

Latest LHC results on H boson and prospects for next runs

X. Janssen

Workshop on Scalar Sector in Belgium IIHE (ULB/VUB) – January 23/24th 2014

The Large Hadron Collider @ CERN

Proton-proton collisions at 7 TeV (2010/11) & 8 TeV (2012) and 13-14 TeV after 2013/14 upgrade

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

SM H Boson Production and Decay at LHC

Gluon fusion (gg \rightarrow H) it the dominant production mechanism at LHC but VBF, VH and ttH allow to test H properties.

WW and bb decays are largest contributions but $\gamma\gamma$, $\tau\tau$ and ZZ decays important at low mass due to large SM irreducible backgrounds, ...

X. Janssen – 23/1/2014

Beyond the observation of a new boson @ 125 GeV

Results from "July 4th 2012" discovery papers:

	CMS	ATLAS
Local p-value	5.0 σ + Nothing else significant	6.0 σ + Nothing else significant
Mass [GeV]	125.3 ± 0.4 (stat.) ± 0.5 (syst.)	126.0 ± 0.4 (stat.) ± 0.4 (syst.)
Signal Strength	$\boldsymbol{0.87 \pm 0.23}$	1.4 ± 0.3

→ Compatible with Standard Model expectation

Phys. Lett. B 716 (2012)

But is it THE Standard Model H boson ?

- **Does it decay to fermions** (τ, b) **as expected in the SM ?**
- \Box Are all the couplings (γ , W, Z, t, b, gluons, ...) SM-like ?
- □ What are its quantum numbers (Spin and CP) ?
- □ What about individual production mechanism strength (gg, VBF, VH, ttH) ?
- → CMS/ATLAS have been answering these questions in the last year ... and seek for high precision at Run-2/3/4

□ Is there more H bosons ?

→ First searches by ATLAS/CMS available ... more to come in next year(s) and LHC runs

Sensitive H boson channels @ 125 GeV

Measure rate of Higgs events with different production and decay combinations. Cross-contamination of production and decay channels in categories.

	untagged	jet-tag	VBF	VH	ttH
Н → үү	used				
$H \rightarrow WW \rightarrow 2I2v$	←	UA			
H → ZZ → 4I		possible			
H → bb			UA	UCL	
Η → ττ				ULB/UCL	
H → Zγ					
Η → μμ					
H → invisible				UCL/ULB	

N.B.: ULB: $H \rightarrow ZZ \rightarrow 2l2n$ (high mass search), UCL: $tH \rightarrow b$'s \rightarrow talks this afternoon/tomorrow

$H \rightarrow \gamma \gamma$

1 Local p-value 10⁻¹ 10⁻²

10⁻³

10-2

10⁻⁵

HIG-PAS-13/001 CMS: → final update/paper coming ... ATLAS: Phys. Lett. B 726 (2013) 88-119

CMS $\sqrt{s} = 7$ TeV, L = 5.1 fb⁻¹ $\sqrt{s} = 8$ TeV, L = 19.6 fb⁻¹

CMS preliminary (MVA)

- Dedicated VBF categories: 2 jets well separated in pseudo-rapidity
- Background shape fitted from the data m_{vv} invariant mass \rightarrow search for narrow peak resonance on top of smooth background

140

145

m_н [GeV]

1σ

____4σ

1σ

2σ

Зσ

4σ

5σ

6σ

7σ

150

140 145 150

m_u (GeV)

$H \rightarrow ZZ \rightarrow 4I$

CMS: arXiv/1312.5353 ATLAS: Phys. Lett. B 726 (2013) 88-119

170

ATLAS

180

1σ 2σ

Зσ 4σ

5σ

6σ

7σ

180

170

m_µ [GeV]

Observation by ATLAS (6.6 σ) and CMS (6.8 σ) @ 125 GeV

Mass measurements

HIG-PAS-13/001

CMS H→ZZ→4I

arXiv/1312.5353

vs=7TeV L=5.1fb⁻¹ 10 CMS Preliminary vs=8TeV L=19.6fb $\sqrt{s} = 7 \text{ TeV}, L = 5.1 \text{ fb}^{-1}; \sqrt{s} = 8 \text{ TeV}, L = 19.7 \text{ fb}^{-1}$ Signal strength (μ) ATLAS — γγ+ZZ* combined $-2 \Delta LL$ $\Delta \ln \mathcal{L}$ √s = 7 TeV ∫Ldt = 4.6-4.8 fb⁻¹ --- H $\rightarrow \gamma\gamma$ $m_{\rm u} = 125.4 \pm 0.8$ Combined 3.5 √s = 8 TeV Ldt = 20.7 fb⁻¹ --- H \rightarrow ZZ^{*} \rightarrow 4l 9 ····· Combined (stat. only) -- H \rightarrow ZZ \rightarrow 4e 5 - Stat + Syst Ņ imes Best fit 8 - H \rightarrow ZZ \rightarrow 2e2 μ 3 – 68% CL $-H \rightarrow ZZ \rightarrow 4u$ ----- Stat Only ----- 95% CL 7Ē 2.5 6 2 5F 3 4 1.5 2 3 2Ē 0.5 0⊑_ 122 0 0 124 126 128 130 132 124 125 126 127 123 124 125 126 127 128 129 m_⊣ (GeV) *m*_н (GeV) m_н [GeV] \rightarrow 126.8 ± 0.2 (stat) ZZ: 126.8±0.2(stat)±0.7(sys) GeV → 125.6 ± 0.4 (stat) ± 0.7 (syst) 124.3^{+0.6}_{-0.5}(stat)^{+0.5}_{-0.3}(sys) GeV ± 0.2 (syst) γγ: GeV GeV \rightarrow ATLAS ZZ+ $\gamma\gamma$ combination: $125.5 \pm 0.2(\text{stat})^{+0.5}_{-0.6}(\text{sys}) \text{ GeV}.$ \rightarrow CMS ZZ+ $\gamma\gamma$ combination to be done ...

 \rightarrow "Overall agreement" on m_H

ATLAS $H \rightarrow \gamma \gamma \& H \rightarrow ZZ \rightarrow 4I$

Phys. Lett. B 726 (2013) 88-119

$H \rightarrow WW \rightarrow 2l_2v$

CMS: arXiv/1312.1129 ATLAS: Phys. Lett. B 726 (2013) 88-119

0/1-jet H→WW→ 2I2v DF Analysis

- 2 isolated ($e\mu/\mu e$) leptons: $p_T > 10$,20 GeV
- ♦ p_{T,II} > 30 GeV
- ♦ Missing E_T > 20 GeV
- Top veto: Jet b-tag + no soft μ
- Jet counting for $|\eta|$ < 4.7 and p_T > 30 GeV

Background from data driven techniques

- W+jets (fake rate method)
- Top (estimated from control region)
- Wγ /Wγ* (MC shapes + data norm.)
- DY (estimated from control region)

WW (estimated from control region)

Other backgrounds:

♦ ZZ/VZ/Tri-bosons \rightarrow MC predictions

Signal Extraction

- ♦ CMS: 2D Shape analysis:
 - \rightarrow m_T : Higgs boson transverse mass
 - \rightarrow m_{II} : di-lepton invariant mass
- ♦ ATLAS: m_T 1D shape

$H \rightarrow WW \rightarrow 2l2v$

CMS: arXiv/1312.1129 ATLAS: Phys. Lett. B 726 (2013) 88-119

 \rightarrow Evidence for H \rightarrow WW \rightarrow 2l2v by ATLAS (3.8 σ) and CMS (4.3 σ) @ 125 GeV

Spin/Parity

VH → bb

 □ Largest number of Higgs decays at low mass but Lots of background (jets)
 □ Trigger based on leptons and missing E_T
 □ b-jets identified through displaced tracks (b-tagging)
 □ Go to high p_T where Higgs is enhanced
 □ Main background: W/Z+jets and top
 → Define signal free region to constraint them from data
 □ ATLAS: Cut-based analysis
 □ CMS: Boosted Decision Trees + shape fit

VH → bb

 Results consistent with SM H→bb and background-only hypotheses

X. Janssen – 23/1/2014

13

Latest LHC results on H boson measurements and prospects

$H \rightarrow \tau \tau$: Analysis overview

 \Box Search in ggH, VBF and VH production modes and five di- τ final states:

□ Separation in categories to enhance S/B (CMS example):

$H \rightarrow \tau \tau$: background estimations

- Z→ee/µµ
- Normalization scale factor from tag-and-probe in data
- Shape from MC

QCD:

- Normalization from ratio of same-sign(SS) to opposite-sign (OS) data events
- Shape from SS data events

$H \rightarrow \tau \tau$: Results

□ Evidence at 4.1 σ (ATLAS) and 3.4 σ (CMS) level for H→ττ
 □ CMS: μ = 0.87 ± 0.29
 □ ATLAS: μ = 1.4 + 0.5 - 0.4
 □ Mass compatible with mH ~ 125 GeV

X. Janssen – 23/1/2014

Latest LHC results on H boson measurements and prospects

Couplings to fermions

 \rightarrow Strong evidence for coupling to fermions (despite 'small' deficit in ATLAS for H \rightarrow bb)

ttH Production

X. Janssen – 23/1/2014

Results summary @ 125 GeV

Channel	ATLAS Lumi [fb-1]	CMS Lumi [fb-1]	Specialty	σ Obs. (exp.)	Mass [GeV]	Signal strength µ	J ^P =0 ⁺
II-New	4.9 + 20.7	5 1 10 (mass,	7.4 (4.3)	126.8 ±0.2 ±0.7	1.55 +0.33-0.28	~
Η-γγ	4.8+20.7	5.1+19.0	couplings	3.2 (4.2)	$125.4 \\ \pm 0.5 \pm 0.6$	$\boldsymbol{0.78\pm0.27}$	~
			mass,	<mark>6.6</mark> (7.2)	$124.3 \\ \pm 0.6 \pm 0.5$	1.5 ± 0.4	~
H→ZZ→4I	4.0+20.7	5.1+19.7	couplings	<mark>6.8</mark> (6.7)	$125.6 \pm 0.4 \pm 0.2$	0.93 +0.29-0.25	~
			cross section , couplings	3.8 (3.7)	Compatible with 125 GeV	0.99 +0.31-0.32	~
	4.6+20.7	4.9+19.4		4.3 (5.8)	$125.5+3.6-3.8 \\ (\mu = 1)$	0.72 +0.20-0.18	~
		5.1+18.9	couplings			0.2 + 0.7 - 0.6	
H→bb	4.7+20.3		to fermions	2.1 (2.1)	Compatible with 125 GeV	1.0 ± 0.5	
Η→ττ	20.3	4.9+19.4	couplings	4.1 (3.2)	Compatible with 125GeV	1.4 + 0.5 - 0.4	
	20.3		to fermions	3.4 (3.6)	115 +8 -2	0.87 ± 0.29	

→ Overall consistency with SM H boson expectations

X. Janssen – 23/1/2014 Latest LHC results on H boson measurements and prospects

Coupling Measurements

Assume the observed signal stems from one narrow resonance.

$$(\sigma \cdot \mathrm{BR}) (ii \to \mathrm{H} \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{\mathrm{H}}}$$

Parametrize deviations w.r.t. the SM in production and decay. This implies precise knowledge of the SM Higgs. Not considered are BSM acceptance effects.

$$(\sigma \cdot \mathrm{BR}) (\mathrm{gg} \to \mathrm{H} \to \gamma \gamma) = \sigma_{\mathrm{SM}} (\mathrm{gg} \to \mathrm{H}) \cdot \mathrm{BR}_{\mathrm{SM}} (\mathrm{H} \to \gamma \gamma) \cdot \frac{\kappa_{\mathrm{g}}^2 \cdot \kappa_{\gamma}^2}{\kappa_{\mathrm{H}}^2} \qquad \kappa_{H}^2 = \sum_{X} \kappa_{X}^2 \frac{\mathrm{BR}_{\mathrm{SM}} (H \to X)}{1 - \mathrm{BR}_{\mathrm{BSM}}}$$

- one common scale factor
- scale vector and fermion coupling
- custodial symmetry
- new physics in loops
- BSM Higgs decays

Janssen – 23/1/2014

•

General coupling fit

Direct H \rightarrow Invisible searches

Significant BR(H→Invis.) would be a signature of BSM:

- \Box H \rightarrow 2LSPs in SUSY
- □ H → gravi-scalars in ADD model
 □ ...
- → Sensitive to Dark Matter candidate with mass m_H/2

Searches topologies:

- □ VBF H → Invisible (CMS PAS HIG 13-013):
 - □ 2 tagged jets with pT>50 GeV with $\Delta \eta(jj) > 4.2$, m(jj) > 1100 GeV, $\Delta \phi(jj)$ <1
 - □ MET>130 GeV
 - □ Backgrounds: Z(→nn)+jets & W+jets
 - → data-driven estimates

VBF H → Invisible

X. Janssen – 23/1/2014 Latest LHC results on H boson measurements and prospects

Direct H \rightarrow Invisible searches

Significant BR(H→Invis.) would be a signature of BSM:

- \Box H \rightarrow 2LSPs in SUSY
- □ H → gravi-scalars in ADD model
 □ ...
- → Sensitive to Dark Matter candidate with mass m_H/2

Searches topologies:

$\Box \text{ VBF H} \rightarrow \text{Invisible} (\text{CMS PAS HIG 13-013}):$

- □ 2 tagged jets with pT>50 GeV with Δη(jj) > 4.2 , m(jj) > 1100 GeV, Δφ(jj)<1 □ MET>130 GeV
- □ Backgrounds: Z(→nn)+jets & W+jets → data-driven estimates

$\Box \ \mathsf{ZH} \rightarrow \mathsf{Invisible}:$

- \Box Z \rightarrow bb (CMS PAS HIG 13-018)
 - → Background: tt + MET
- $\Box Z \rightarrow II \quad (CMS PAS HIG 13-028) \\ \rightarrow Background: ZZ \rightarrow 2I2v$
- □ Search for events with large MET after requiring a Z→II or Z→bb tag
- → Direct limit on BR(Invisible) from combination: ~< 0.5</p>

LHC Roadmap for next runs

A CONTRACT OF A

Expected precision on cross-sections

Based on parametric simulation

CMS Projection

ſ	L (fb ⁻¹)	$H \rightarrow \gamma \gamma$	$H \rightarrow WW$	$H \rightarrow ZZ$	$H \to b b$	$H\to\tau\tau$	$H \rightarrow Z\gamma$	$H \rightarrow inv.$
[300	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[17, 28]
[3000	[4, 8]	[4,7]	[4,7]	[5,7]	[5, 8]	[20, 24]	[6, 17]

Assumptions on systematic uncertainties Scenario 1: no change Scenario 2: Δ theory / 2, rest $\propto 1/\sqrt{L}$

Extrapolated from 2011/12 results

Expected H Boson coupling results

- κ_g , κ_Y , κ_{ZY} : loop diagrams \rightarrow allow potential new physics
- κw, κz:vector bosonsCMS Projectionκt, κb:up- and down-type quarksExpected uncertain
Higgs boson coupliκτ, κμ:charged leptonsHiggs boson couplitotal width from sum of partial widthsκ

alternatively:

 $\Gamma_{\rm tot} = \sum \Gamma_{ii} + \Gamma_{\rm BSM}$

$$BR_{BSM} = \Gamma_{BSM} / \Gamma_{tot}$$

assumption here κ_W , $\kappa_Z < 1$

CMS Projection

 $L(fb^{-1})$ Ky KW KZ Kg Kb Kt KT KZY κ_{μ} [14,15] [41, 41][23, 23]300 [5,7] [4,6][6,8] [10, 13][6,8] [4,6][2,4][3,5] [8,8] [2,5] [2,5] [4,7][2,5] 3000 [7,10][10, 12]

Snowmass Whitepaper for CMS - http://arxiv.org/abs/1307.7135

- → coupling precision 2-10 %
- → factor of ~2 improvement from HL-LHC

Theoretical uncertainties

To test the importance of theoretical uncertainties we show the effect of removing them.

Theoretical uncertainties dominated by QCD scale and PDF uncertainties. Uncertainty on BR and acceptance uncertainties become relevant at few % precision.

Process		Cross see	ction	Relativ	ve uncerta	inty in percent
		(pb)		Total	Scale	PDF
Gluon fus	ion	49.3	8	+19.6 -14.6	+12.2 -8.4	+7.4 -6.2
VBF		4.15		$^{+2.8}_{-3.0}$	$^{+0.7}_{-0.4}$	$^{+2.1}_{-2.6}$
WH		1.474	1	+4.1	+0.3	+3.8
ZH		0.863	3	+6.4	+2.7	+3.7
				-0.0	-1.0	-0.1
Channel	$\Delta \alpha_s$	Δm_b	Δm_c	Theory	Uncertainty	Total Uncertainty
$H \rightarrow \gamma \gamma$	0%	0%	0%		±1%	±1%
$H \rightarrow b\overline{b}$	∓2.3%	+3.3%	0%		±2%	$\pm 6\%$
$H \rightarrow c \overline{c}$	-7.1% +7.0%	∓0.1%	+6.2% -6.1%		±2%	±11%
$H \rightarrow gg$	+4.2% -4.1%	∓0.1%	0%		$\pm 3\%$	$\pm 7\%$
$H\to \tau^+\tau^-$	0%	0%	0%		±2%	±2%
$H \rightarrow WW^{\bullet}$	0%	0%	0%	+	0.5%	$\pm 0.5\%$
$H \rightarrow ZZ^*$	0%	0%	0%	+	0.5%	$\pm 0.5\%$

Handbook of LHC Higgs Cross Sections: 3. Higgs Properties - http://arxiv.org/abs/1307.1347

Any improvement on scale dependence (+jet counting uncertainty) and PDF theory uncertainties will translate immediately to higher precision

X. Janssen – 23/1/2014

Latest LHC results on H boson measurements and prospects

Comparison CMS-ATLAS

Cross-section (μ):

$L(fb^{-1})$	Exp.	$\gamma\gamma$	WW	ZZ	bb	$\tau \tau$	$Z\gamma$	$\mu\mu$
300	ATLAS	[9, 14]	[8, 13]	[6, 12]	N/a	[16, 22]	[145, 147]	[40, 42]
	CMS	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[40, 42]
3000	ATLAS	[4, 10]	[5, 9]	[4, 10]	N/a	[12, 19]	[54, 57]	[12, 15]
	CMS	[4, 8]	[4, 7]	[4, 7]	[5, 7]	[5, 8]	[20, 24]	[14, 20]

Couplings:

$L(fb^{-1})$	Exp.	Ky	κ_W	κ_Z	κ_g	κ_b	κ_t	κ_{τ}	$\kappa_{Z\gamma}$	$\kappa_{\mu\mu}$
300	ATLAS	[8,13]	[6, 8]	[7, 8]	[8, 11]	N/a	[20, 22]	[13, 18]	[78, 79]	[21, 23]
	CMS	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]
3000	ATLAS	[5, 9]	[4, 6]	[4, 6]	[5, 7]	N/a	[8, 10]	[10, 15]	[29, 30]	[8, 11]
	CMS	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]

Uncertainty on signal strength

- Ranges [x,y] are not directly comparable
- ATLAS
 - [no theory uncertainty, Scenario 1]
- CMS
 - [Scenario 2, Scenario 1]

Overall reasonable agreement, but

- ATLAS does not include H → bb mode
- CMS outperforms ATLAS H → TT mode
- Large differences in H → Zγ mode due to photon id

→ Clear potential for high precision by ATLAS&CMS in future LHC Runs up to >2020

H boson self-coupling

In order to determine the parameters of the SM completely, a measurement of the Higgs self-coupling is essential

Higgs potential and the EWSB mechanism

Event yields of various channels

Event yields of vi			Very challenging due to low	
Decay channel	Branching ratio (%)	Yield with 3 ab ⁻¹		vield and contributions from
$b\overline{b}b\overline{b}$	33.4	34,000		irreducible backgrounds (<i>ttH</i> ,
$b\overline{b}W^+W^-$	25.0	25,500		<i>ZH</i> , etc.)
$b \overline{b} au au$	7.36	7,500		Ongoing studies suggest some
$W^{+}W^{-}W^{+}W^{-}$	4.66	4,750		sensitivities to constrain the
$b\overline{b}ZZ$	3.09	3,150		□ Also, several
ZZW^+W^-	1.15	1,170	7	phenomenological papers
$bar{b}\gamma\gamma$	0.26	265		suggests the possibility

 \rightarrow Very challenging \rightarrow will require high luminosity for precision \rightarrow HL-LHC

CONCLUSIONS

Run-1 Results:

- $\hfill\square$ The significance of the H boson-like particle @ 125 GeV in the di-boson channels combined is now well over 5 σ
- \Box Large progress has been made in the fermionic channels, with evidence at the level of 3-4 σ
- □ 0⁺ case favored against all other tested hypothesis and couplings measurements are consistent with SM expectation
- □ Significant progress on ttH and H→Invisible
- \Box searches for high mass and BSM H bosons started (\rightarrow next talks)

→ All Run-1 results compatible with SM expectation for H boson
→ Measurements mostly limited by statistical uncertainties

Preparation for next LHC runs:

Large program for Higgs coupling measurements in Run II (13-14 TeV) to stay ahead of systematical uncertainties:

Theoretical (scale, α_s, and PDF) uncertainties will become dominant
 Experimental challenges due to large pileup and detector longevity effects

→ Stay tuned for LHC restart in 2015 !

