ULB

Tau ID efficiency measurement

S3Be workshop January the 24th, 2014 Cécile Caillol

Objectives

- Measurement of tau ID efficiency data/MC scale factor:
 - Is it equal to 1.0?
 - What is its uncertainty?
 - Does the scale factor depend on tau pT?
 - Does the efficiency depend on the event topology (Drell Yan, ttbar)?

ULB Method $- Z \rightarrow \tau_h \tau_\mu$ events **ULB Selection in brief:** - 1 isolated muon - 1 OS loose tau - MT (μ ,MET)<40 GeV - $P_{\xi} = P_{\xi}^{mis} - 0.85P_{\xi}^{vis} > -15$ GeV

- Divide events whether the tau passes/fails ID (decay mode finding + isolation)
- Fit simultaneously both regions with:
 - Parameter of interest (POI) : tau ID efficiency scale factor
 - Nuisance parameters: luminosity, cross-sections, tau fake rate, MET uncertainties, ...
- Tau ID parameter is anti-correlated between "Pass" and "Fail" regions!

Background estimation

- Signal: From MC DYJets, $Z \rightarrow \tau_h \tau_\mu$ where the real tau and the real muon have been selected.
- **DY others**: All the other DY events, mainly $Z \rightarrow \mu\mu$, $Z \rightarrow \tau_{\mu}\tau_{\mu}$ and $Z \rightarrow \tau_{h}\tau_{\mu}$ where the wrong leptons have been selected; from MC.
- **ttbar**: from MC.
- W+jets: Shape from MC, normalization from high M_T (M_T>70 GeV) sideband.
- QCD: shape and normalization from SS region.

Uncertainties

	Signal	DY others	W+jets	QCD	TTbar
Luminosity	2.6%	2.6%	-	-	2.6%
DY xs	3.0%	3.0%	-	-	-
ttbar xs	-	-	-	-	15%
W+jets norm	-	-	3%	-	-
Mu ID/iso	2.0%	2.0%	-	-	2.0%
QCD norm (shape)	-	-	-	yes	-
QCD OS/SS extrap.	-	-	-	5%	-
Tau scale (shape)	3.0%	3.0%	3.0%	3.0%	3.0%
Tau FR (shape)	-	30.0%	-	-	30.0%
bin-by-bin (threshold=0.05)	yes	yes	yes	yes	yes
Tracking (shape)	3.8%	3.8%	3.8%	-	3.8%
Hadronization (shape)	-	10.0%	10.0%	-	10.0%

Fully correlated

Uncorrelated Anti-correlated

between pass and fail

5

"Pass" fit - $Z \rightarrow \tau_h \tau_\mu$ events

Observable: m_{visible} (μ,τ)

"Fail" fit - $Z \rightarrow \tau_h \tau_\mu$ events

Scale factor: 0.950 +/- 0.046 ("Pass" and "Fail" fitted simultaneously)

Fit – $Z \rightarrow \tau_h \tau_\mu$ events

- N_{tracks}: number of charged tracks in tau isolation and signal cones
 Variable independent of tau pT!
- Data/MC scale factor (HPS loose 3 Hits): 0.96 +/- 0.04
 - \rightarrow Compatible with measurement using m_{vis} as observable

First measurement in tau pT bins

Method – tt $\rightarrow \mu \tau_h$ events

- Selection overview:
 - IsoMu24 trigger
 - 1 isolated muon
 - 1 OS loose tau
 - 2 or 3 jets with pT>30 GeV
 - At least 1 b-jet
 - MET > 40 GeV
- "Fail" region idle because of too small signal fraction → Use a ttbar control region instead to control nuisance parameters
- Selection in ttbar control region similar as signal region but:
 - 2 isolated OS muons
 - 1 loose tau failing ID

UIB

Results – tt $\rightarrow \mu \tau_h$ events

Results – tt $\rightarrow \mu \tau_h$ events

Discriminator	MC efficiency	Scale factor
Combined isolation 8-hit Loose ¹	59.1%	1.001 ± 0.098
Combined isolation 8-hit Medium ¹	47.5%	0.964 ± 0.107
Combined isolation 8-hit Tight ¹	43.8%	0.977 ± 0.114
Combined isolation 3-hit Loose ¹	58.4%	0.976 ± 0.097
Combined isolation 3-hit Medium ¹	46.4%	0.970 ± 0.102
Combined isolation 3-hit Tight ¹	42.8%	0.994 ± 0.112
MVA isolation Loose ¹	65.2%	1.138 ± 0.100
MVA isolation Medium ¹	55.6%	1.053 ± 0.101
MVA isolation Tight ¹	46.8%	1.004 ± 0.105
MVA2 isolation Loose ¹	65.9%	1.089 ± 0.098
MVA2 isolation Medium ¹	60.2%	1.064 ± 0.105
MVA2 isolation Tight ¹	52.2%	1.060 ± 0.108

Summary

- Tau ID efficiency measured in data in DY and ttbar events
- Scale factors more or less compatible with 1.0 (slight trend to be lower)
- Efficiency smaller in ttbar events than in Drell-Yan events due to higher hadronic activity
- Complementary to $Z \rightarrow \mu \mu / Z \rightarrow \tau \tau$ ratio method, but possibility to measure efficiency in bins of tau pT
- Scale factors independent of tau pT
- Next step is to measure scale factors for new tau ID discriminators
- Results to be published in a tau performance paper (summer 2014).

BACK-UP

14

ULB

Control distribution (P zeta)

Pass

Fail

