

Challenges for Run2 In the ZZ→2l2v

Loïc Quertenmont

23-24 January 2014 Blegian Scalar Sector Workshop, IIHE

2l2v: Introduction

- Overall workflow used for many 2I+MET final states
 - H→ZZ→2I2v
 BSM
 - σ(pp→ZZ→2l2v)
 aTGC
 - Z (H→invisible)
 - H(125) Width
- All these channels covered by the same people (Involving ULB and UCL) thanks to flexible and common ntuples/framework

Projections to Run2

- Very simple projections → Int.Luminosity scaling + Stirling scaling
- Assuming, backgrounds rate are not scaling up
- Assuming detector performances remain unchange → PU !!!!

MET in Run2

24/01/2014 - Focus on High mass ZZ searches

loic.quertenmont@cern.ch

possible MET algorithms

- AN 2012/079: Study of the performance of pseudo-MET variables in a high-pileup regime
- Several flavours of MET can be built using « particle-flow » objects and vertex information
 - Charged particles are easilly **associated** to a vertex
 - Neutral particles can be **associated** assuming that they are coming from the same vertex than the surounding charged particles
- The more information is used the better the resolution...
- BUT if we get too much energy from the PU events, then the bias is large too
- For real MET events, all these algorithms are expected to give comparable MET estimates

Combining MET variables...

- At the exception of PF Met, all these MET variable are missing an important part of the information (the neutrals, the forward particles, the unclustered particles, etc.)
- For that reason, these variables ALONE can not performs better than the PF MET.
- On the other hand, those variables are more robust to PU than the PF MET.
- We can <u>reduce the instrumental (DY) background by combining</u> these new MET variable with the standard PF MET.
 Reducing METs

Minimizing METs

- For events with real (central) MET,
- The MET should be well reconstructed independently on the estimator used.
- Not true for fake/instrumental/PU MET

Hadronic recoil misreconstruction?

arXiv.0808.0269

hadronic recoil

- Recoil is MET Z P_T
- Reduced-MET: sum in quadrature of minimum dilepton balance against Longitudinal/Transverse directions.

minMET and redMET

CMS preliminary,√s=7 TeV, ∫ L=2007 pb⁻¹

CMS preliminary,√s=7 TeV, ∫ L=2007 pb⁻¹

24/01/2014 - Focus on High mass ZZ searches

100

200

300

400

10⁻³

Obs/Ref

0

loic.quertenmont@cern.ch

Performances

Performances (full study)

CMS simulation. Z→ II

Gamma+Jets in Run2

 γ, Z

VBF in Run2

loic.quertenmont@cern.ch

CMS C

Categ. and Stat. Analysis in Run2

(B)SM models

- Same production mechanism, couplings and width than SM
- Combining 7 and 8TeV, VBF and GF

- Additional Higgs Singlet mixing with SM h
 - Narrower with,
 - Iower xsections, unknown BRnew

$$\mu' = C'^2 \cdot (1 - BR_{\text{new}})$$

 $\Gamma' = \Gamma_{\text{SM}} \cdot \frac{C'^2}{1 - BR_{\text{new}}}$

- <u>2HDM</u>
 - Being discussed
- Anything else ?

No conclusion! Further Discussion?