

Tau ID in CMS and new developments

Pavel Jež

Centre for Cosmology, Particle Physics and Phenomenology - CP3 Université catholique de Louvain

January 24, 2014

S3Be, IIHE Brussels

Tau Lepton

- Heaviest charged lepton (1.8 GeV)
- Decays to leptons and hadrons
- Charge conservation \Rightarrow odd number of tracks
 - "1-prong" and "3-prong"

Tau Lepton

- Heaviest charged lepton (1.8 GeV)
- Decays to leptons and hadrons
- Charge conservation \Rightarrow odd number of tracks
 - "1-prong" and "3-prong"

CM

decays of τ^- **BR[%]** Decay Mode Resonance 17.8 $e^- \bar{\nu}_e \nu_\tau$ 17.4 $\mu^- \bar{\nu}_\mu \nu_\tau$ $h^- \nu_{\tau}$ 11.6 $h^-\pi^0\nu_{\tau}$ $\rho(770)$ 25.9 $h^-\pi^0\pi^0\nu_{\tau}$ $a_1(1260)$ 9.5 $h^- h^- h^+ \nu_{\tau}$ $a_1(1260)$ 9.8 $h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau}$ 9.8 other hadronic 3.2

Tau Lepton

- Heaviest charged lepton (1.8 GeV)
- Decays to leptons and hadrons
- Charge conservation \Rightarrow odd number of tracks
 - "1-prong" and "3-prong"

decays of τ^-

Decay Mode	Resonance	BR[%]
$e^- \bar{\nu}_e \nu_{\tau}$		17.8
$\mu^- ar{ u}_\mu u_ au$		17.4
$h^- \nu_{\tau}$		11.6
$h^-\pi^0 u_ au$	ho(770)	25.9
$h^-\pi^0\pi^0 u_ au$	$a_1(1260)$	9.5
$h^-h^-h^+ u_ au$	$a_1(1260)$	9.8
$h^-h^-h^+\pi^0 u_ au$		9.8
other hadronic		3.2

Tau ID crucial for the evidence of $H \rightarrow ff$ CMS-HIG-13-004-005, arXiv:1401.5041, submitted to JHEP

The 3 most sensitive channels contain at least one τ_h

C

CMS: Hadron+strip (HPS) algorithm

• input: Particle flow \Rightarrow list of particles \Rightarrow jets

- input: Particle flow \Rightarrow list of particles \Rightarrow jets
- $\texttt{I} \quad \texttt{Vertex associated to leading track} \Rightarrow \texttt{jet vertex}$

CMS: Hadron+strip (HPS) algorithm

- input: Particle flow \Rightarrow list of particles \Rightarrow jets
- $\texttt{I} \quad \texttt{Vertex associated to leading track} \Rightarrow \texttt{jet vertex}$
- 2 Create π^0 candidates ("strips") from γ 's and e's inside jet

CN

- input: Particle flow \Rightarrow list of particles \Rightarrow jets
- 1 Vertex associated to leading track \Rightarrow jet vertex
- 2 Create π^0 candidates ("strips") from γ 's and e's inside jet
- 3 Combine 1 or 3 charged hadrons with 0-2 $\pi^0 \Rightarrow \tau$ candidates

- input: Particle flow \Rightarrow list of particles \Rightarrow jets
- 1 Vertex associated to leading track \Rightarrow jet vertex
- 2 Create π^0 candidates ("strips") from γ 's and e's inside jet
- 3 Combine 1 or 3 charged hadrons with 0-2 $\pi^0 \Rightarrow au$ candidates
- ${f 0}$ Reject combinations not compatible with au decay

- input: Particle flow \Rightarrow list of particles \Rightarrow jets
- 1 Vertex associated to leading track \Rightarrow jet vertex
- 2 Create π^0 candidates ("strips") from γ 's and e's inside jet
- 3 Combine 1 or 3 charged hadrons with 0-2 $\pi^0 \Rightarrow au$ candidates
- ${f 40}$ Reject combinations not compatible with au decay
- ${f 5}$ Require that au constitutents are very collimated

- $\bullet \ \ \text{input: Particle flow} \Rightarrow \mathsf{list of particles} \Rightarrow \mathsf{jets} \\$
- 1 Vertex associated to leading track \Rightarrow jet vertex
- 2 Create π^0 candidates ("strips") from γ 's and e's inside jet
- 3 Combine 1 or 3 charged hadrons with 0-2 $\pi^0 \Rightarrow au$ candidates
- ${f 40}$ Reject combinations not compatible with au decay
- ${f igodold S}$ Require that au constitutents are very collimated
- ${igle 0}$ Max 1 au per jet \Rightarrow keep the most isolated

- $\bullet \ \ \text{input: Particle flow} \Rightarrow \mathsf{list of particles} \Rightarrow \mathsf{jets} \\$
- 1 Vertex associated to leading track \Rightarrow jet vertex
- 2 Create π^0 candidates ("strips") from γ 's and e's inside jet
- 3 Combine 1 or 3 charged hadrons with 0-2 $\pi^0 \Rightarrow \tau$ candidates
- ${f 49}$ Reject combinations not compatible with au decay
- ${igsimlabel{omega}}$ Require that au constitutents are very collimated
- igleo Max 1 au per jet \Rightarrow keep the most isolated
- Jet rejection: p_T of particles close to τ (cut on scalar sum or BDT)
- Electron rejection: Inverted electron ID + dedicated BDT
- Muon rejection: Inverted muon ID

Pileup corrections

Pileup:

 ~ 30 collisions at the same time ⇒ additional particles not connected
 with primary interaction

CMS

Pileup corrections

Pileup:

 ~ 30 collisions at the same time ⇒ additional particles not connected
 with primary interaction

Localized ($\Delta\beta$) pileup corrections

- \bullet Using only charged particles compatible with jet/tau vertex \Rightarrow charged pileup robust
- Estimate the neutral pileup contribution (sum of charged pileup around $\tau \times$ correction factor $\Delta\beta$) and subtract

Discrimination by isolation

Combined isolation with pile-up correction

- Absolute sum of charged and neutral PF isolation in $\Delta R < 0.5$
- Correction for charged pile-up is "automatic" from construction
- ٠ Contributions from neutral pile-up are subtracted using scalar p_T sum of charged pile-up (all PF particles within $\Delta R < 0.8$ of τ not coming from τ vertex) and a correction factor

MVA isolation

- Spatial p_T distribution (τ shape) is used to select real τ 's
- MultiVariate Analysis (Boosted Decision Trees) variables:
 - scalar p_{τ} sum of charged and neutral PF candidates in 4 annuli and 1 cone around τ
 - p_{τ} weighted mean and variance of $\Delta \eta$ and $\Delta \phi$ between isolation particle and τ

Electron and Muon rejection

Cut based electron rejection

- PF electron ID uses MVA discriminator
- Loose electron rejection inverts the MVA electron ID
- Tighter working points use additional cuts to reject single charged hadrons and high bremstrahnulg electrons

MVA based electron rejection

- Specific MVA dicriminator to distinguish τ 's from electrons
- tau candidates are categorized using
 - number of neutral PF among τ constituents
 - pseudorapidity
 - presence of *e* reconstructed in the tracker and associated to leading *τ* track
 - Dedicated BDT training in each category

Muon rejection

- Loose: leading τ track cannot be matched with a track segment in the muon chambers
- Medium: The leading τ track not reconstructed as loose muon
- Tight: Same as medium + cut on minimum relative p_T deposit for single prong and 0 strips candidates

Current recommendations of the Tau POG

"Legacy" recommendations

- The recipe used for HIG-13-004 paper and shown few moments ago
- Contained in CMSSW_5_3_12 and newer
 - But: it is necessary to re-run PFTau sequence on 8 TeV AODs
 - Nevertheless: contained in AODs from 7 TeV legacy reprocessing
- If you really need to use older recipes, contact Tau POG

"Tau ID 2014" recommendations

- $\bullet\,$ The code is stabilized and running in 53x and 62x and 70x
- Contains
 - Fix for high p_T behaviour
 - Code for boosted tau reconstruction in subjects
 - Tau lifetime information
 - Better performing discriminators
- Dedicated branches in github obtained via cms-merge-topic
- Will be included in 7_0_0_pre13

Motivation for new ID

- In December 2012 a problem discovered with performance at very high p_T (1 TeV)
 - significant efficiency decrease
 - underestimation of tau momentum
- A taskforce was set-up and identified causes:
 - Underestimation of track p_T (small curvature) ⇒ fake neutral PF particles ⇒ Decay mode finding fails
 - 2 Kinematical cuts too tight
 - **(**Decreased track reconstruction efficiency at high p_T)³

Solution to Decay mode finding fails

Adding an "afterburner" that reconstructs high $p_T \pi$'s and K's from PFlow output + tracks

Solution to other issues: change of kinematical cuts

- Mass window cut was changed (Sliding mass window)
- New decay modes were defined
 - Recovering 3-prong decays by looking at 2 tracks + neutral particle
 - About 10% efficiency gain at very high p_T
 - p_T dependent increase in jet $\rightarrow \tau_h$ fakes
 - Analyst can choose whether to use 2-prong decay modes or not

Results

- Stable tau energy response
- Efficiency increased due to new algorithm, new decay modes and
 relaxed decay mode cuts

E

Boosted tau reconstruction

CMS

Motivation

- Taus difficult to reconstruct when $\Delta R < 0.5$
- $\Delta R = \frac{2M_Y}{p_T^Y}$, $p_T^Y \approx \frac{M_X}{2}$
- If $p_T^Y > 5M_Y$ or $M_X > 10M_Y$ \Rightarrow difficult kinematic regimes with standard tau reco

Boosted tau reconstruction

Motivation

- Taus difficult to reconstruct when $\Delta R < 0.5$
- $\Delta R = rac{2M_Y}{p_T^Y}$, $p_T^Y \approx rac{M_X}{2}$
- If $p_T^Y > 5M_Y$ or $M_X > 10M_Y$ \Rightarrow difficult kinematic regimes with standard tau reco

Boosted tau reconstruction

Motivation

- Taus difficult to reconstruct when $\Delta R < 0.5$
- $\Delta R = \frac{2M_Y}{p_T^Y}$, $p_T^Y \approx \frac{M_X}{2}$
- If $p_T^Y > 5M_Y$ or $M_X > 10M_Y$ \Rightarrow difficult kinematic regimes with standard tau reco

Solution

- Subjet techniques are used to get input for tau reconstruction
- Algorithm functional and running
- Everybody is welcome to use it

Tau lifetime information

- Tau decays via weak interaction⇒ measurable length-of-flight
- 1 mm (20 GeV)/ 4.9 cm (1 TeV)
- additional handle to identify τ_h

- Good Data/MC aggreement
- Improves tau ID performance

Performance is improving every year!

Addition of the lifetime information seems to lead to a large performance improvement

Pavel Jež (UCL-CP3)

Tau ID in CMS

CMS

Plan for 2014

Move to the new tau ID

- Everything seems to indicate that the new tau ID is vastly superior to the current one in all categories
- The algorithm will be made part of official CMSSW releases and extensively validated in various analyses
- Prepare for Run 2 (continuation of present studies)
 - Different running conditions \Rightarrow re-tune $\Delta\beta$ corrections
 - Retuning of cuts and retraining MVA's
 - Trying to maintain our Run 1 performance or better

Summary

- Tau POG offers 2 flavours of tau ID
 - ① "Legacy" recommendation
 - * standard, well tested, well performing
 - \bigstar in CMSSW > 5_3_12
 - 2 "2014 Tau ID" recommendation
 - * state-of-the-art, not that much tested yet, everybody is invited to try
 - * git cms-merge-topic -u cms-tau-pog:CMSSW_5_3_X_boostedTaus
- The recipes for installation are kept at Twiki
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuidePFTauID
- The recommendation for analyses are also in Twiki
 - https://twiki.cern.ch/twiki/bin/view/CMS/TauIDRecommendation
- Questions? Comments? Suggestions?
 - Write to hypernews hn-cms-tauid@cern.ch
 - Come to meet us: Mondays @ 16:00

Additional Material

Particle Flow

- e, μ , γ , charged and neutral hadrons
- allows parton-level-like analysis

• individual particles are used e.g. to

- reconstruct jets and au's
- determine E_T^{miss}
- quantify particle isolation
- tag b-jets
- possible due to high precision tracker and EM calorimeter (allows to separate γ 's and charged particles deposits in the calorimeter)

Status of PFTau \rightarrow GED integration

- The plan of the RECO/AT group is to eventually move to PFB ACC and GED
- In every official release, tau sequence is working in PFBRECO
- The PFBRECO is also working on the *_highPt/boostedTaus branches of cms-tau-pog
- PFBRECO was successfully validated against simple PFTau sequence in 53x
- Validation and clean-up in 62x/70x is ongoing

Pavel Jež (UCL-CP3)

CM

Performance of CMS Tau ID

CMS

Decay mode finding and isolation

Efficiency and Fake rate definitions

- Tau selection: $p_T > 20$ GeV, $|\eta| < 2.3$
- In efficiency and FR plots, τ 's are passing Decay mode selection, loose e and μ rejection
- For efficiency reconstructed au matched to generated au ($\Delta R < 0.5$)
- Fake rate measured in jet data

Performance of Tau ID

Stability with pile-up

 $p_{\mathcal{T}}$ resulution for 1 prong $+ \pi^0$ events

Isolation efficiency as a function of reconstructed vertices

Pavel Jež (UCL-CP3)

Tau ID in CMS

Light lepton rejection

Electron fake rate

- Electron fake rate measured in sample of isolated electrons from $Z \rightarrow ee$ using tag and probe
- Measured fake rate in barrel 0.5%/13% (MVA/loose) in barrel and 0.9%/29% in endcap
- Efficiency is 85%/100% (65%/100%) in barrel (endcap)

Muon fake rate

- Muon fake rate measured in sample of isolated electrons from $Z \rightarrow \mu\mu$ using tag and probe
- Upper limit 0.24% on $\mu \rightarrow \tau$ fake rate

Tau energy scale

- $\bullet\,$ Hadronic taus composed of charged hadrons and $\gamma{'}{\rm s}$ that are reconstructed with high precision in PF
- Tau energy scaled is well described in data and our understanding is steadily improving

Tau ID in CMS

Study of high p_T tracking

- Tracks lying close to each other can have their cluster merged
- Affects tracking efficiency quality
- Tried to apply cluster splitting algorithm and check its effect on the tau performance
- 15% efficiency gain for 3-prong taus \natural 800 GeV, 5% gain overall for $p_T>$ 800 GeV

TRACK RECO.EFFICIENCY VS GEN TAU p_{T} (3P0 π 0)

Pavel Jež (UCL-CP3)

Study of the post-LS1 performance

- Already started to look on the tau performance after the LS1
- No proper MC samples available, so only very preliminary studies:
 - Study 1
 - Study 2
- \bullet Not much conclusions but it will be probably necessary to re-tune $\Delta\beta$ corrections
 - Present value is slightly overcorrecting \Rightarrow safe for 25 ns
 - \blacktriangleright The tau performance is not affected much by changing the $\Delta\beta$

CMS