$\mathrm{ZH} \rightarrow \mathrm{llbb}$ search using a Matrix Element technique

Université catholique de Louvain
Camille Beluffi, Roberto Castello, Adrien Caudron, Ludivine Céard,
Christophe Delaere, Tristan du Pree, Vincent Lemaitre, Arnaud Pin, Jesus Vizan
Scalar Search and Study in Belgium
23-24 January 2014

Adrien Caudron (UCL-CP3)

Motivations

- Important to probe SM in the fermionic sector
- H boson coupling to fermions harder to probe:
- High background for $\mathrm{H} \rightarrow \mathrm{bb}$ due to QCD
- Associate production (ZH)
- Worse mass resolution
- At CP3:
- llbb final state: $Z+b(b)$ cross-section
- ME automatized tool: MadWeight
- Search for $Z(I I) H(b b)$
- Use ME method to discriminate signal process from the background processes

Selection

Basic selection	Object	Z(ll)H(bb) (2011+2012)
	Trigger	DiMu + DiEl
	Leptons (PF muons, electrons)	$\begin{array}{r} p_{\mathrm{T}}(l)>20 \mathrm{GeV} \\ \|\eta(l)\|<2.4,\|\eta(l)\|<2.5 \\ \text { isolation criteria } \end{array}$
	ll-pair	$\begin{array}{r} 76<m\left(l^{+} l^{-}\right)<106 \mathrm{GeV} \\ p_{\mathrm{T}}(l l)>20 \mathrm{GeV} \\ \hline \end{array}$
	ak5 PF jets	$\begin{array}{r} p_{\mathrm{T}}\left(j_{1}\right)>40, p_{\mathrm{T}}\left(j_{2}\right)>25 \mathrm{GeV} \\ \|\eta(j)\|<2.4 \end{array}$
	Jet-lepton separation	$\Delta R(l, j)>0.5$
	B-tagging	CSV-MM M: CSV >0.679 (control: CSV-ML) (L: CSV >0.244)
	PF MET	MET significance <10

Regions:

SR:	Signal	bb-pair	2 jets: $2 j: 80<M(b b)<150 \mathrm{GeV}$ >2 jets: $3 j: 50<M(b b)<150 \mathrm{GeV}$		
CR:	Control	bb-pair	$2 j: M(b b)<80 \\| M(b b)>150 \mathrm{GeV}$ $3 j: M(b b)<50 \\| M(b b)>150 \mathrm{GeV}$		
	Fit	ll-pair	Control $+61<m\left(l^{+} l^{-}\right)<121 \mathrm{GeV}$		

- For background estimation

Matrix Element method

Matrix Element method* provide probability that an experimental event corresponds to a specific process (hypothesis).

$$
P\left(x^{v i s} \mid \alpha\right)=\frac{1}{\sigma_{\alpha}} \int d x_{1} d x_{2} f\left(x_{1}\right) f\left(x_{2}\right) \int d \Phi\left|M(p)_{\alpha}\right|^{2} W\left(p^{v i s}, p\right)
$$

Where :

$>\mathrm{p}^{\mathrm{vis}}:$ experimental event $:\left\{(\mathrm{Pt}, \mathrm{eta}, \mathrm{phi}, \mathrm{E}, \mathrm{B}-\mathrm{tag}, \ldots)_{\mathrm{jet1}} ;(\mathrm{Pt}, \text { eta,phi,E,B-tag}, \ldots)_{\mathrm{jet} 2}\right.$;
$\left.(\text { Pt,eta,phi,E,charge,... })_{\text {lep1 }} ;(\text { Pt,eta,phi,E,charge,... })_{\text {lep } 2} ;(\text { Et,phi.... })_{\text {met }}\right\}$
p : partonic state
$>\mathrm{f}\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{2}\right)$: integration on pdf
$>\alpha$: set of parameter defining the theoretical frame (α is fixed in this analysis).
$>|\mathrm{M}(\mathrm{p})|^{2}$ Matrix element @ L.O.
$>\mathrm{W}\left(\mathrm{p}, \mathrm{p}^{\text {vis }}\right)$: transfer function. Conditional probability that an observed quantity ($\mathrm{p}^{\mathrm{vis}}$) is the evolution of a partonic level one (p).

Weights are defined as : $\quad W=\sigma \times P$

Choice of event categorization

- Problem: events with >= 3 jets
- Bigger background
- Worse dijet mass resolution

- Solution: separate categories
- 2 categories based on the number of jets
- $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$: 2 or >= 3 jets categories
- Improves sensitivity
- Special treatment for events with extra jets
- ISR: transverse boost to LO ME rest frame
- FSR: use $M(b b j)$ and $\Delta R(b, j)$
- Z pt spectrum found in agreement in each category

Background normalisation

- 2D simultaneous fit in 4 cats:
- ee \& $\mu \mu$
- 2 jets \& 3 jets
- 2 discriminating observables
(1) MLP TTbar vs Zbb
- ME weights: $q q Z b b, g g Z b b, t t$
(2) CSV product
- Product of CSV of the 2 b-tagged jets

- Considering Zbbx production
- All SFs consistent
-SF_Zbx > 1

Construction of final discriminant

Unblinded ZH search 2011+2012

- Data/simulation of multivariate discriminant at 125 GeV
- Signal: 100 *SM

- Full unblinding of the analysis
- Signal injection at 125: $3.9 \times \sigma / \sigma_{\mathrm{sm}}$
- Expected limit at 125: $2.6 \times \sigma / \sigma_{\mathrm{sm}}$
- Observed limit at 125: $1.8 \times \sigma / \sigma_{\mathrm{Sm}}$
- At 125 GeV
- Compatible with background only within 1 s.d.
- Compatible with a SM H boson within 2 s.d.

ZZ search cross-check

$2011+2012$

- Limits

- Expected: $0.8 \times \sigma / \sigma_{\text {CMS meas }}$
- Observed: $1.4 \times \sigma / \sigma_{\text {Смs meas. }}$
- Signal injection: $1.8 \sigma / \sigma_{\text {Cms meas. }}$
- Significance
- Expected: 2.4
- Observed: 1.5
- Signal strength: $\mu=0.6 \pm 0.4$
- Compatible with SM

Summary

- Matrix Element technique was used to perform a search of Z(II)H(bb) process
- The MW weights are used in NN to discriminate signal and backgrounds
- Extra jets are included with complementary info
- Presented unblinded result for 2011+2012
- ZZ compatible with SM
- ZH just unblinded and results compatible with SM H within 2 s.d.
- Analysis competitive
- Many ways to improve it (CHS jets, jet energy regression...)
- Outlook
- H \rightarrow bb properties
- Exotic searches in scalar sector with llbb final state

Backup

Documentation

- Arnaud Pin thesis: Technique, validation and first 2011 results (link)
- AN-12-476
- To be updated with unblinded ZH results

Scale factors for the background estimation

- 2D simultaneous fit of the 4 channels ee $-\mu \mu$ in both jet categorization (2 jets and 3 jets)
- Variables used :
- CSV product: product of the CSV value attached to the 2 b -tagged jets
- MLP TTbar vs Zbb trained with 2011 or 2012 MC

* inputs are the qqZbb, ggZbb and tt MW weights

Fit Region
Each channel:

- MLP: left
- CSVprod: right

```
SF_Zbb }->\mathrm{ Zbb in the 2 jets category }->\mathrm{ Zbb LO process
SF_Zbx }->\mathrm{ Zbb 3 jets category + Zbx }->\mathrm{ Zbb+j
SF_Zxx }->\mathrm{ same in both categories (DY+jets)
SF_tt }->\mathrm{ same in both categories
ZZ normalisation fixed to CMS measurements
```


Scale factors: results

Table 4: The background scale factors as estimated from the 2D fits for 2011 and 2012 data.

SF	value 2011 MM	value 2012 MM	value 2011 ML	value 2012 ML
SF_Zbb	1.10 ± 0.09	1.12 ± 0.05	1.05 ± 0.08	1.06 ± 0.05
SF_Zbx	1.29 ± 0.11	1.27 ± 0.05	1.20 ± 0.10	1.22 ± 0.04
SF_Zxx	0.87 ± 0.18	1.08 ± 0.11	0.88 ± 0.10	1.38 ± 0.04
SF_tt	1.00 ± 0.10	0.94 ± 0.03	0.96 ± 0.09	1.00 ± 0.03

Very good agreement between all four cases, except for SF_Zxx, where the fake rate is affected by pileup in 2012

Strategy

Z (II) $\mathrm{H}(\mathrm{bb})$ search ($\mathrm{I}=\mathrm{e} / \mathrm{mu}$):

- Based on Z(II)+bb cross-section measurement analysis (similar selection).
- b-tag: CSV discriminant at Medium-Medium working point.
- Categorization in jet multiplicity
-2 jets: events with Exactly 2 jets identified as b-jets
-3 jets: events with at least 3 jets with 2 identified as b-jets.

Considered Backgrounds:

- ttbar: Dileptonic decay channel (ee/mumu)
- DY + jets: Z+bb, Z+bx, Z+xx x=light/c jets
- diboson: Z(II)Z(bb)

Matrix Element Method:

- For each event we test signal and background hypothesis $\rightarrow 7$ weights per event

Process	Hypothesis	ISR correction	E-P conservation
Higgs	$q q \rightarrow Z H \rightarrow l^{-} l+b \bar{b}$	without MeT	conserved
Higgs	$q q \rightarrow Z H \rightarrow l^{-} l+b \bar{b}$	without MeT	Not conserved
$t \bar{t}$	$p p \rightarrow t \bar{t} \rightarrow l^{-} l+\nu \bar{\nu} b \bar{b}$	with MeT	conserved
Zb \bar{b}	$g g \rightarrow l^{-} l+b \bar{b}$	without MeT	conserved
$\mathrm{Z} b \bar{b}$	$q q \rightarrow l^{-} l+b \bar{b}$	without MeT	conserved
ZZ	$q q \rightarrow Z Z \rightarrow l^{-} l+b \bar{b}$	without MeT	conserved
ZZ	$q q \rightarrow Z Z \rightarrow l^{-} l+b \bar{b}$	without MeT	Not conserved

Multivariate analysis:

- MLP discriminants use as inputs the M.E. weights + other variables in the 3 jets category.
- Intermediate Discriminants: ZH-tt, ZH-Zbb, ZH-ZZ
\rightarrow ZH-BKG discriminant based on the three intermediate ones.

ME TF

Hypothesis on TF: δ function assumed for angular variables.
Jets Energy (b-jets ; $\sqrt{ } s=7 \mathrm{TeV}$) : Double gaussian parametrisation

-Blue curve represent the sum, over b-quark energy (Ep), of the transfer function $\mathrm{W}(\mathrm{Ep}, \mathrm{Ejet})$ weighted according to Ep distribution.
-Black curve represent the M.C. expectation.

ME ISR

Pt is defined:
$>$ Process with a not fully observabe leading order final state (with neutrino) e.g. ttbar dileptonic

$$
\vec{P} t_{\text {boost }}=\sum_{\text {L.O.finalstate }} \overrightarrow{P t}+\overrightarrow{M e} T=-\sum_{\text {radiation }} \vec{P} t \quad \text { Type } 1
$$

$>$ Process with a fully observabe leading order final state (no neutrino) e.g. $Z(1 l)$ bb process

$$
\vec{P} t_{\text {boost }}=\sum_{\text {L.O.finalstate }} \vec{P} t=-\sum_{\text {radiation }} \vec{P} t \quad \text { Type } 2
$$

$>$ Choice driven by the processs NOT by the event topology.

Datasets

Table 2: Data and MC samples used in this analysis. MASS means all masses between 110 and 135 by step of $5 \mathrm{GeV} / \mathrm{c} 2$. * is Fall11-PU_S 6 for 7 TeV MC and Summer12_DR53X-PU_S10 for 8 TeV MC. Samples with a^{\dagger} are not used in the MVA training. All samples are taken from AOD (Data) and AODSIM (MC) files.

2011		
Data	ElA	/DoubleElectron/Run2011A-08Nov2011-v1/
	ElB	/DoubleElectron/Run2011B-19Nov2011-v1/
	MuA	/DoubleMu/Run2011A-08Nov2011-v1/
	MuB	/DoubleMu/Run2011B-19Nov2011-v1/
MC	DY	/DYJetsToLL_TuneZ2_M-50_7TeV-madgraph-tauola/*-START44_V5-v1/
	DY $p_{\mathrm{T}}(Z)>100$	/DYJetsToLL_PtZ-100_TuneZ2_7TeV-madgraph-tauola/
	TT	/TTJets_TuneZ2_7TeV-madgraph-tauola/*-START44_V5-v1/
	ZZ	/ZZ_TuneZ2_7TeV_pythia6_tauola/*-START44_V5-v1/
	ZH	/ ZH_ZToLL_HToBB_M-MASS_7TeV-powheg-herwigpp/
Training	Zbb	/Zbb_4F_7TeV_madgraph/*-START44_V9B-v1/
2012		
Data	ElA	/DoubleElectron/Run2012A-13Jul2012-v1/
	ElB	/DoubleElectron/Run2012B-13Jul2012-v1/
	ElA 06aug	/DoubleElectron/Run2012A-recover-06Aug2012-v1/
	ElC-v1	/DoubleElectron/Run2012C-24Aug2012-v1/
	ElC-v2	/DoubleElectron/Run2012C-PromptReco-v2/
	ElD	/DoubleElectron/Run2012D-PromptReco-v1/
	MuA	/DoubleMu/Run2012A-13Jul2012-v1/
	MuB	/ DoubleMu/Run2012B-13Jul2012-v4/
	MuA 06aug	/DoubleMu/Run2012A-recover-06Aug2012-v1/
	MuC-v1	/DoubleMu/Run2012C-24Aug2012-v1/
	MuC-v2	/DoubleMu/Run2012C-PromptReco-v2/
	MuD	/DoubleMu/Run2012D-PromptReco-v1/
MC	DY inclusive	/DYJetsToLL_M-50_TuneZ2Star_8TeV-madgraph-tarball/*-START53_V7A-v1/
	DY $p_{\mathrm{T}}(Z)[50-70]^{+}$	/DYJetsToLL_PtZ-50To70_TuneZ2star_8TeV-madgraph-tarball/*-START53_V7A-v1/
	DY $p_{\mathrm{T}}(Z)[70-100]^{+}$	/DYJetsToLL_PtZ-70To100_TuneZ2star_8TeV-madgraph-tarball/*-START53_V7A-v2/
	DY $p_{\mathrm{T}}(Z)>100^{+}$	/DYJets ToLL_PtZ-100_TuneZ2star_8TeV-madgraph/*-START53_V7A-v2/
	DY $p_{\mathrm{T}}(Z)>180^{+}$	/DYJetsToLL_PtZ-180_TuneZ2star_8TeV-madgraph-tarball/* START53_V7C-v1/
	TT Fully Leptonic	/TTJets_FullLeptMGDecays_8TeV-madgraph/*-START53_V7A-v2/
	TT Semi-Leptonic ${ }^{\dagger}$	/TTJets_SemiLeptMGDecays_8TeV-madgraph/*-START53_V7A_ext-v1/
	ZZ	/ZZ_TuneZ2star_8TeV_pythia6_tauola/*_START53_V7A-v1/
	ZH	/ZH_ZToLL_HToBB_M-MASS_8TeV-powheg-herwigpp/*START53_V7A-v1/
Training	Zbb	/ZbbToLL_massive_M-50_TuneZ2star_8TeV-madgraph-pythia6_tauola/* START53_V7A-v1/
	TT inclusive	/TTJets_MassiveBinDECAY_TuneZ2star_8TeV-madgraph-tauola/*-START53_V7A-v1/

S3Be 24 Jan. 2014

PU discussion

- Brown is purely PU events contribution:
- Both b-tagged jets are unmatched with a gen-jet
- Cut on jets lower: pt>20 and no cut on pt Z

- Same cuts, comparing same DY vs DY events. ($\sim 12 \%$ of whole sample)
- Raw number of selected events
- Old DY is part of the DY on the right,
- Zbb, Zbx and Zxx used CHS jets

CR: Variables used to perform the SFs fit

2 jet: MLP tt vs Zbb

3 jet: CSV product

Systematics

- Luminosity unc.:
- 2.2\% (4.4\%) on signal normalisation at 7 TeV (8 TeV)
- Theoretical unc. on signal cross-section:
- 4\% on signal normalisation
- Lepton Reconstruction and Trigger Efficiency:
- 4\% on the signal normalisation
- ZZ cross-section measurement unc.:
- 40\% (15\%) at 7 TeV (8 TeV)
- Background normalisation unc.:
- Uncorrelated unc. from the fit unc.
- JER unc.:
- 2-6\% normalisation on the signal normalisation
- B-tag unc.:
- shape unc., b, c SFs unc. and light SFs unc. are taken uncorrelated
- JES unc.:
- shape unc. (MW weights recomputed)
- MC statistics unc.: shape unc.
- Allow a bin by bin fluctuation of the MC normalisation according the statistical uncertainties in the 10 most sensitive bins.

Systematics: Background fit correlations

- Diagonalization of covariance Matrix \rightarrow we obtain transformation Matrix T such as $\mathrm{T}^{-1} \mathrm{Cov} \mathrm{T}=$ Diag.

- Error matrix=	Correlated Uncert.	bg1	bg2	bg3	- e1, e2, e3 correlated
	e1	a	0	0	
	e2	0	b	0	
	e3	0	0	c	

input in data card: unity matrix + Modif_error

- ModifiedError=T- ${ }^{-}$Error= | | Not correlated | bg1 | bg2 | bg3 | |
| :---: | :---: | :---: | :---: | :---: | :--- |
| | Eprime1 | x 11 | x 12 | x 13 | ePrime1, ePrime2, | ePrime3 not

Systematics breakdown

Systematics	limit	degradation (\%)
No	2.07	
All	2.43	
-MC statistical unc.	2.26	7.5
-Zbb	2.30	5.7
-Zxx	2.40	1.3
-Zbx	2.41	0.8
-tt	2.41	0.8
-ZZ	2.42	0.4
-ZH	2.42	0.4
-Background norm.	2.32	4.7
-JER	2.41	0.8
-JES	2.41	0.8
-ZH cross-section	2.41	0.8
-Luminosity	2.41	0.8
-Lepton SFs	2.41	0.8
-Btag b, c-jets SFs	2.41	0.8
-Btag light-jets SFs	2.43	0

- Breakdown of systematics
- Show the effect of removing ONE source of systematic each time
- Most important effect from MC stat. uncertainty and from Bkg Normalization SFs

ZZ search: strategy

- Signal region defined as $\mathbf{M}(\mathrm{bb})$ in $[45,115$] in the 2 jets category and $\mathbf{M}(\mathrm{bb})$ in [15,115] in the 3 jets category.
- Same strategy but only 2 intermediate NNs trained against DY and TTbar
- Difficult training as the background peak around the \mathbf{Z} mass

NEW

Signal EWK NLO $p_{T}(Z)$ reweigting

- We use the official values to reweight our signal samples to higher order corrections.
- Signal yields decrease by $\sim 3-4 \%$

$\mathrm{Z}(\mathrm{II}) \mathrm{H}(\mathrm{bb})$ with Matrix Element Method: Unblinding

Nuisance parameters fit
Comparison of nuisances

nuisance	background fit $\Delta x / \sigma_{\text {in }}, \sigma_{\text {out }} / \sigma_{\text {in }}$	signal fit $\Delta x / \sigma_{\text {in }}, \sigma_{\text {out }} / \sigma_{\text {in }}$	$\rho(\mu, \theta)$
JER	+0.00, 0.99	+0.00, 0.97	-0.00
JER2012	-0.12, 0.99	-0.09, 0.97	+0.00
JES 2011	+0.00, 0.99	+0.01, 0.97	-0.01
2 Hunc	+0.00, 0.99	-0.01, 0.97	+0.04
2HuncEWK	+0.00, 0.99	-0.01, 0.97	+0.05
2HuncQCD	+0.00, 0.99	-0.00, 0.97	+0.02
22 unc	+0.04, 0.98	+0.09, 0.96	-0.06
EEChannelCut1TT-FullLeptstat_binl1	-0.07, 0.98	-0.07, 0.92	-0.01
EEChannelCut1TT-FullLeptstat_bin12	-0.18, 0.97	-0.18, 0.91	+0.00
EEChannelCut1TT-FullLeptstat_bin13	-0.12, 0.97	-0.11, 0.91	-0.00
EEChannelCut1TT-FullLeptstat_bin14	-0.07, 0.98	-0.06, 0.91	-0.01
EEChannelCut1TT-FullLeptstat_bin15	-0.09, 0.97	-0.08, 0.91	-0.00
EEChannelCut1TT-FullLeptstat_bin16	-0.04, 0.98	-0.04, 0.92	-0.01
EEChannelCut1TT-FullLeptstat_bin17	-0.13, 0.95	-0.13, 0.89	-0.01
EEChannelCut1TT-FullLeptstat_bin18	-0.04, 0.97	-0.03, 0.92	-0.02
EEChannelCut1TT-FullLeptstat_bin19	+0.03, 1.02	+0.12, 0.98	-0.08
EEChannelCut1TT-FullLeptstat_bin20	-0.00, 0.99	-0.00, 0.44	+0.00
EEChannelCut1TT-SemiLeptstat_bin11	-0.01, 0.97	-0.00, 0.91	-0.00
EEChannelCut1TT-SemiLeptstat_bin 12	-0.04, 0.97	-0.04, 0.91	+0.00
EEChannelCut1TT-SemiLeptstat_bin13	-0.01, 0.95	-0.01, 0.89	-0.00
_JES 2012	+0.43, 0.08	+0.44, 0.08	-0.17

H(bb) with Matrix Eleme	nding		
Nuisance parameters fit			
MuMuChannelCut12bxstat_bin19	+0.09, 1.87	+0.14, 1.01	-0.06
MuMuChannelCut12bxstat_bin20	-0.00, 0.09	-0.00, 0.01	-0.00

MuMuChannelCut12bxstat_bin20	-0.00, 0.09	-0.00, 0.01	-0.00
MuMuChannelCut12xxstat_binl1	+0.51, 0.94	+0.51, 0.88	-0.01
MuMuChannelCut12xxstat_bin 12	+0.28, 0.87	+0.29, 0.81	-0.01
MuMuChannelCut12xxstat_bin 13	-0.45, 0.73	-0.45, 0.70	-0.01
MuMuChannelCut12xxstat_bin14	+0.25, 0.93	+0.26, 0.86	-0.01
MuMuChannelCut12xxstat_bin 15	+0.09, 0.95	+0.11, 0.88	-0.02
MuMuChannelCut12xxstat_bin16	-0.17, 0.91	-0.17, 0.87	-0.01
MuMuChannelCut $12 \times x$ atat_binl7	-0.45, 0.83	-0.44, 0.78	-0.00
MuMuChannelCut12xxstat_bin18	+0.01, 1.01	+0.01, 0.95	-0.00
MuMuChannelCut12xxstat_bin19	+0.18, 1.11	+0.30, 1.02	-0.14
MuMuChannelCut12xxstat_bin20	-0.00, 0.08	$-0.00,6.05$	-0.05
bgnorm1	-0.22, 0.93	-0.20, 0.91	-0.02
bgnorm2	-0.52, 0.96	-0.51, 0.94	-0.02
bgnorm3	+0.34, 0.74	+0.32, 0.73	+0.03
bgnorm4	+2.14, 0.69	+2.08, 0.68	+0.11
bgnorm5	-0.19, 0.94	-0.17, 0.92	-0.01
boostEWK	+0.00, 0.99	+0.00, 0.97	-0.00
boostQCD	+0.00, 0.99	+0.01, 0.97	-0.00
elecSF	+0.00, 0.99	+0.00, 0.97	+0.00
lepunc_ee	+0.00, 0.99	+0.02, 0.97	-0.01
lepunc_mm	+0.00, 0.99	-0.03, 0.97	+0.05
lumi	+0.01, 0.99	+0.02, 0.97	+0.02
Iumi2011	+0.00, 0.99	+0.00, 0.97	-0.00
muonsF	+0.00, 0.99	+0.00, 0.97	-0.00
sftt_MM	-0.22, 0.89	-0.20, 0.88	-0.03
sfzbb_MM	-0.19, 0.84	-0.31, 0.84	+0.17
sfzbx_MM	+1.37, 0.86	+1.36, 0.84	+0.02
sfzxx_MM	-1.49, 0.78	-1.40, 0.77	-0.13
signorm	+0.00, 0.99	+0.01, 0.97	-0.00

Limitation and room for improvement

- basing the analysis on the re-reco dataset for 2011 and 2012.
- implementing the Charge Hadron Substraction.
- Better treatment of PU jets in the event.
- Improving the $M_{b b}$ resolution applying the $M_{b b}$ regression.
- Re-evaluating the M.E. weights with optimized transfer functions.
- Using single Muon trigger.

Timescale: during 2014 (for all of them)

