.727	0.675	0.030	$\times \frac{1}{2}$	CB	=	589.3	±	455.1	TeV ⁻²
0.361	-0.150	0.645	-0.653	-0.062	Λ ²	CWW		-3715	±	1904	
0.040	-0.035	0.011	-0.053	0.997 /		\ c _{BB} /		3902	\pm	9964 /	

• Yet this is all we can conclude about *c*(*m_h*), from Precision Electroweak Measurements.

イロト イポト イヨト イヨト

Outline

Cen Zhang (CP3)
-------------	------

Summary

- Previous studies of loop-induced bounds on Higgs effective operators should be understood with care.
- Renormalization plays an important role in the calculation and has large numerical impacts.
- We study loop-induced bounds on $c(m_h)$. Unfortunately, they are much weaker than direct bounds, and thus cannot provide very useful information on Higgs couplings.

Backups

	4	ロ > 《 🗗 > 《 홈 > 《 홈 >	E
Cen Zhang (CP3)	Loop-induced Bounds on Higgs Couplings	23 Jan	26/25

$\mu = 1$ TeV vs. $\mu = m_Z$

Figure 1: Two-parameter fit to precision electroweak data. The tree-level parameter c_{BW} and the one-loop parameter c_{WW} are centered at their best-fit values and allowed to float. Dashed ellipse: Renormalization scale of M_Z . Solid ellipse: Renormalization scale of 1 TeV.

Cen Zhang (CP3)

< □ > < @ > < 클 > < 클 > 23 Jan

PEWD

	Notation	Measurement
Z-pole	Γ_Z	Total Z width
-	$\sigma_{ m had}$	Hadronic cross section
	$R_f(f = e, \mu, \tau, b, c)$	Ratios of decay rates
	$A_{FB}^{0,f}(f = e, \mu, \tau, b, c, s)$	Forward-backward asymmetries
	\bar{s}_l^2	Hadronic charge asymmetry
	$A_f(f = e, \mu, \tau, b, c, s)$	Polarized asymmetries
Fermion pair	$\sigma_f(f = q, e, \mu, \tau)$	Total cross sections for $e^+e^- \rightarrow f\bar{f}$
production at LEP2	$A_{FB}^f(f=\mu,\tau)$	Forward-backward asymmetries for $e^+e^- \to f\bar{f}$
W mass	m_W	W mass from LEP and Tevatron
and decay rate	Γ_W	W width from Tevatron
DIS	$Q_W(Cs)$	Weak charge in Cs
and	$Q_W(Tl)$	Weak charge in Tl
atomic parity violation	$Q_W(e)$	Weak charge of the electron
	g_{L}^{2}, g_{R}^{2}	ν_{μ} -nucleon scattering from NuTeV
	$g_V^{\nu e}, g_A^{\nu e}$	ν -e scattering from CHARM II

Summary of Precision Electroweak Measurements.

Ξ.