A novel approach to H coupling measurements

David López-Val

Based on arXiv:1401.0080

with K. Cranmer, S. Kreiss (New York U.) & T. Plehn (ITP, Heidelberg U.)

CP3 - Université Catholique de Louvain

MINIWORSHOP ON SCALAR SEARCH & STUDY

David López-Val - CP3 Université Catholique de Louvain 💦 A novel approach to H coupling measurements

Onfronting it to new physics

Outline

2 Laying out the strategy

3 Confronting it to new physics

Two prominent caveats

Not probabilistic \Rightarrow Not suitable for statistical treatment

New Physics effects

۲

• Overlayed with theory uncertainties

Similar low-energy impact from manifold UV origin

David López-Val - CP3 Université Catholique de Louvain A novel approach to H coupling measurements

$$\mu_{i}^{p} \equiv \frac{\sigma_{p} \times BR_{i}}{\sigma_{p} \times BR_{i}^{\mathsf{SM}}} = \left(\frac{\sigma_{p}}{\sigma_{p}^{\mathsf{SM}}}\right) \left(\frac{\Gamma_{i}}{\Gamma_{i}^{\mathsf{SM}}}\right) \left(\frac{\Gamma_{\mathsf{H}}^{\mathsf{SM}}}{\Gamma_{\mathsf{H}}}\right) \mu_{i}^{p} \equiv 1 + \delta \, \mu_{i}^{p}$$

$$\mu_{i}^{p} \equiv \frac{\sigma_{p} \times BR_{i}}{\sigma_{p} \times BR_{i}^{SM}} = \left(\frac{\sigma_{p}}{\sigma_{p}^{SM}}\right) \left(\frac{\Gamma_{i}}{\Gamma_{H}}\right) \left(\frac{\Gamma_{H}^{SM}}{\Gamma_{H}}\right) \mu_{i}^{p} \equiv 1 + \delta \mu_{i}^{p}$$
UNCERTAINTIES \leftarrow (K. & S.)
(T. & D.)

$$\mu_{i}^{p} \equiv \frac{\sigma_{p} \times BR_{i}}{\sigma_{p} \times BR_{i}^{SM}} = \left(\frac{\sigma_{p}}{\sigma_{p}^{SM}}\right) \left(\frac{\Gamma_{i}}{\Gamma_{H}}\right) \left(\frac{\Gamma_{H}^{SM}}{\Gamma_{H}}\right) \mu_{i}^{p} \equiv 1 + \delta \mu_{i}^{p}$$

$$UNCERTAINTIES \leftarrow (K. \& S.)$$

$$NEW PHYSICS \leftarrow (T. \& D.)$$

 \sim

$$\mu_{i}^{p} \equiv \frac{\sigma_{p} \times BR_{i}}{\sigma_{p} \times BR_{i}^{SM}} = \left(\frac{\sigma_{p}}{\sigma_{p}^{SM}}\right) \left(\frac{\Gamma_{i}}{\Gamma_{i}^{SM}}\right) \left(\frac{\Gamma_{H}^{SM}}{\Gamma_{H}}\right) \mu_{i}^{p} \equiv 1 + \delta \mu_{i}^{p}$$
UNCERTAINTIES \leftarrow (K. & S.)
SIGNAL STRENGTH SHIFTS
NEW PHYSICS \leftarrow (T. & D.)
 \nearrow

$$\mu_{i}^{p} \equiv \frac{\sigma_{p} \times BR_{i}}{\sigma_{p} \times BR_{i}^{SM}} = \left(\frac{\sigma_{p}}{\sigma_{p}^{SM}}\right) \left(\frac{\Gamma_{i}}{\Gamma_{i}^{SM}}\right) \left(\frac{\Gamma_{H}^{SM}}{\Gamma_{H}}\right) \mu_{i}^{p} \equiv 1 + \delta \mu_{i}^{p}$$
UNCERTAINTIES \leftarrow (K. & S.)
SIGNAL STRENGTH SHIFTS
NEW PHYSICS \leftarrow (T. & D.)
 \nearrow

COULD WE

$$\mu_{i}^{p} \equiv \frac{\sigma_{p} \times BR_{i}}{\sigma_{p} \times BR_{i}^{SM}} = \left(\frac{\sigma_{p}}{\sigma_{p}^{SM}}\right) \left(\frac{\Gamma_{i}}{\Gamma_{i}^{SM}}\right) \left(\frac{\Gamma_{H}^{SM}}{\Gamma_{H}}\right) \mu_{i}^{p} \equiv 1 + \delta \mu_{i}^{p}$$
UNCERTAINTIES \leftarrow (K. & S.)
SIGNAL STRENGTH SHIFTS
NEW PHYSICS \leftarrow (T. & D.)
 \nearrow

COULD WE ...

$$\mu_{i}^{p} \equiv \frac{\sigma_{p} \times BR_{i}}{\sigma_{p} \times BR_{i}^{SM}} = \left(\frac{\sigma_{p}}{\sigma_{p}^{SM}}\right) \left(\frac{\Gamma_{i}}{\Gamma_{i}^{SM}}\right) \left(\frac{\Gamma_{H}^{SM}}{\Gamma_{H}}\right) \mu_{i}^{p} \equiv 1 + \delta \mu_{i}^{p}$$
UNCERTAINTIES \leftarrow (K. & S.)
SIGNAL STRENGTH SHIFTS
NEW PHYSICS \leftarrow (T. & D.)
 \nearrow

COULD WE

 \sim

Outline

Context & motivation

2 Laying out the strategy

Onfronting it to new physics

Laying out the strategy

🌲 statistical model

$$L_{\mathsf{full}}(\vec{\mu},\vec{\alpha}) = \underbrace{\prod_{c \in \mathsf{category}} \left[\mathsf{Pois}(n_c | \nu_c(\vec{\mu},\vec{\alpha})) \prod_{e=1}^{n_c} f_c(x_e | \vec{\mu},\vec{\alpha}) \right]}_{\equiv L_{\mathsf{main}}(\vec{\mu},\vec{\alpha})} \underbrace{\prod_{i \in \mathsf{syst}} f_i(a_i | \alpha_i)}_{\equiv L_{\mathsf{constr}}(\vec{\alpha})} \ .$$

$$L_{\text{full}}(\vec{\mu},\vec{\alpha}) = \underbrace{\prod_{c \in \text{category}} \left[\operatorname{Pois}(n_c | \nu_c(\vec{\mu},\vec{\alpha})) \prod_{e=1}^{c} f_c(x_e | \vec{\mu},\vec{\alpha}) \right]}_{\equiv L_{\text{main}}(\vec{\mu},\vec{\alpha})} \underbrace{\prod_{e \in \text{syst}} f_i(a_i | \alpha_i)}_{\equiv L_{\text{constr}}(\vec{\alpha})} .$$

$$\lambda(\vec{\mu}) = \frac{L(\vec{\mu}, \hat{\alpha})}{L(\hat{\vec{\mu}}, \hat{\vec{\alpha}})}$$

Laying out the strategy

effective signal strength & likelihood

$$L_{\rm eff}(\vec{\mu}^{\rm eff}) \equiv L_{\rm main}(\vec{\mu} = \vec{\mu}^{\rm eff}, \vec{\alpha} = \vec{\alpha}_0)$$

$$L_{\rm eff}(\vec{\mu}^{\rm eff}) \equiv L_{\rm main}(\vec{\mu} = \vec{\mu}^{\rm eff}, \vec{\alpha} = \vec{\alpha}_0)$$

We trade a shift in
$$\alpha$$
 by a shift in μ^{eff}

Laying out the strategy

& Reparametrization template

Expected signal dependence wirit uncertainties

* on total rates	$s_{cpd}(\vec{\alpha}) = s_{cpd}(\vec{\alpha}_0) \left[1 + \sum_i \eta_{pi}(\alpha_i - \alpha_{0,i})\right]$
★ on background	$b_c(\vec{\alpha}) = b_c(\vec{\alpha}_0) \left[1 + \sum_i \phi_{ci}(\alpha_i - \alpha_{0,i}) \right] \ (\forall p, d)$

Expected signal dependence wirit uncertainties

Expected signal dependence w r t uncertainties

- 🐥 The template coefficients are:
 - linear/non-linear in $[\mu, \alpha_i]$
 - computable from L_{eff}
 - sensitive to category-correlated effects:

[e.g. GGF uncertainty for VBF isolation]

Expected signal dependence w r t uncertainties

- 🐥 The template coefficients are:
 - linear/non-linear in $[\mu, \alpha_i]$
 - computable from L_{eff}
 - sensitive to category-correlated effects:

[e.g. GGF uncertainty for VBF isolation]

Expected signal dependence w r t uncertainties

- 🐥 The template coefficients are:
 - linear/non-linear in $[\mu, \alpha_i]$
 - computable from L_{eff}
 - sensitive to category-correlated effects:

[e.g. GGF uncertainty for VBF isolation]

Laying out the strategy

& Reconstruction technique

• Impose local covariance equivalence around $(\hat{\mu}, \hat{\alpha})$:

$$V_{\rm main}^{-1} = J^T V_{\rm eff}^{-1} J$$

• Impose local covariance equivalence around $(\hat{\mu}, \hat{\alpha})$:

$$V_{\rm main}^{-1} = J^T V_{\rm eff}^{-1} J$$

$$V_{\rm main}^{-1} = J^T V_{\rm eff}^{-1} J$$

$$V_{\rm main}^{-1} = J^T V_{\rm eff}^{-1} J$$

- Computational tools available at http://github.com/svenkreiss/decouple
- Analytical toy example available at arXiv:1401.0080

David López-Val - CP3 Université Catholique de Louvain A novel approach to H coupling measurements

Laying out the strategy

David López-Val - CP3 Université Catholique de Louvain A novel approach to H coupling measurements

♣ Reconstruction based on the local equivalence $V_{\text{full}}^{-1} - V_{\text{eff}}^{-1}$ around $(\hat{\mu}, \hat{\alpha})$.

♣ Reconstruction based on the local equivalence $V_{\text{full}}^{-1} - V_{\text{eff}}^{-1}$ around $(\hat{\mu}, \hat{\alpha})$.

 \clubsuit To be dealt with care: non–linearities in $\mu, lpha$ & category–weighted effects

Outline

Context & motivation

2 Laying out the strategy

Onfronting it to new physics

Theory uncertainties VS new physics effects

GEOMETRY

David López-Val - CP3 Université Catholique de Louvain A novel approach to H coupling measurements

A BSM patterns yield characteristic signal strength correlations

Theory uncertainties VS new physics effects

Deviations from the SM

Theory uncertainties VS new physics effects

Deviations from the SM

How large?

Theory uncertainties VS new physics effects

Deviations from the SM

How large?

DIRECTION

How orthogonal?

Theory uncertainties VS new physics effects

Deviations from the SM

SIGNAL STRENGHT CORRELATIONS

How large?

How orthogonal?

Theory uncertainties VS new physics effects

Deviations from the SM

Theory uncertainties VS new physics effects

Deviations from the SM

 $\xi \rightarrow 0$: model-independent SM-like limit

Context & motivation

2 Laying out the strategy

Confronting it to new physics

Summary

A novel approach to Higgs coupling measurements

Summary

A novel approach to Higgs coupling measurements

Allows to

Recouple uncertainties at any point

- Upgrade analyses with improved modelling and/or theory predictions
- Reinsert a priori correlations in the systematics
- Generate likelihood scans for benchmark models
- Combine likelihoods consistently

Interpret uncertainties & new physics effects geometrically

- Intuitive visualization correlated variations in the signal strength plane
- Robustness heuristic for new physics signatures

Summary

A novel approach to Higgs coupling measurements

Allows to

Recouple uncertainties at any point

- Upgrade analyses with improved modelling and/or theory predictions
- Reinsert a priori correlations in the systematics
- Generate likelihood scans for benchmark models
- Combine likelihoods consistently

Interpret uncertainties & new physics effects geometrically

- Intuitive visualization correlated variations in the signal strength plane
- Robustness heuristic for new physics signatures

Software & worked examples available at http://github.com/svenkreiss/decouple

🐥 way broader applications foreseen !

David López-Val - CP3 Université Catholique de Louvain 💦 A novel approach to H coupling measurements