MEM to improve future searches for HH $HH \rightarrow b\bar{b}WW \rightarrow b\bar{b}l\nu l\nu$

Christophe Delaere, Brieuc Francois, Vincent Lemaitre Miguel Vidal

Universite catholique de Louvain - CP3

Scalar Search and Study in Belgium

23 January 2014, Brussels

Miguel Vidal (UCL-CP3)

HH production - The SM case

Why is the higgs boson pair production interesting?

Measuring the Higgs selfcoupling

- With data in hand, let's say thousands of fb⁻¹, it is interesting for obvious reasons. Being in the position of measuring something in HE Physics is more and more complicated...
- Now we have to see if is worthy to do it and in which final states.

HH production - The SM case

- Gluon-gluon fusion is the dominant contribution
- Via the box and the triangle diagrams.
- Big cancellation between the two diagrams

(a)-> Box, (b)->Total, and (c)->Triangle

- $\sigma^{LO} \sim 20 fb$
- $\sigma^{\rm NLO} \sim 30 40 {\it fb}$ from theory predictions

Miguel Vidal (UCL-CP3)

HH production with MadGraph 5

HH production with MadGraph

- Model calculating full theory with form factors.
- Already available in MG4, not distributed with the official package. Current CMS samples produced in this way.
- New version available in MG5, not distributed with the official package. Plots in this talk produced with the new version.

Model in MG5 by Eleni Vryonidou and Fabio Maltoni (UCL-CP3)

$HH ightarrow b\bar{b}WW ightarrow b\bar{b}II \not \! \! E_T$ - Cut based

- First look using HH and $t\bar{t}$ as only background, at **Delphes** level
- Cuts applied by eye, no proper S/B optimization
- The idea is to have a rough yield estimation as function of the future luminosity

Samples:

• HH & *tt* @14 TeV: MadGraph+Pythia+Delphes into 2b2l2nu. Private samples.

Preselection:

- 2 OS leptons: $p_T > 20 GeV$, $\eta < 2.4$
- Njets = 2, requiring 2 btags: $p_T > 30 GeV$, $\eta < 2.4$

Over the preselected events we apply some optimization cuts ("by eye") not properly driven by any S/B calculation.

Distributions after the cuts

Miguel Vidal (UCL-CP3)

 $\rm HH
ightarrow 2b2l2
u$

- Still some discrimination power by cutting on P^{jj}_T > 140 GeV
- After that, we are running out of statistics in the *tt* sample, so it is not helpful to look at plots any more.

But we can do some math with the final yields.

- HH = 0.1 events @ $100 \text{fb}^{-1} \Rightarrow 0.64 \text{ events}$ @ 600fb^{-1}
- $t\bar{t}$ = 157 events @ 100fb⁻¹ \Rightarrow 941 events @ 600fb⁻¹

Signal efficiency 43% while reducing the background by a factor 400

$HH \rightarrow b\bar{b}WW \rightarrow b\bar{b}II \not \in_T$ - MEM Based

Matrix Element method* provide probability that an experimental event corresponds to a specific process (hypothesis).

$$P(x^{vis}|lpha)=rac{1}{\sigma_lpha}\int dx_1 dx_2 f(x_1)f(x_2)\int d\Phi|M(p)_lpha|^2 W(p^{vis},p)$$

Where :

- p^{vis} : experimental event : {(Pt,eta,phi,E,B-tag,...)_{iet1}; (Pt,eta,phi,E,B-tag,...)_{iet2}; (Pt,eta,phi,E,charge,...)_{lep1}; (Pt,eta,phi,E,charge,...)_{lep2}; (Et,phi...)_{met} }
- p: partonic state
- $f(x_1) f(x_2)$: integration on pdf
- AAA α : set of parameter defining the theoretical frame (α is fixed in this analysis).
- $|\mathbf{M}(\mathbf{p})|^2$ Matrix element @ L.O.
- $W(p,p^{vis})$: transfer function. Conditional probability that an observed quantity (p^{vis}) is the evolution of a partonic level one (p).

Weights are defined as :

$$W = \sigma \times P$$

$HH \rightarrow b\bar{b}WW \rightarrow b\bar{b}II \not\!\!\!\!/ E_T$ - MEM Based

Matrix Element method* provide probability that an experimental event corresponds to a specific process (hypothesis).

$$P(x^{vis}|lpha)=rac{1}{\sigma_lpha}\int dx_1 dx_2 f(x_1)f(x_2)\int d\Phi|M(p)_lpha|^2 W(p^{vis},p)$$

Weights are defined as :

$$W = \sigma \times P$$

HH hypothesis

Plots normalized to same area (showed in the x axis). Events with 0 weight removed from the plot. Shape comparison only.

Backgound hypothesis ($t\bar{t}$ only)

Plots normalized to same area (showed in the x axis). Events with 0 weight removed from the plot. Shape comparison only.

First look cutting on the previous plots (by eye) to get the \sim number of background events in the cut bases approach. We should cut in both plots at the same time taking into account correlations, not done yet ...

	Cut E	Based	MEM (HH hypo only)		
	100fb ⁻¹	600fb ⁻¹	100fb ⁻¹	600fb ⁻¹	
HH	0.10	0.64	0.07	0.43	
tī	157	941	145	873	

First attempt with the MEM, many things have to be tunned...

The information from HH and background hypothesis can be combined in a smarter way (i.e with a MVA), but this also apply to the cut based approach...

Summary

- Model to produce HH in MadGraph 5, up and running
- First look using Delphes and suboptimal optimisations
- Not really promising in the near future because of the xsection
- The SM search targets HL-LHC
- Interesting benchmark for BSM approach

From the point of view of the MEM:

- It looks promising, many things have to be tunned
- Proper comparison needed: **MEM** (MadWeight) vs Cut based
- Still learning and enjoying the MEM in the 2l2b+MET final state

Backup Slides

Bibliography:

• History - Higgs pair production 1987:

https://cds.cern.ch/record/183945/files/198802013.pdf

- $hh \rightarrow bbWW \rightarrow bbjjl\nu$: http://arxiv.org/pdf/1209.1489v2.pdf
- $hh \rightarrow bb\tau\tau$: http://arxiv.org/pdf/1309.6318v1.pdf
- Talk about theory perspectives in the HL-LHC from the ECFA meeting:

http://indico.cern.ch/getFile.py/access?contribId=7&sessionId=3&resId=0&materialId=

slides&confId=252045

	Cut Based		MEM (HH hypo only)		MEM (<i>tt</i> hypo only)	
	100fb ⁻¹	600fb ⁻¹	100fb ⁻¹	600fb ⁻¹	100fb ⁻¹	600fb ⁻¹
HH	0.10	0.64	0.07	0.43	0.04	0.26
tīt	157	941	145	873	131	787